

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China







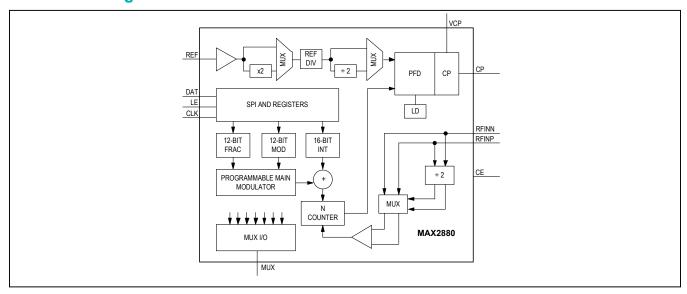
### **General Description**

The MAX2880 is a high-performance phase-locked loop (PLL) capable of operating in both integer-N and fractional-N modes. Combined with an external reference oscillator, loop filter, and VCO, the device forms an ultralow noise and low-spur frequency synthesizer capable of accepting RF input frequencies of up to 12.4GHz.

The MAX2880 consists of a high-frequency and lownoise-phase frequency detector (PFD), precision charge pump, 10-bit programmable reference counter, 16-bit integer N counter, and 12-bit variable modulus fractional modulator.

The MAX2880 is controlled by a 3-wire serial interface and is compatible with 1.8V control logic. The device is available in a lead-free, RoHS-compliant, 20-pin TQFN and 16-pin TSSOP packages, and operates over an extended -40°C to +85°C temperature range.

### **Applications**


- Microwave Point-to-Point Systems
- Wireless Infrastructure
- Satellite Communications
- Test and Measurement
- · RF DAC and ADC Clocks

#### **Benefits and Features**

- Integer and Fractional-N Modes
- 250MHz to 12.4GHz Broadband RF Input
- Normalized In-Band Noise Floor
  - · -229dBc/Hz in Integer Mode
  - · -227dBc/Hz in Fractional Mode
- -10dBm to +5dBm Wide Input Sensitivity
- Low-Noise Phase Frequency Detector
  - · 125MHz in Fractional Mode
  - 140MHz in Integer Mode
- Reference Frequency Up to 210MHz
- Operates from +2.8V to +3.6V Supply
- Cycle Slip Reduction and Fast Lock
- Software and Hardware Shutdown
- Software Lock Detect
- On-Chip Temperature Sensor
- Compatible with +1.8V Control Logic
- Phase Adjustment

Ordering Information appears at end of data sheet.

## **Functional Diagram**





## **Absolute Maximum Ratings**

| V <sub>CC</sub> to GND           | 0.3V to +3.9V                    |
|----------------------------------|----------------------------------|
| V <sub>CP</sub> to GND           | 0.3V to +5.8V                    |
| CP to GND                        |                                  |
| All Other Pins to GND            | 0.3V to (V <sub>CC</sub> + 0.3V) |
| RFINP, RFINN                     |                                  |
| Continuous Power Dissipation (TA | = +70°C)                         |
| TOEN (derate 25 6mW/°C above     | e +70°C) 2051.3mW                |

| Junction Temperature              | +150°C         |
|-----------------------------------|----------------|
| Operating Temperature Range       | 40°C to +85°C  |
| Storage Temperature Range         | 65°C to +150°C |
| Lead Temperature (soldering, 10s) | +300°C         |
| Soldering Temperature (reflow)    | +260°C         |
|                                   |                |

## **Package Thermal Characteristics (Note 1)**

**TQFN** 

| Junction-to-Ambient Thermal Resistance (θ <sub>JA</sub> ) | .39°C/W |
|-----------------------------------------------------------|---------|
| Junction-to-Case Thermal Resistance (θ <sub>JC</sub> )    | 6°C/W   |

#### **TSSOP**

| Junction-to-Ambient Thermal Resistance $(\theta_{JA})$ | 90°C/W |
|--------------------------------------------------------|--------|
| Junction-to-Case Thermal Resistance (θ <sub>JC</sub> ) | 27°C/W |

**Note 1:** Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

#### **DC Electrical Characteristics**

(Measured using the MAX2880 Evaluation Kit.  $V_{CC}$  = 3V to 3.6V,  $V_{CP}$  =  $V_{CC}$  to 5.5V,  $V_{GND}$  = 0V,  $f_{REF}$  = 50MHz,  $f_{PFD}$  = 50MHz,  $f_{A}$  = -40°C to +85°C. Typical values measured at  $V_{CC}$  = 3.3V,  $V_{CP}$  = 5V,  $T_{A}$  = +25°C, no RF applied, Registers 0 through 4 settings: 303C0000, 00000009, 00008052, 00000BC3, 00000084, unless otherwise noted.) (Note 2)

| PARAMETER                             | CONDITIONS             | MIN               | TYP  | MAX | UNITS |
|---------------------------------------|------------------------|-------------------|------|-----|-------|
| Supply Voltage (V <sub>CC</sub> _)    |                        | 2.8               | 3.3  | 3.6 | V     |
| Charge-Pump Supply (V <sub>CP</sub> ) |                        | V <sub>CC</sub> _ |      | 5.5 | V     |
|                                       | PRE = 0, RFINN = 6GHz  |                   | 39   | 50  |       |
| V <sub>CC_</sub> Supply Current       | PRE = 1, RFINN = 12GHz |                   | 49   | 59  | mA    |
|                                       | Shutdown Mode          |                   |      | 1   |       |
| V <sub>CP</sub> Supply Current        |                        |                   | 0.65 | 2.0 | mA    |

#### **AC Electrical Characteristics**

(Measured using the MAX2880 Evaluation Kit.  $V_{CC}$  = 3V to 3.6V,  $V_{CP}$  =  $V_{CC}$  to 5.5V,  $V_{GND}$  = 0V,  $f_{REF}$  = 50MHz,  $f_{PFD}$  = 50MHz,  $f_{RFINN}$  = 6000MHz,  $T_A$  = -40°C to +85°C. Typical values measured at  $V_{CC}$  = 3.3V,  $V_{CP}$  = 5V,  $T_A$  = +25°C,  $P_{RFINN}$  = 2dBm, Registers 0 through 4 settings: 303C0000, 00000009, 00008052, 00000BC3, 00000084, unless otherwise noted.) (Note 2)

| PARAMETER                 | CONDITIONS                                | MIN | TYP  | MAX               | UNITS            |  |
|---------------------------|-------------------------------------------|-----|------|-------------------|------------------|--|
| Input Frequency           |                                           | 250 |      | 12,400            | MHz              |  |
| Input Power               |                                           | -10 |      | +5                | dBm              |  |
| REF Input Frequency Range |                                           | 10  |      | 210               | MHz              |  |
| REF Input Sensitivity     |                                           | 0.7 |      | V <sub>CC</sub> _ | V <sub>P-P</sub> |  |
| REF Input Capacitance     |                                           |     | 2    |                   | pF               |  |
| REF Input Current         |                                           | -60 |      | +60               | μA               |  |
| Dhace Detector Francisco  | Fractional mode                           | le  |      | 125               | MHz              |  |
| Phase Detector Frequency  | Integer mode                              |     |      | 140               | IVITZ            |  |
| Sink/Source Current       | CP[3:0] = 1111, R <sub>RSET</sub> = 5.1kΩ |     | 5.12 |                   | mΛ               |  |
| Silik/Source Current      | $CP[3:0] = 0000, R_{RSET} = 5.1kΩ$        |     | 0.32 |                   | - mA             |  |

