imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

on a separate pin.

Spread-Spectrum Clock Generators

General Description

The MAX31C80/MAX31D80 are spread-spectrum clock

generators that contain a phase-locked loop (PLL)

that generates a 2MHz to 134MHz clock from an input

clock or crystal. The PLL can provide a spread-spec-

trum down-dithered (MAX31D80) or center-dithered

(MAX31C80) frequency-modulated clock. The devices

also buffer the incoming clock and provide this output

The MAX31C80/MAX31D80 are provided in a 10-pin TDFN package and operate over a full -40°C to +125°C

automotive temperature range. Devices can be factory

programmed for multiple combinations of input and out-

put frequencies (see the Ordering Information table). A

low-cost, low-frequency crystal can be used at the input

to generate frequencies up to 134MHz.

Features

- 2MHz to 134MHz Spread-Spectrum Clock Generator
- Input Can Be Either an 8MHz to 34MHz Crystal or 8MHz to 134MHz Clock
- Factory-Programmable Output Frequencies in 2MHz to 134MHz Range
- Low-Cost Crystal at Low Frequency Used to Generate High Frequencies
- On-Board PLL is Capable of Spread-Spectrum Frequency Modulation
- Down- or Center-Dither Spread-Spectrum Frequency Modulation
- User-Configurable Spread-Spectrum Dither Magnitude
- Low Cycle-to-Cycle Jitter
- ♦ 3.3V Supply Voltage
- Temperature Range: -40°C to +125°C
- Small Package: 10-Pin TDFN (3mm x 3mm x 0.8mm)

Applications

Graphics Cards Set-Top Boxes Automotive Infotainment Printers

Ordering Information

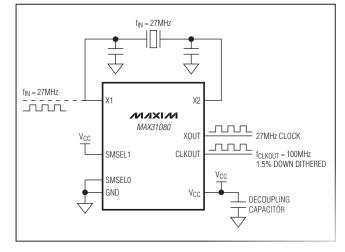
PART	TEMP RANGE	DITHER MODE	PIN-PACKAGE
MAX31C80T-xxx+	-40°C to +125°C	Center	10 TDFN-EP*
MAX31C80T-xxx+T	-40°C to +125°C	Center	10 TDFN-EP*
MAX31D80T-xxx+	-40°C to +125°C	Down	10 TDFN-EP*
MAX31D80T-xxx+T	-40°C to +125°C	Down	10 TDFN-EP*

xxx = Factory-programmable output frequency and dither rate (see the Selector Guide table). +Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel.

*EP = Exposed pad.

Selector Guide appears at end of data sheet.



Maxim Integrated Products 1

cy Used to ad-Spectrum bectrum um Dither 5°C n x 3mm x MAX31C80/MAX31D80

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Typical Application Circuit

MAX31C80/MAX31D80

ABSOLUTE MAXIMUM RATINGS

Voltage Range on V_{CC} Relative to GND.....-0.3V to +4.3V Voltage Range on Any Other Pin

Relative to GND-0.3V to $(V_{CC} + 0.3V)^*$ Continuous Power Dissipation (TA = +70°C)

10-Pin TDFN (derate 24.4mW/°C above +70°C).....1951.2mW

Storage Temperature Range	55°C to +135°C
Lead Temperature (soldering,	10s)+300°C
Soldering Temperature (reflow)+260°C

*Not to exceed +4.3V.

