

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MAX32650-MAX32652

General Description

DARWIN is a new breed of low-power microcontrollers built to thrive in the rapidly evolving Internet of Things (IoT). They are smart, with the biggest memories in their class and a massively scalable memory architecture. They run forever, thanks to wearable-grade power technology. They are also tough enough to withstand the most advanced cyberattacks. DARWIN microcontrollers are designed to run any application imaginable—in places where you would not dream of sending other microcontrollers.

Generation UP microcontrollers are designed to handle the increasingly complex applications demanded by today's advanced battery-powered devices and wireless sensors. The MAX32650–MAX32652 are ultra-low power memory-scalable microcontrollers designed specifically for high-performance, battery-powered applications. They are based on Arm® Cortex®-M4 with FPU CPU with 3MB flash and 1MB SRAM. Memory scalability is supported with multiple memory-expansion interfaces, including a HyperBus™/Xccela™ DDR interface and two SPI execute in place (SPIX) interfaces. A secure digital interface supports external high-speed memory cards, including SD, SDIO, MMC, SDHC, and microSD™.

Power management features provide five low power modes for clock, peripheral, and voltage control. Individual SRAM banks of 32KB, 96KB, or 1024KB (full retention) can be retained with reduced power consumption. A SmartDMA performs complex background processing while the CPU is off to dramatically reduces overall power consumption.

The MAX32651 is a secure version with a trust protection unit (TPU) that provides a modular arithmetic accelerator (MAA) for fast ECDSA, an AES engine, TRNG, SHA-256 hash, and secure bootloader. A memory decryption integrity unit (MDIU) provides on-the-fly data decryption (plain or executable) stored in external flash.

The MAX32652 is a high-density, 0.35mm pitch, 140-bump WLP package targeted for tiny form factor products that require high I/O counts.

Applications

- Sports Watches, Fitness Monitors
- Wearable Medical Patches, Portable Medical Devices
- Industrial Sensors, IoT

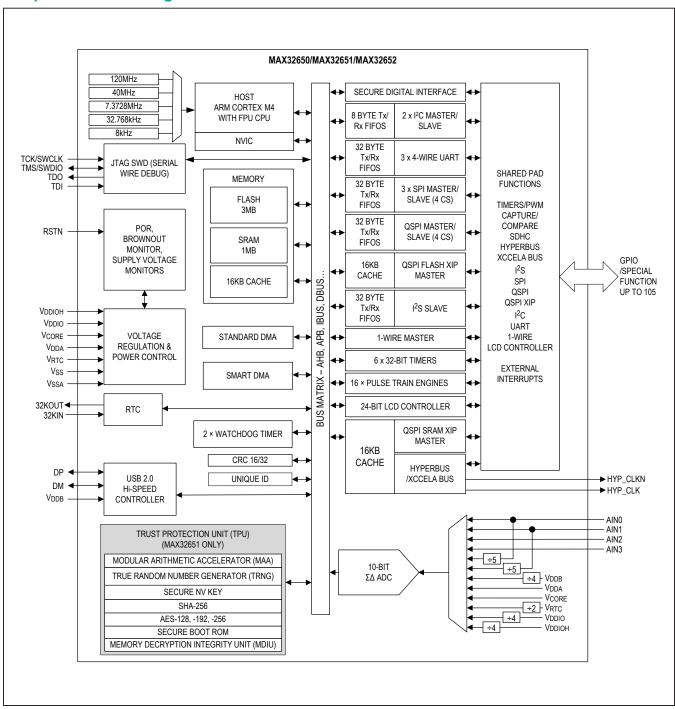
Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

HyperBus is a trademark of Spansion.

Xccela is a trademark of Micron Technology, Inc.

MicroSD is a trademark of SD-3C, LLC.

Ultra-Low Power Arm Cortex-M4 with FPU-Based Microcontroller for Battery-Powered Applications


Benefits and Features

- Ultra-Efficient Microcontroller for Battery-Powered Applications
 - 120MHz Arm Cortex-M4 with FPU
 - SmartDMA Provides Background Memory Transfers with Programmable Data Processing
 - 120MHz High-Speed and 40MHz Low-Power Oscillators
 - 7.3728MHz Low-Power Oscillators
 - 32.768kHz and RTC Clock (Requires External Crystal)
 - 8kHz Always-On Ultra-Low Power Oscillator
 - 3MB Internal Flash, 1MB Internal SRAM
 - 104µW/MHz Executing from Cache at 1.1V
 - Five Low Power Modes: Active, Sleep, Background, Deep-Sleep, and Backup
 - 1.8V and 3.3V I/O with No Level Translators
- Scalable Cached External Memory Interfaces:
 - 120MB/s HyperBus/Xccela DDR Interface
 - SPIXF/SPIXR for External Flash/RAM Expansion
 - 240Mbps SDHC/eMMC/SDIO/microSD Interface
- Optimal Peripheral Mix Provides Platform Scalability
 - 16-Channel DMA
 - Three SPI Master (60MHz)/Slave (48MHz)
 - One QuadSPI Master (60MHz)/Slave (48MHz)
 - Up to Three 4Mbaud UARTs with Flow Control
 - Two 1MHz I²C Master/Slave
 - I²S Slave
 - Four-Channel 7.8ksps 10-Bit Delta-Sigma ADC
 - USB 2.0 Hi-Speed Device Interface with PHY
 - 16 Pulse Train Generators
 - · Six 32-Bit Timers with 8mA High Drive
 - 1-Wire Master
- Trust Protection Unit (TPU) for IP/Data Security
 - Modular Arithmetic Accelerator (MAA), True Random Number Generator (TRNG)
 - Secure Nonvolatile Key Storage, SHA-256, AES-128/192/256
 - Memory Decryption Integrity Unit, Secure Boot ROM