### **AC Electrical Characteristics (continued)**

(Measured using the MAX2880 Evaluation Kit.  $V_{CC}$  = 3V to 3.6V,  $V_{CP}$  =  $V_{CC}$  to 5.5V,  $V_{GND}$  = 0V,  $f_{REF}$  = 50MHz,  $f_{RFINN}$  = 6000MHz,  $T_A$  = -40°C to +85°C. Typical values measured at  $V_{CC}$  = 3.3V,  $V_{CP}$  = 5V,  $T_A$  = +25°C,  $P_{RFINN}$  = 2dBm, Registers 0 through 4 settings: 303C0000, 00000009, 00008052, 00000BC3, 00000084, unless otherwise noted.) (Note 2)

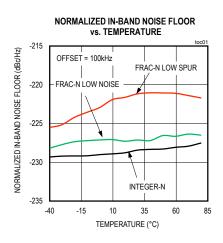
| PARAMETER                   | CONDITIONS                      | MIN | TYP  | MAX                 | UNITS  |
|-----------------------------|---------------------------------|-----|------|---------------------|--------|
| RSET Range                  |                                 | 2.7 |      | 10                  | kΩ     |
| Charge-Pump Output Voltage  |                                 | 0.5 | V    | <sub>CP</sub> - 0.5 | V      |
| In-Band Noise Floor         | Normalized (Note 3)             |     | -229 |                     | dBc/Hz |
| 1/f Noise                   | Normalized (Note 4)             |     | -122 |                     | dBc/Hz |
| In-Band Phase Noise         | (Note 5)                        |     | -101 |                     | dBc/Hz |
| Integrated RMS Jitter       | (Note 6)                        |     | 0.14 |                     | ps     |
| Spurious Signals Due to PFD |                                 |     | -84  |                     | dBc    |
| ADC Resolution              |                                 |     | 7    |                     | Bits   |
| Temperature Sensor Accuracy | T <sub>A</sub> = -40°C to +85°C |     | ±2.0 |                     | °C     |

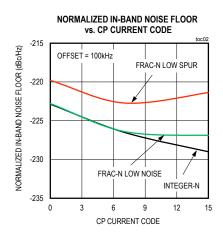
## **Digital I/O Characteristics**

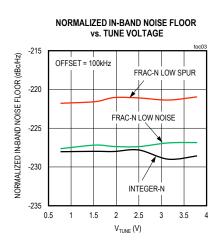
 $(V_{CC} = 3V \text{ to } 3.6V, V_{GND} = 0V, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}. \text{ Typical values at } V_{CC} = 3.3V, T_A = +25^{\circ}\text{C}.) \text{ (Note 2)}$ 

| PARAMETER                 | SYMBOL                           | CONDITIONS           | MIN             | TYP | MAX | UNITS |
|---------------------------|----------------------------------|----------------------|-----------------|-----|-----|-------|
| Input Logic-Level Low     | V <sub>IL</sub>                  |                      |                 | 0.4 |     | V     |
| Input Logic-Level High    | V <sub>IH</sub>                  |                      |                 | 1.5 |     | V     |
| Input Current             | I <sub>IH</sub> /I <sub>IL</sub> |                      | -1              |     | +1  | μA    |
| Input Capacitance         |                                  |                      |                 | 1   |     | pF    |
| Output Logic-Level Low    | V <sub>OL</sub>                  | 0.3mA sink current   |                 |     | 0.4 | V     |
| Output Logic-Level High   | V <sub>OH</sub>                  | 0.3mA source current | V <sub>CC</sub> |     |     | V     |
| Output Current Level High | ГОН                              |                      |                 | 0.5 |     | mA    |

## **SPI Timing Characteristics**

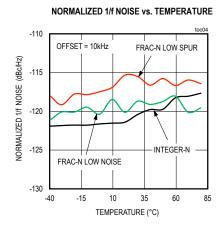

 $(V_{CC}$  = 3V to 3.6V,  $V_{GND}$  = 0V,  $T_A$  = -40°C to +85°C. Typical values at  $V_{CC}$  = 3.3V,  $T_A$  = +25°C.) (Note 2)

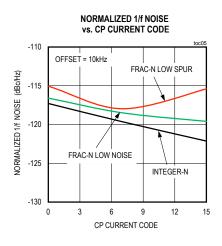

| PARAMETER                   | SYMBOL           | CONDITIONS                                 | MIN | TYP | MAX | UNITS |
|-----------------------------|------------------|--------------------------------------------|-----|-----|-----|-------|
| CLK Clock Period            | t <sub>CP</sub>  | Guaranteed by SCL pulse-width low and high |     | 50  |     | ns    |
| CLK Pulse-Width Low         | t <sub>CL</sub>  |                                            |     | 25  |     | ns    |
| CLK Pulse-Width High        | t <sub>CH</sub>  |                                            |     | 25  |     | ns    |
| LE Setup Time               | t <sub>LES</sub> |                                            |     | 20  |     | ns    |
| LE Hold Time                | t <sub>LEH</sub> |                                            |     | 10  |     | ns    |
| LE Minimum Pulse-Width High | t <sub>LEW</sub> |                                            |     | 20  |     | ns    |
| Data Setup Time             | t <sub>DS</sub>  |                                            |     | 25  |     | ns    |
| Data Hold Time              | t <sub>DH</sub>  |                                            |     | 25  |     | ns    |
| MUX Setup Time              | t <sub>MS</sub>  |                                            |     | 10  |     | ns    |
| MUX Hold Time               | t <sub>MH</sub>  |                                            |     | 10  |     | ns    |

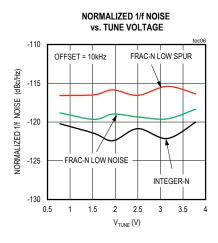

- **Note 2:** Production tested at  $T_A = +25$ °C. Cold and hot are guaranteed by design and characterization.
- Note 3: Measured at 100kHz offset with 50MHz Bliley NV108C1954 OCVCXO with 500kHz loop bandwidth. Registers 0 through 4 settings: 303C0000, 00000009, 0F008052, 000025C3, 00000094.
- Note 4: 1/f noise contribution to the in-band noise is computed by using  $1/f_{NOISE} = PN 10log(10kHz/f_{OFFSET}) 20log(f_{RF}/1GHz)$ . Registers 0 through 4 settings: 303C0000, 00000009, 0F008052, 000025C3, 00000094.
- Note 5: f<sub>REF</sub> = 50MHz; f<sub>PFD</sub> = 50MHz; offset frequency = 10kHz; VCO frequency = 6GHz, N = 120; loop BW = 100kHz, CP[3:0] = 1111; integer mode. Registers 0 through 4 settings 303C0000, 00000009, 0F008052, 000025C3, 00000094.
- Note 6: f<sub>REF</sub> = 50MHz; f<sub>PFD</sub> = 50MHz; VCO frequency = 6GHz; N = 120; loop BW = 100kHz, CP[3:0] = 1111; integer mode. Registers 0 through 4 settings 303C0000, 00000009, 0F008052, 000025C3, 00000094.