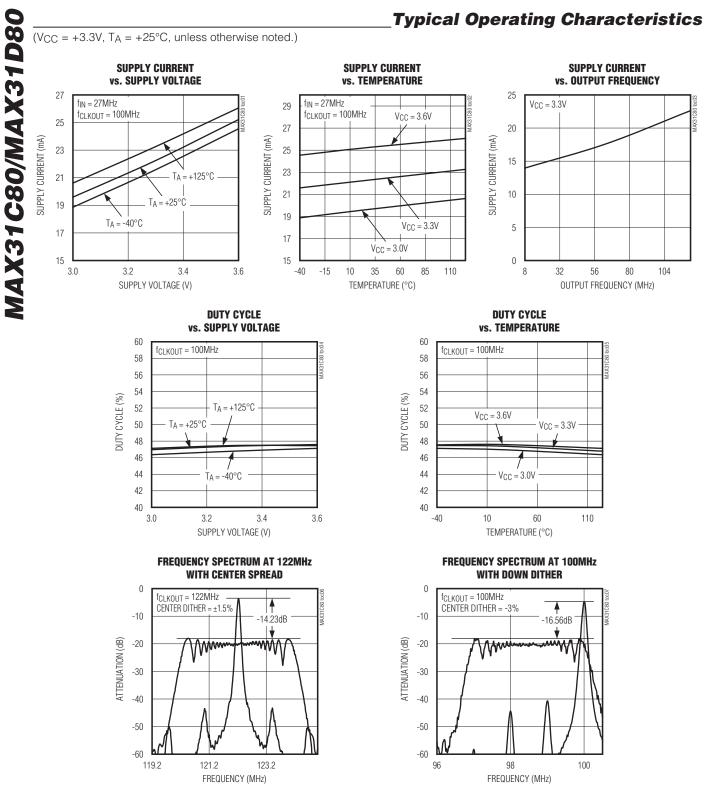
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

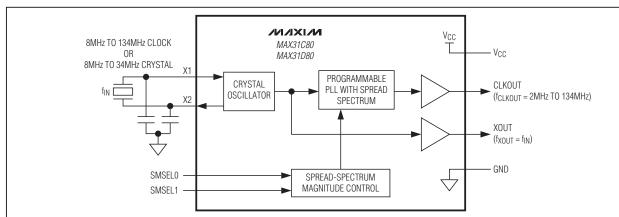
 $(T_A = -40^{\circ}C \text{ to } + 125^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	VCC		3.0	3.3	3.6	V
Input Logic 0 (SMSEL0 and SMSEL1)	VIL		-0.3		0.25 x V _{CC}	V
Input Logic 1 (SMSEL0 and SMSEL1)	VIH		0.75 x V _{CC}		V _{CC} + 0.3	V
Input Logic Unconnected (SMSEL0 and SMSEL1)	VIF	Limits are in case user wants to force voltage instead of unconnecting this pin	0.4 x Vcc		0.55 x VCC	V
Input Logic 0 for X1	VIL:X1		-0.3		0.3 x Vcc	V
Input Logic 1 for X1	VIH:X1		0.7 x Vcc		V _{CC} + 0.3	V
XOUT Load	CL:XOUT				15	рF
CLKOUT Load	CL:CLKOUT	$2MHz \leq f_{CLKOUT} < 67MHz$ $67MHz \leq f_{CLKOUT} < 101MHz$ $101MHz \leq f_{CLKOUT} \leq 134MHz$			15 10 7	pF
Crystal Frequency	fin		8		34	MHz
Clock Input Frequency	fIN		8		134	MHz
Crystal ESR	X _{ESR}				90	Ω
Clock Input Duty Cycle	fINDC		40		60	%
Crystal Parallel Load Capacitance	C _{CL}				18	pF

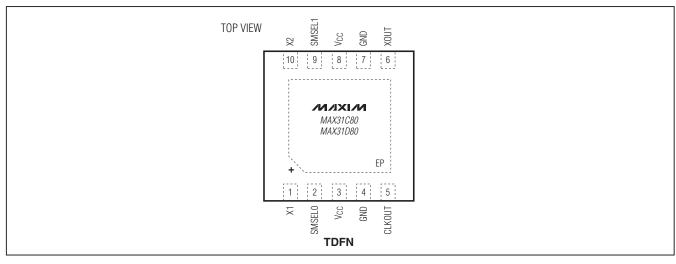
DC ELECTRICAL CHARACTERISTICS


(3.0V \leq VCC \leq 3.6V, TA = -40°C to +125°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	IDD	$f_{IN} = 27MHz$, $f_{CLKOUT} = 100MHz$, down dithered, $C_L = 10pF$		22		mA
Input Leakage (SMSEL0 and SMSEL1)	lıL	SMSEL_ = GND or VCC			±15	μA
Low-Level Output Voltage (XOUT and CLKOUT)	Vol	IOL = 10mA			0.2	V
High-Level Output Voltage (XOUT and CLKOUT)	VOH	I _{OH} = -10mA	V _{CC} - 0.2			V
Input Capacitance (X1 and X2)	CIN			5		pF