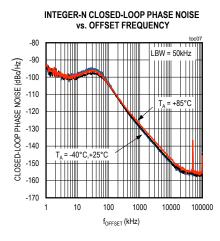
## **Typical Operating Characteristics**

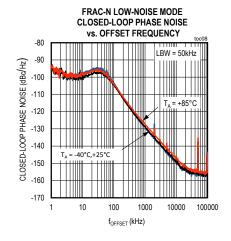
(Measured using the MAX2880 Evaluation Kit.  $V_{CC}$  = 3.3V,  $V_{GND}$  = 0V,  $V_{CP}$  = 5.0V, CP[3:0]= 1111,  $f_{RFINN}$  = 6GHz,  $f_{REF}$  = 50MHz,  $f_{PFD}$  = 50MHz,  $f_{A}$  = +25°C, unless otherwise noted. See Table 1 and Table 2).

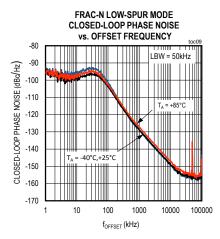


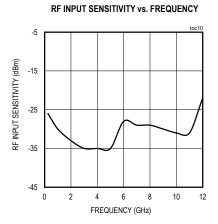





## **Typical Operating Characteristics (continued)**


(Measured using the MAX2880 Evaluation Kit.  $V_{CC}$  = 3.3V,  $V_{GND}$  = 0V,  $V_{CP}$  = 5.0V, CP[3:0]= 1111,  $f_{RFINN}$  = 6GHz,  $f_{REF}$  = 50MHz,  $f_{PFD}$  = 50MHz,  $f_{A}$  = +25°C, unless otherwise noted. See <u>Table 1</u> and <u>Table 2</u>).



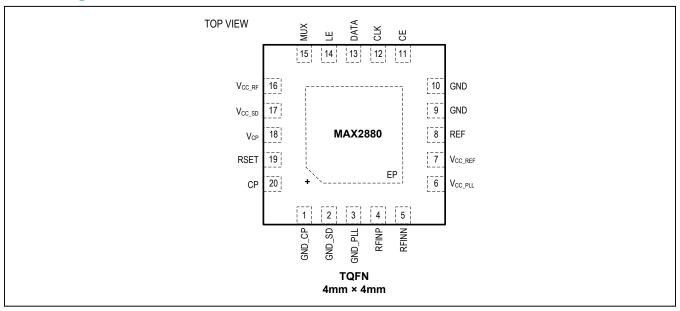








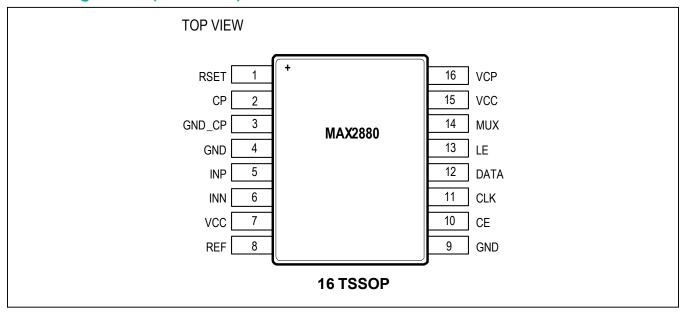




**Table 1. Typical Operating Characteristics Testing Conditions** 

| тос | MODE             | REG 0<br>(hex) | REG 1<br>(hex) | REG 2<br>(hex) | REG 3<br>(hex) | REG 4<br>(hex) | COMMENTS                 |  |
|-----|------------------|----------------|----------------|----------------|----------------|----------------|--------------------------|--|
|     | INTEGER N        | 303C0000       | 04000001       | 2F00FFFA       | 00000543       | 00000004       |                          |  |
| 1   | FRAC N LOW SPUR  | 303C00A0       | 04000001       | 6F008C82       | 00000B43       | 0000004        | LBW =<br>500kHz          |  |
|     | FRAC N LOW NOISE | 303C00A0       | 04000001       | 0F008C82       | 00000343       | 0000004        | 300KH2                   |  |
|     | INTEGER N        | 303C0000       | 04000001       | 2F00FFFA       | 00000543       | 00000004       |                          |  |
| 2   | FRAC N LOW SPUR  | 303C00A0       | 04000001       | 6F008C82       | 00000B43       | 0000004        | LBW =<br>500kHz          |  |
|     | FRAC N LOW NOISE | 303C00A0       | 04000001       | 0F008C82       | 00000343       | 00000004       | JOORITZ                  |  |
|     | INTEGER N        | 303C0000       | 04000001       | 2F00FFFA       | 00000543       | 0000004        |                          |  |
| 3   | FRAC N LOW SPUR  | 303C00A0       | 04000001       | 6F008C82       | 00000B43       | 00000004       | LBW =<br>500kHz          |  |
|     | FRAC N LOW NOISE | 303C00A0       | 04000001       | 0F008C82       | 00000343       | 0000004        | JOORITZ                  |  |
|     | INTEGER N        | 303C0000       | 04000001       | 2F00FFFA       | 00000543       | 00000004       |                          |  |
| 4   | FRAC N LOW SPUR  | 303C00A0       | 04000001       | 6F008C82       | 00000B43       | 00000004       | LBW =<br>500kHz          |  |
|     | FRAC N LOW NOISE | 303C00A0       | 04000001       | 0F008C82       | 00000343       | 00000004       |                          |  |
|     | INTEGER N        | 303C0000       | 04000001       | 2F00FFFA       | 00000543       | 0000004        |                          |  |
| 5   | FRAC N LOW SPUR  | 303C00A0       | 04000001       | 6F008C82       | 00000B43       | 00000004       | LBW =<br>500kHz          |  |
|     | FRAC N LOW NOISE | 303C00A0       | 04000001       | 0F008C82       | 00000343       | 0000004        | - 500KHZ                 |  |
|     | INTEGER N        | 303C0000       | 04000001       | 2F00FFFA       | 00000543       | 0000004        |                          |  |
| 6   | FRAC N LOW SPUR  | 303C00A0       | 04000001       | 6F008C82       | 00000B43       | 0000004        | LBW =<br>500kHz          |  |
|     | FRAC N LOW NOISE | 303C00A0       | 04000001       | 0F008C82       | 00000343       | 0000004        | 300KH2                   |  |
| 7   | INTEGER N        | 303C0000       | 04000001       | 2F00FFFA       | 00000543       | 00000004       | LBW = 50kHz              |  |
| 8   | FRAC N LOW NOISE | 303C00A0       | 04000001       | 0F008C82       | 00000343       | 00000004       | LBW = 50kHz              |  |
| 9   | FRAC N LOW SPUR  | 303C00A0       | 04000001       | 6F008C82       | 00000B43       | 00000004       | LBW = 50kHz              |  |
| 10  | INTEGER N        | 303C0000       | 04000001       | 2F00FFFA       | 00000543       | 00000004       | f <sub>RF</sub> < 6.2GHz |  |
| 10  | INTEGER N        | 303C0000       | 06000001       | 2F00FFFA       | 00000543       | 00000004       | f <sub>RF</sub> ≥ 6.2GHz |  |

**Table 2. Loop Filter Component** 

| LOOP BW | K <sub>VCO</sub> | CP CODE | f <sub>REF</sub> | f <sub>PFD</sub> MAX2880 EVALUATION KIT COMPONENT VALUES (MHz) |       |        |       | ALUES |        |
|---------|------------------|---------|------------------|----------------------------------------------------------------|-------|--------|-------|-------|--------|
| (       | (2.1)            |         | ()               | C14                                                            | C13   | R10    | R33   | C15   |        |
| 50      | 85               | 1111    | 50               | 50                                                             | 10nF  | 100nF  | 100Ω  | 47.5Ω | 1000pF |
| 100     | 85               | 1111    | 50               | 50                                                             | 680pF | 0.1µF  | 174Ω  | 100Ω  | 18pF   |
| 500     | 85               | 0001    | 50               | 50                                                             | Open  | 330pF  | 15kΩ  | 0Ω    | Open   |
| 500     | 85               | 0111    | 50               | 50                                                             | 12pF  | 2200pF | 1820Ω | 100Ω  | 18pF   |
| 500     | 85               | 1111    | 50               | 50                                                             | 33pF  | 4700pF | 910Ω  | 100Ω  | 18pF   |


# **Pin Configuration**



## **Pin Description**

| PIN   | NAME                | FUNCTION                                                                                                                                         |
|-------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | GND_CP              | Charge-Pump Ground. Connect to board ground, not to the paddle.                                                                                  |
| 2     | GND_SD              | Sigma Delta Modulator Ground. Connect to board ground, not to the paddle.                                                                        |
| 3     | GND_PLL             | PLL Ground. Connect to board ground, not to the paddle.                                                                                          |
| 4     | RFINP               | Positive RF Input to Prescaler. AC ground through capacitor, if not used.                                                                        |
| 5     | RFINN               | Negative RF Input to Prescaler. Connect to VCO output through coupling capacitor.                                                                |
| 6     | V <sub>CC_PLL</sub> | PLL Power Supply. Place decoupling capacitors as close as possible to pin.                                                                       |
| 7     | V <sub>CC_REF</sub> | REF Power Supply. Place decoupling capacitors as close as possible to pin.                                                                       |
| 8     | REF                 | Reference Frequency Input. This is a high-impedance input with a nominal bias voltage of                                                         |
|       | INLI                | V <sub>CC_REF</sub> /2. AC-couple to reference signal.                                                                                           |
| 9, 10 | GND                 | Ground. Connect to the board ground, not the paddle.                                                                                             |
| 11    | CE                  | Chip Enable. A logic-low powers the device down.                                                                                                 |
| 12    | CLK                 | Serial Clock Input. The data is latched into the 32-bit shift register on the rising edge of the CLK line.                                       |
| 13    | DATA                | Serial Data Input. The serial data is loaded MSB first. The 3 LSBs identify the register address.                                                |
| 14    | LE                  | Load Enable Input. When LE goes high the data stored in the shift register is loaded into the appropriate register.                              |
| 15    | MUX                 | Multiplexed I/O. See Table 5.                                                                                                                    |
| 16    | V <sub>CC_RF</sub>  | RF Power Supply. Place decoupling capacitors as close as possible to pin.                                                                        |
| 17    | V <sub>CC_SD</sub>  | Sigma Delta Modulator Power Supply. Place decoupling capacitors as close as possible to pin.                                                     |
| 18    | V <sub>CP</sub>     | Charge-Pump Power Supply. Place decoupling capacitors as close as possible to the pin.                                                           |
| 19    | RSET                | Charge-Pump Current Range Input. Connect an external resistor to ground to set the minimum CP current. $I_{CP} = 1.63/R_{SET} \times (1 + CP)$ . |
| 20    | СР                  | Charge-Pump Output. Connect to external loop filter input.                                                                                       |
| _     | EP                  | Exposed Pad. Connect to board ground.                                                                                                            |

# **Pin Configuration (continued)**



| PIN | NAME            | FUNCTION                                                                                                                                         |
|-----|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | RSET            | Charge-Pump Current Range Input. Connect an external resistor to ground to set the minimum CP current. $I_{CP} = 1.63/R_{SET} \times (1 + CP)$ . |
| 2   | CP              | Charge-Pump Output. Connect to external loop filter input.                                                                                       |
| 3   | GND_CP          | Charge-Pump Ground. Connect to board ground.                                                                                                     |
| 4   | GND             | Ground. Connect to board ground.                                                                                                                 |
| 5   | RFINP           | Positive RF Input to Prescaler. AC ground through capacitor, if not used.                                                                        |
| 6   | RFINN           | Negative RF Input to Prescaler. Connect to VCO output through coupling capacitor.                                                                |
| 7   | VCC             | Power Supply. Place decoupling capacitors as close as possible to pin.                                                                           |
| 8   | REF             | Reference Frequency Input. This is a high-impedance input with a nominal bias voltage of V <sub>CC_REF</sub> /2. AC-couple to reference signal.  |
| 9   | GND             | Ground. Connect to the board ground.                                                                                                             |
| 10  | CE              | Chip Enable. A logic-low powers the device down.                                                                                                 |
| 11  | CLK             | Serial Clock Input. The data is latched into the 32-bit shift register on the rising edge of the CLK line.                                       |
| 12  | DATA            | Serial Data Input. The serial data is loaded MSB first. The 3 LSBs identify the register address.                                                |
| 13  | LE              | Load Enable Input. When LE goes high the data stored in the shift register is loaded into the appropriate register.                              |
| 14  | MUX             | Multiplexed I/O. See Table 5.                                                                                                                    |
| 15  | VCC             | Power Supply. Place decoupling capacitors as close as possible to pin.                                                                           |
| 16  | V <sub>CP</sub> | Charge-Pump Power Supply. Place decoupling capacitors as close as possible to the pin.                                                           |

## **Detailed Description**

#### 4-Wire Serial Interface

The MAX2880 serial interface contains five read-write and one read-only 32-bit registers. The 29 most-significant bits (MSBs) are data, and the three least-significant bits (LSBs) are the register address. Register data is loaded MSB first through the 4-wire serial port interface (SPI). When latch enable (LE) is logic-low, the logic level at DATA is shifted at the rising edge of CLK. At the rising edge of LE, the 29 data bits are latched into the register selected by the address bits. Default values are not guaranteed upon power-up. Program all register values after power-up.