AC ELECTRICAL CHARACTERISTICS

(3.0V \leq VCC \leq 3.6V, TA = -40°C to +125°C, unless otherwise noted.)


PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CLKOUT Duty Cycle	fclkout:dc	CL:CLKOUT = 7pF	40		60	
XOUT Duty Cycle	fxout:DC	$C_{L:XOUT} = 7pF, T_A = +25^{\circ}C,$ $V_{CC} = 3.3V$	40		60	%
Rise Time	t _R	CL:CLKOUT = 7pF		1.6		ns
Fall Time	tF	CL:CLKOUT = 7pF		1.6		ns
Dither Rate Range	fDR	Factory programmable	20		40	kHz
Dither Rate Accuracy			-4		+4	%
Peak Cycle-to-Cycle Jitter	tJ	CLKOUT = 100MHz, 10,000 cycles, T _A = +25°C		75		ps
Power-Up Time	tpup	V _{CC} valid to output active, $T_A = +25^{\circ}C$, V _{CC} = 3.3V		1		ms

Block Diagram

Pin Configuration

Pin Description

PIN	NAME	FUNCTION
1	X1	Crystal Drive/Clock Input. A crystal with the proper loading is connected across X1 and X2. Instead of a crystal, a clock can be applied at the X1 input. If no clock or crystal is present, then no clock is output at either XOUT or CLKOUT.
2, 9	SMSEL0, SMSEL1	Spread-Spectrum Magnitude Select. These are three-state digital inputs to determine the spread-spectrum magnitude. Tables 1 and 2 provide details for configuration of these pins for down and center dither, respectively.

PIN	NAME	FUNCTION
3, 8	Vcc	Supply Voltage
4, 7	GND	Ground
5	CLKOUT	Clock Output. Spread-spectrum-capable digital output clock from the PLL.
6	XOUT	Crystal Buffered Output. Buffered digital output of the input crystal or clock.
10	X2	Crystal Drive Output. A crystal with the proper loading is connected across X1 and X2. If a clock is applied at the X1 input, then X2 should be left open circuit.
_	EP	Exposed Pad. Connect to GND.

MAX31C80/MAX31D80

MAX31C80/MAX31D80

Detailed Description

The MAX31C80/MAX31D80 modulate an input clock to generate a center-dithered or down-dithered spread-spectrum output. An 8MHz to 27MHz crystal or 8MHz to 134MHz oscillator input is applied to the device. An internal PLL dithers the output clock at a user-select-able magnitude to produce a down-dithered or center-dithered output clock. The output clock's frequency is programmable from 2MHz to 134MHz. The devices also

buffer the incoming clock and provide this output on a separate pin.

Spread-Spectrum Dither Magnitude

The MAX31D80 can generate down-dithered magnitudes up to -3%. The MAX31C80 can generate center-dithered magnitudes up to \leq 1.5%. The desired magnitude is selected using the input pins SMSEL1 and SMSEL0 as shown in Tables 1 and 2. A power cycle is required after each change of the dither magnitude for the changes to take effect.