Register programming order should be address 0x04, 0x03, 0x02, 0x01, and 0x00. Several bits are double buffered to update the settings at the same time. See the register descriptions for double buffered settings.

Any register can be read back through the MUX pin. The user must first set MUX bits = 0111. Next, write the register to be read, but with the READ bit of that register (the MSB) = 1. If the READ bit is set, the data of bits 30:3 do not matter because they are not latched into the register on a read operation. After the address bits are clocked and the LE pin is set, the MSB of that register appears on the MUX pin after the next rising edge on CLK pin. The MUX pin will continue to change after the rising edge of the next 28 clocks. After the LSB has been read, the user can reset the MUX bits to 0000.

#### **Shutdown Mode**

The MAX2880 can be put into shutdown mode by setting SHDN = 1 (register 3, bit 5) or by setting the CE pin to logic-low.

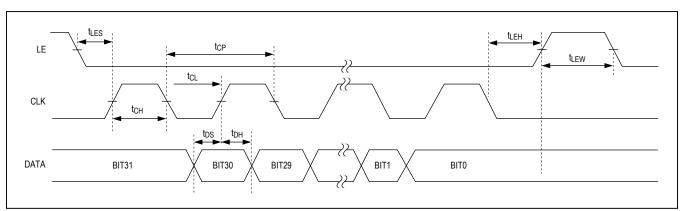



Figure 1. SPI Timing Diagram

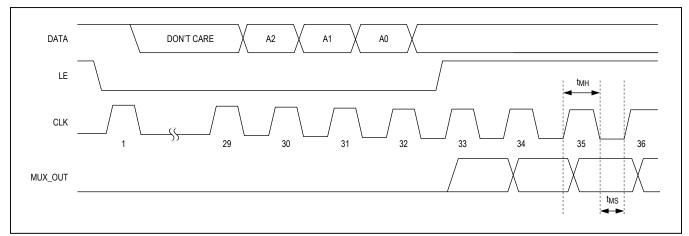



Figure 2. Initiating Readback

#### Reference Input

The reference input stage is configured as a CMOS inverter with shunt resistance from input to output. In shutdown mode this input is set to high impedance to prevent loading of the reference source.

The reference input signal path also includes optional x2 and  $\div 2$  blocks. When the reference doubler is enabled (DBR = 1), the maximum reference input frequency is limited to 100MHz. When the doubler is disabled, the reference input frequency is limited to 205MHz. The minimum reference frequency is 10MHz. The minimum R counter divide ratio is 1, and the maximum divide ratio is 1023.

#### Int, Frac, Mod, and R Counter Relationship

The phase-detector frequency is determined as follows:

$$f_{PFD} = f_{REF} \times [(1 + DBR)/(R \times (1 + RDIV2))]$$

 $f_{REF}$  represents the external reference input frequency. DBR (register 2, bit 20) sets the  $f_{REF}$  input frequency doubler mode (0 or 1). RDIV2 (register 2, bit 21) sets the  $f_{REF}$  divide-by-2 mode (0 or 1). R (register 2, bits 19:15) is the value of the 5-bit programmable reference counter (1 to 31). The maximum  $f_{PFD}$  is 105MHz for Fractional-N and 140MHz for Integer-N. The R-divider can be held in reset when RST (register 3, bit 3) = 1.

The VCO frequency is determined as follows:

$$f_{VCO} = f_{PFD} x (N + F/M) x (PRE + 1)$$

N is the value of the 16-bit N counter (16 to 65535), programmable through bits 30:27 (MSBs) of register 1 and bits 26:15 of register 0 (LSBs). M is the fractional modulus value (2 to 4095), programmable through bits 14:3 of register 2. F is the fractional division value (0 to MOD - 1), programmable through bits 14:3 of register 0. In fractional-N mode, the minimum N value is 19 and maximum N value is 4091. The N counter is held in reset when RST = 1 (register 3, bit 3). PRE is RF input prescaler control where 0 = divide-by-1, and 1 = divide-by-2 (register 1, bit 25). If the RF input frequency is above 6.2GHz, then set PRE = 1.

#### Integer-N/Fractional-N Modes

Integer-N mode is selected by setting bit INT = 1 (register 3, bit 10). When operating in integer-N mode, it is also necessary to set bit Lock Detect Function, LDF = 1 (register 3, bit 9) to set the lock detect to integer-N mode.

The device's fractional-N mode is selected by setting bit INT = 0 (register 3, bit 10). Additionally, set bit LDF = 0 (register 3, bit 9) for fractional-N lock-detect mode.

If the device is in fractional-N mode, it will remain in fractional-N mode when fractional division value F = 0, which can result in unwanted spurs. To avoid this condition, the device can automatically switch to integer-N mode when F = 0 if the bit F01 = 1 (register 4, bit 29).

#### **Phase Detector and Charge Pump**

The device's charge-pump current is determined by the value of the resistor from pin RSET to ground and the value of bits CP (register 2, bits 27:24) as follows:

$$I_{CP} = 1.63/R_{SET} x (1 + CP)$$

When operating in the fractional-N mode, the charge-pump linearity (CPL) bits can be adjusted by the user to optimize in-band noise and spur levels. In the integer-N mode, CPL must be set to 0. If lower noise operation in integer-N mode is desired, set the charge-pump output clamp bit CPOC = 1 (register 3, bit 13) to prevent leakage current into the loop filter. In fractional-N mode, set CPOC = 0..

The charge-pump output can be put into high-impedance mode when TRI = 1 (register 3, bit 4). The output is in normal mode when TRI = 0.

The phase detector polarity can be changed if an active inverting loop filter topology is used. For noninverting loop filters, set PDP = 1 (register 3, bit 6). For inverting loop filters, set PDP = 0.

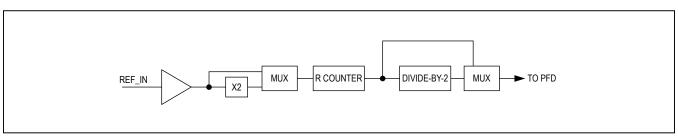



Figure 3. Reference Input

#### **MUX and Lock Detect**

MUX is a multipurpose test output for observing various internal functions of the MAX2880. MUX can also be configured as serial data output. MUX bits (register 0, bit 30:27) are used to select the desired MUX signal (see Table 5).

The digital lock detect is dependent on the mode of the synthesizer. In fractional-N mode set LDF = 0, and in integer-N mode set LDF = 1. To set the accuracy of the digital lock detect, see Table 3 and Table 4.

#### **Cycle Slip Reduction**

Cycle slip reduction is one of two available methods to improve lock time. It is enabled by setting CSR bit (register 2, bit 28) to 1. In this mode, the charge pump must be set for its minimum value.

#### Fast-Lock

Fast-lock is the other method available for improving lock time by temporarily increasing the loop bandwidth at the start of the locking cycle. It is enabled by setting the CDM bits to 01 (register 4, bits 20:19). In addition, the charge-pump current has to be set to CP = 0000 (register 2, bits 27:24), MUX bits configured to 1100 (register 0, bits 30:27), and the shunt resistive portion of the loop filter has to be segmented into two parts, where one resistor is 1/4 of the total resistance, and the other resistor is 3/4 of the total resistance. Figure 4 and Figure 5 illustrate the two

possible topologies. Once enabled, fast lock is activated after writing to register 0. During this process, the charge pump is automatically increased to its maximum (CP bits = 1111) and the shunt loop filter resistance is reduced to 1/4 of the total resistance when the internal switch shorts the MUX pin to ground. Bits CDIV (register 4, bits 18:7) control the time spent in the wide bandwidth mode. The time spent in the fast lock is:

#### $t = CDIV/f_{PFD}$

The time should be set long enough to allow the loop to settle before switching back to the lower loop bandwidth.

#### **RF Inputs**

The differential RF inputs are connected to a high-impedance input buffer which drives a demultiplexer for selecting between two RF input frequency ranges: 250MHz to 6.2GHz and 6.2GHz to 12.4GHz. When the RF input frequency is 250MHz to 6.2GHz, the fixed divide-by-2 prescaler is bypassed by setting bit PRE to 0. When the RF input frequency is 6.2GHz to 12.4GHz, the fixed divide-by-2 path is selected by setting PRE to 1. The supported input power range is -10dBm to +5dBm. For single-ended operation, terminate the unused RF input to GND through a 100pF capacitor.

Since the RF input of the device is high impedance, a DC isolated external shunt resistor is used to provide the  $50\Omega$  input impedance for the system (see the <u>Typical Application Circuit</u>).

Table 3. Fractional-N Digital Lock-Detect Settings

| PFD FREQUENCY<br>(MHz) | LDS | LDP | LOCKED UP/DOWN<br>TIME SKEW (ns) | NUMBER OF LOCKED<br>CYCLES TO SET LD | TIME SKEW TO UNSET LD (ns) |
|------------------------|-----|-----|----------------------------------|--------------------------------------|----------------------------|
| ≤ 32                   | 0   | 0   | 10                               | 40                                   | 15                         |
| ≤ 32                   | 0   | 1   | 6                                | 40                                   | 15                         |
| > 32                   | 1   | Х   | 4                                | 40                                   | 4                          |

**Table 4. Integer-N Digital Lock-Detect Settings** 

| PFD FREQUENCY<br>(MHz) | LDS | LDP | LOCKED UP/DOWN<br>TIME SKEW (ns) | NUMBER OF LOCKED<br>CYCLES TO SET LD | TIME SKEW TO<br>UNSET LD (ns) |
|------------------------|-----|-----|----------------------------------|--------------------------------------|-------------------------------|
| ≤ 32                   | 0   | 0   | 10                               | 5                                    | 15                            |
| ≤ 32                   | 0   | 1   | 6                                | 5                                    | 15                            |
| > 32                   | 1   | X   | 4                                | 5                                    | 4                             |

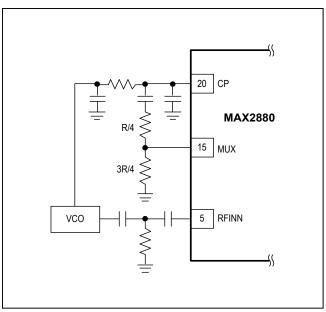



Figure 4. Fast-Lock Loop Filter Topology 1

### **Phase Adjustment**

After achieving lock, the phase of the RF output can be changed in increments of P (register 1, bits 14:3)/M (register 2, bits 14:3) x  $360^{\circ}$ .

When aligning the phase of multiple devices, connect their MUX pins together and do the following:

- 1) Force the voltage on the MUX pins to  $V_{II}$ .
- 2) Set MUX = 1000.
- 3) Program the MAX2880s for the desired frequency and allow them to lock.
- 4) Force the voltage on the MUX pins to V<sub>IH</sub>. This resets the MAX2880s so they are synchronous.
- 5) Set P (register 1, bits 14:3) for the desired amount of phase shift for each part.
- 6) Set CDM bits (register 4, bits 20:19) = 10. This enables the phase shift.
- 7) Reset CDM = 00.

#### **Fractional Modes**

The MAX2880 offers three modes for the sigma-delta modulator. Low noise mode offers lower in-band noise at the expense of spurs, and the low-spur modes offer lower spurs at the expense of noise. To operate in low noise

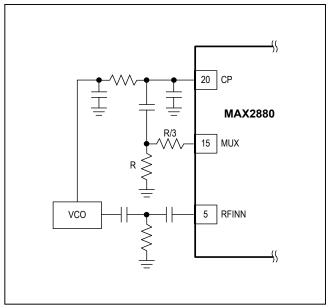



Figure 5. Fast-Lock Loop Filter Topology 2

mode, set SDN bits to 00 (register 2, bits 30:29). In the low-spur mode, choose between two possible dithering modes (SDN = 10 or 11) for the optimal spur performance.

#### **Temperature Sensor**

The device is equipped with an on-chip temperature sensor and 7-bit ADC.

To read the digitized output of the temperature sensor:

- 1) Set CDM = 11 to enable the ADC clock.
- 2) Set CDIV =  $f_{PFD}/100kHz$ . If the result is not an integer, then round down to the nearest integer.
- 3) Set ADCM (register 4, bits 6:4) = 001 for temperature sensor mode.
- 4) Set ADCS (register 4, bit 3) = 1 to start the ADC.
- 5) Wait at least 100µs for the ADC to convert the temperature.
- 6) Set MUX = 0111 to read the temperature out of the MUX pin.
- 7) Read back register 6. Bits 9:3 are the ADC digitized value.

The temperature can be converted as:

$$t = -1.8 \times ADC + 129^{\circ}C$$

## **Register and Bit Descriptions**

The operating mode of the MAX2880 is controlled via 5 read/write on-chip registers and 1 read-only register.

Defaults are not guaranteed upon power-up and are provided for reference only. All reserved bits should only be written with default values. In shutdown mode, the register values are retained.