Table 1. Spread-Spectrum Mode and Magnitude Select (for Down Dither)

SMSEL1	SMSEL0	SPREAD-SPECTRUM MAGNITUDE SELECTED (%)	SPREAD-SPECTRUM DITHER MODE SELECTED
0	0	Spread-Spec	trum Disabled
0	Unconnected	0 to -0.25	
0	1	0 to -0.375	
Unconnected	0	0 to -0.5	
Unconnected	Unconnected	0 to -0.75	Down Dither
Unconnected	1	0 to -1.0	Down Ditner
1	0	0 to -1.5	
1	Unconnected	0 to -2.0	
1	1	0 to -3.0	

Table 2. Spread-Spectrum Mode and Magnitude Select (for Center Dither)

SMSEL1	SMSEL0	SPREAD-SPECTRUM MAGNITUDE SELECTED (%)	SPREAD-SPECTRUM DITHER MODE SELECTED	
0	0	Spread-Spectrum Disabled		
0	Unconnected	-0.25 to +0.25		
0	1	-0.375 to +0.375		
Unconnected	0	-0.5 to +0.5		
Unconnected	Unconnected	-0.75 to +0.75		
Unconnected	1	-1.0 to +1.0	Center Dither	
1	0	-1.5 to +1.5		
1	Unconnected	N/A		
1	1	N/A		

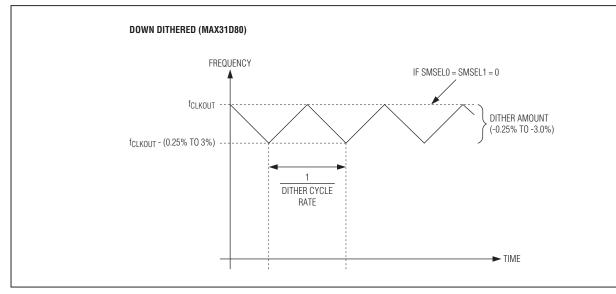


Figure 1. Spread-Spectrum Frequency Modulation (Down Dithered)

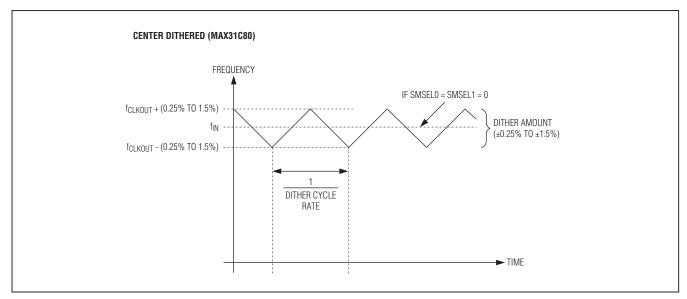


Figure 2. Spread-Spectrum Frequency Modulation (Center Dithered)

MAX31C80/MAX31D80

MAX31C80/MAX31D80 Vcc Vcc VALID -tpup · OUTPUT VALID XOUT OUTPUT VALID CLKOUT

Factory Programmability

The MAX31C80/MAX31D80 can provide a variety of freguencies, which are available to users by ordering the device according to specifications listed in the Selector Guide table.

Email the factory at custom.oscillators@maxim-ic.com to obtain custom output frequencies for specific input frequencies not mentioned in the Selector Guide table.

Applications Information

Power-Supply Decoupling

To achieve best results, it is highly recommended that a decoupling capacitor be used on the IC power-supply pins. Typical values of decoupling capacitors are 0.01µF and 0.1µF. Use a high-quality, ceramic, surface-mount capacitor and mount it as close as possible to the VCC pins of the IC to minimize lead inductance.

Selector Guide

PART	INPUT FREQUENCY (MHz)	OUTPUT FREQUENCY (MHz)	DITHER RATE (kHz)	DITHER TYPE
MAX31C80T-UGQ+	27	100	31.25	Center
MAX31C80T-002+	25	63.05	32.05	Center
MAX31D80T-UGQ+	27	100	31.25	Down
MAX31D80T-003+	12	12	25	Down

+Denotes a lead(Pb)-free/RoHS-compliant package.

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
10 TDFN-EP	T1033+1	<u>21-0137</u>

Figure 3. Power-Up Timing

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
0	4/10	Initial release	_

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _

© 2010 Maxim Integrated Products

Maxim is a registered trademark of Maxim Integrated Products, Inc.

9