Table 5. Register 0 (Address: 000, Default: 383C0000 Hex)

| BIT LOCATION | BIT ID    | NAME                         | DEFINITION                                                                                                                                                                                                                                                                                                                                    |
|--------------|-----------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31           | READ      | READ                         | 0 = Write to register 1 = Read from register                                                                                                                                                                                                                                                                                                  |
| 30:27        | MUX[3:0]  | MUX Mode                     | Sets MUX Pin Configuration  0000 = High-Impedance Output  0001 = D_VDD  0010 = D_GND  0011 = R Divider Output  0100 = N Divider Output  0101 = Analog Lock Detect  0110 = Digital Lock Detect  0111 = SPI Output  1000 = SYNC input  1001 = Reserved  1010 = Reserved  1011 = Reserved  1100 = Fast Lock  1101 = R Divider/2  1111 = Reserved |
| 26:15        | N[11:0]   | Integer<br>Division Value    | Sets integer part (N divider) of the feedback divider factor. MSBs are located in register 1. All integer values from 16 to 65,535 are allowed for integer mode. Integer values from 19 to 4091 are allowed for fractional mode.                                                                                                              |
| 14:3         | F[11:0]   | Fractional<br>Division Value | Sets Fractional Value. Allowed F values are 0 to M-1. 000000000000 = 0 (see F01 bit description) 000000000001 = 1 11111111111 = 4094 11111111111 = 4095                                                                                                                                                                                       |
| 2:0          | ADDR[2:0] | Address Bits                 | Register address bits                                                                                                                                                                                                                                                                                                                         |

Table 6. Register 1 (Address: 001, Default: 00000001 Hex)

| BIT LOCATION | BIT ID    | NAME                      | DEFINITION                                                                                                                                                                                                                       |
|--------------|-----------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31           | READ      | Register Read             | 0 = Write to register<br>1 = Read from register                                                                                                                                                                                  |
| 30:27        | N[15:12]  | Integer<br>Division Value | Sets Integer part (N divider) of the feedback divider factor. LSBs are located in register 0. All integer values from 16 to 65,535 are allowed for integer mode. Integer values from 19 to 4091 are allowed for fractional mode. |
| 26           | Unused    | Unused                    | Set to 0                                                                                                                                                                                                                         |
| 25           | PRE       | RF Input<br>Prescaler     | Sets RF Input prescaler to divide-by-1 or divide-by-2<br>0 = Divide-by-1 (250MHz to 6.2GHz)<br>1 = Divide-by-2 (6.2GHz to 12.4GHz)                                                                                               |
| 24:20        | Unused    | Unused                    | Set to all 0's.                                                                                                                                                                                                                  |
| 19:15*       | R[9:5]    | Reference<br>Divider Mode | Sets Reference Divide Value (R). LSBs located in register 2.  0000000000 = 0 (Unused)  0000000001 = 1   1111111111 = 1023                                                                                                        |
| 14:3         | P[11:0]   | Phase Value               | Sets Phase Value. See the <i>Phase Adjustment</i> section 000000000000 = 0 000000000001 = 1 11111111111 = 4095                                                                                                                   |
| 2:0          | ADDR[2:0] | Address Bits              | Register address bits                                                                                                                                                                                                            |

<sup>\*</sup>Bits double buffered by Register 0.

Table 7. Register 2 (Address: 010, Default: 0000FFFA Hex)

| BIT LOCATION | BIT ID   | NAME                    | DEFINITION                                                                                                                                                                        |
|--------------|----------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31           | READ     | Register Read           | 0 = Write to register 1 = Read from register                                                                                                                                      |
| 30:29        | SDN[1:0] | Fractional-N<br>Modes   | Sets Noise Mode (see the <i>Fractional Modes</i> section under the <i>Detailed Description</i> ):  00 = Low-Noise Mode  01 = Reserved  10 = Low-Spur Mode 1  11 = Low-Spur Mode 2 |
| 28           | CSR      | Cycle Slip<br>Reduction | 0 = Cycle Slip Reduction disabled<br>1 = Cycle Slip Reduction enabled                                                                                                             |

Table 7. Register 2 (Address: 010, Default: 0000FFFA Hex) (continued)

| BIT LOCATION | BIT ID  | NAME                      | DEFINITION                                                                                                                                                                                                                                     |
|--------------|---------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 27:24        | CP[3:0] | Charge-Pump<br>Current    | Sets Charge-Pump Current [ICP = 1.63/RSET x (1 + CP[3:0])]                                                                                                                                                                                     |
| 23:22        | Unused  | Unused                    | Factory Use Only, set to 00.                                                                                                                                                                                                                   |
| 21*          | RDIV2   | Reference<br>Div2 Mode    | Sets Reference Divider Mode 0 = Disable reference divide by 2 1 = Enable reference divide by 2                                                                                                                                                 |
| 20*          | DBR     | Reference<br>Doubler Mode | Sets Reference Doubler Mode 0 = Disable reference doubler 1 = Enable reference doubler                                                                                                                                                         |
| 19:15*       | R[4:0]  | Reference<br>Divider Mode | Sets Reference Divide Value (R). Double buffered by Register 0. MSBs located in register 1. 0000000000 = 0 (Unused) 0000000001 = 1 1111111111 = 1023                                                                                           |
| 14:3*        | M[11:0] | Modulus Value             | Fractional Modulus value used to program f <sub>VCO</sub> . See the <i>Int, Frac, Mod, And R Counter Relationship</i> section. Double buffered by register 0. 0000000000000 = Unused 000000000001 = Unused 00000000010 = 2 111111111111 = 4095 |
| 2:0          | ADDR    | Address Bits              | Register address                                                                                                                                                                                                                               |

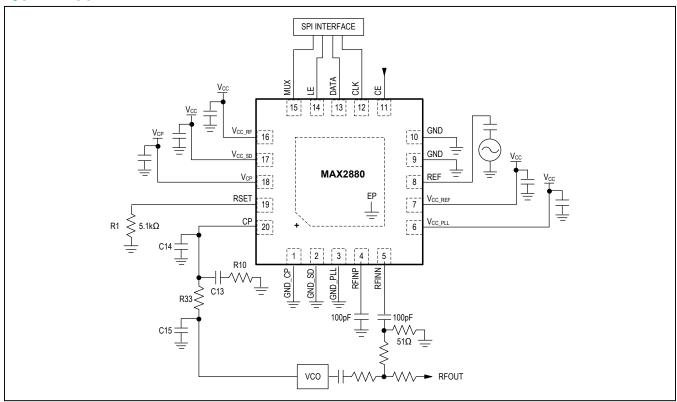
<sup>\*</sup>Bits double buffered by Register 0.

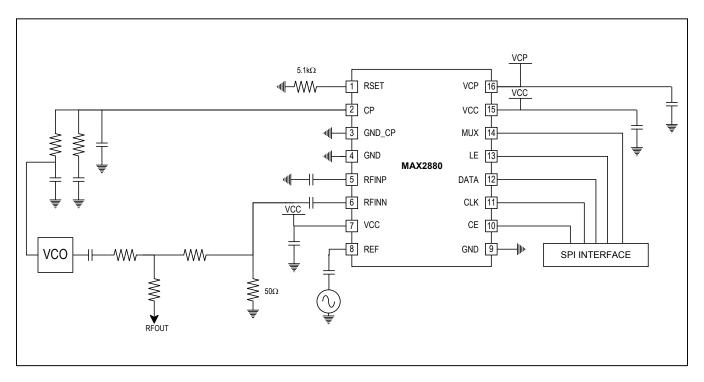
Table 8. Register 3 (Address: 011, Default: 00000043 Hex)

| BIT LOCATION | BIT ID   | NAME                 | DEFINITION                                                                                                                                                               |  |
|--------------|----------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 31           | READ     | Register Read        | 0 = Write to register 1 = Read from register                                                                                                                             |  |
| 30:18        | Unused   | Unused               | Write to all 0's                                                                                                                                                         |  |
| 17           | F01      | F01                  | Sets integer mode for F =0.  0 = If F[11:0] = 0, then fractional-N mode is set  1 = If F[11:0] = 0, then integer-N mode is auto set                                      |  |
| 16:15        | CPT[1:0] | Charge-Pump<br>Test  | Sets Charge-Pump Test Modes 00 = Normal mode 01 = Reserved 10 = Force CP into source mode 11 = Force CP into Sink mode                                                   |  |
| 14           | RSTSD    | Sigma Delta<br>Reset | 0 = Reset Sigma Delta Modulator to known value after each write to register 0<br>1 = Do not reset Sigma Delta Modulator to known value after each write to<br>register 0 |  |

Table 8. Register 3 (Address: 011, Default: 00000043 Hex) (continued)

| BIT LOCATION | BIT ID    | NAME                                       | DEFINITION                                                                                                                                                                                                                                            |
|--------------|-----------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13           | CPOC      | CP Output<br>Clamp                         | Sets Charge-Pump Output Clamp Mode 0 = Disables clamping of the CP output when the CP is off. 1 = Enables the clamping of the CP output when the CP is off (improved integer-N in-band phase noise).                                                  |
| 12:11        | CPL[1:0]  | CP Linearity                               | Sets CP Linearity Mode  00 = Disables the CP linearity mode (integer-N mode).  01 = Enables the CP linearity mode (Fractional-N mode)  10 = Enables the CP linearity mode (Fractional-N mode)  11 = Enables the CP linearity mode (Fractional-N mode) |
| 10           | INT       | Integer Mode                               | Controls Synthesizer Integer or Fractional-N Mode 0 = Fractional-N mode 1 = Integer mode                                                                                                                                                              |
| 9            | LDF       | Lock Detect<br>Function                    | Sets Lock Detect Function 0 = Fractional-N lock detect 1 = Integer-N lock detect                                                                                                                                                                      |
| 8            | LDS       | Lock Detect<br>Speed                       | Lock Detect Speed Adjustment<br>0 = f <sub>PFD</sub> ≤ 32MHz<br>1 = f <sub>PFD</sub> > 32MHz                                                                                                                                                          |
| 7            | LDP       | Lock Detect<br>Precision                   | Sets Lock Detect Precision 0 = 10ns 1 = 6ns                                                                                                                                                                                                           |
| 6            | PDP       | Phase Detector<br>Polarity                 | Sets Phase Detector Polarity  0 = Negative (for use with inverting active loop filters)  1 = Positive (for use with passive loop filers and noninverting active loop filters)                                                                         |
| 5            | SHDN      | Shutdown<br>Mode                           | Sets Power-Down Mode 0 = Normal mode 1 = Device shutdown                                                                                                                                                                                              |
| 4            | TRI       | Charge-<br>Pump High-<br>Impedance<br>Mode | Sets Charge-Pump High-Impedance Mode 0 = Disabled 1 = Enabled                                                                                                                                                                                         |
| 3            | RST       | Counter Reset                              | Sets Counter Reset Mode 0 = Normal operation 1 = R and N counters reset                                                                                                                                                                               |
| 2:0          | ADDR[2:0] | Address Bits                               | Register address                                                                                                                                                                                                                                      |


Table 9. Register 4 (Address: 100, Default: 00000004 Hex)


| BIT LOCATION | BIT ID     | NAME                    | DEFINITION                                                                                                                  |
|--------------|------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 31           | READ       | Register Read           | 0 = Write to register<br>1 = Read from register                                                                             |
| 30:22        | Unused     | Unused                  | Write to all 0's                                                                                                            |
| 21           | SDREF      | Shutdown<br>Reference   | Shutdown Reference Stage 0 = Reference Stage enabled 1 = Reference Stage disabled                                           |
| 20:19        | CDM[1:0]   | Clock-Divider<br>Mode   | Sets Clock-Divider Mode 00 = Clock Divider Off 01 = Fast-Lock Enabled 10 = Phase Adjustment 11 = ADC Clock                  |
| 18:7         | CDIV[11:0] | Clock-Divider<br>Value  | Sets 12-Bit Clock-Divider Value<br>000000000000 = Unused<br>000000000001 = 1<br>000000000010 = 2<br><br>111111111111 = 4095 |
| 6:4          | ADCM[2:0]  | ADC Mode                | Sets Analog-to-Digital Converter Mode<br>000 = ADC off<br>001 = Temperature Sensor<br>010 - 111 = Unused                    |
| 3            | ADCS       | ADC Start<br>Conversion | Starts Analog-to-Digital Conversion 0 = ADC Disabled 1 = Start ADC Conversion                                               |

## **Table 10. Register 6 (Read-Only Register)**

| BIT LOCATION | BIT ID    | NAME                | DEFINITION                                                                                           |
|--------------|-----------|---------------------|------------------------------------------------------------------------------------------------------|
| 31           | READ      | READ                | 0 = N/A<br>1 = Read from register                                                                    |
| 30:13        | Unused    | Unused              |                                                                                                      |
| 11           | POR       | Power on<br>Reset   | POR Readback Status 0 = POR has been read back 1 = POR has not been read back (registers at default) |
| 10           | ADCV      | ADC Data<br>Valid   | ADC Data Valid 0 = ADC converting 1 = ADC data valid                                                 |
| 9:3          | ADC[6:0]  | ADC Output<br>Value |                                                                                                      |
| 2:0          | ADDR[2:0] | Register<br>Address | Register address bits                                                                                |

## **Typical Application Circuits**





## **Ordering Information**

| PART        | TEMP RANGE     | PIN-PACKAGE |
|-------------|----------------|-------------|
| MAX2880ETP+ | -40°C to +85°C | 20 TQFN-EP* |
| MAX2880EUE+ | -40°C to +85°C | 16 TSSOP    |

<sup>+</sup>Denotes lead(Pb)-free/RoHS-compliant package.

## **Package Information**

For the latest package outline information and land patterns (footprints), go to <a href="www.maximintegrated.com/packages">www.maximintegrated.com/packages</a>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

| PACKAGE<br>TYPE | PACKAGE<br>CODE | OUTLINE<br>NO. | LAND PATTERN<br>NO. |
|-----------------|-----------------|----------------|---------------------|
| 20 TQFN-EP      | T2044+2         | 21-0139        | 90-0036             |
| 16 TSSOP        | T16+1           | 21-0066        | 90-0117             |

<sup>\*</sup>EP = Exposed pad.

### MAX2880

# 250MHz to 12.4GHz, High-Performance, Fractional/Integer-N PLL

## **Revision History**

| REVISION<br>NUMBER | REVISION<br>DATE | DESCRIPTION                                         | PAGES<br>CHANGED |
|--------------------|------------------|-----------------------------------------------------|------------------|
| 0                  | 12/13            | Initial release                                     | _                |
| 1                  | 11/15            | Added TSSOP package information and updated Table 9 | 1, 4, 10, 18–20  |

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.