Ordering Information appears at end of data sheet.

Simplified Block Diagram

Absolute Maximum Ratings

(All voltages with respect to V _S	S, unless otherwise noted.)	HYP_CLK, HYP_CLKN, P1.[21:18],	
V _{CORE}	0.3V to 1.21V	P1.[16:11], P3.0	0.3V to 1.98V
V _{DDA}	0.3V to 1.98V	V _{DDIO} pins (sink)	100mA
V _{DDIO}	0.3V to 1.98V	V _{DDIOH} pins (sink)	100mA
V _{DDIOH}	0.3V to 3.6V	V _{SSA}	100mA
V _{RTC}	0.3V to 1.98V	V _{SS}	100mA
RSTN, GPIO (V _{DDIO})	0.3V to V _{DDIO} + 0.5V	Output Current (sink) by Any GPIO Pin	25mA
	0.3V to V _{DDIOH} + 0.5V	Output Current (source) by Any GPIO Pin	25mA
32KIN, 32KOUT	0.3V to V _{RTC} + 0.2V	Continuous Package Power Dissipation TQFF	(multilayer board)
AIN[1:0]	0.3V to 5.5V	$T_A = +70$ °C (derate 45.5mW/°C above +70	0°C)2857.10mW
AIN[3:2]	0.3V to V _{DDA} + 0.2V	Operating Temperature Range	40°C to +105°C
V _{DDB}	0.3V to 3.6V	Storage Temperature Range	65°C to +150°C
DM, DP	0.3V to 3.6V	Soldering Temperature	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

140 WLP

PACKAGE CODE	W1404A4+1
Outline Number	21-100219
Land Pattern Number	Refer to Application Note 1891
Thermal Resistance, Four-Layer Board	1:
Junction to Ambient (θ _{JA})	35.13°C/W
Junction to Case (θ _{JC})	N/A

96 WLP

	
PACKAGE CODE	W964A4+1
Outline Number	21-100240
Land Pattern Number	Refer to Application Note 1891
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ _{JA})	33.61°C/W
Junction to Case (θ _{JC})	N/A

144 TQFP

PACKAGE CODE	C144+1
Outline Number	21-0087
Land Pattern Number	90-0144
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ _{JA})	28°C/W
Junction to Case (θ_{JC})	8°C/W

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. General Purpose I/O are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
POWER	•						
Supply Voltage, Core	V _{CORE}	f _{SYS CLK} = 120MHz	0.99	1.1	1.21	V	
Supply Voltage, Analog	V_{DDA}		1.71	1.8	1.89	V	
Supply Voltage, RTC	V _{RTC}		1.71	1.8	1.89	V	
Supply Voltage, GPIO	V _{DDIO}		1.71	1.8	1.89	V	
Supply Voltage, GPIO (High)	V _{DDIOH}		1.71	1.8	3.6	V	
		Monitors V _{CORE}		0.835			
Power-Fail Reset Voltage	V _{RST}	Monitors V _{DDA}		1.67		V	
rower-rail Neset voltage	VRSI	Monitors V _{RTC}		1.67			
		Monitors V _{DDIO}		1.67			
Power-Fail Reset Voltage	V _{RST}	Monitors V _{DDB}		2.95		V	
Power-Fail Reset Voltage	V _{RST}	Monitors V _{DDIOH}		1.67		V	
		Monitors V _{CORE}		0.594			
Power-On Reset Voltage	V _{POR}	Monitors V _{DDA}		1.52	V		
		Monitors V _{RTC}		1.17			
RAM Data Retention Voltage	V _{DRV}			0.81		V	
V _{CORE} Dynamic Current, Active Mode	ICORE_DACT	Total current into V_{CORE} pins, f_{SYS_CLK} = 120MHz, V_{CORE} = 1.1V, CPU in Active mode, executing from cache, inputs tied to V_{SS} , V_{DDIO} , or V_{DDIOH} , outputs source/sink 0mA		95		µA/MHz	
V _{CORE} Fixed Current,		120MHz oscillator enabled, total current into V _{CORE} pins, CPU in Active mode 0MHz execution, inputs tied to V _{SS} , V _{DDIOH} , or V _{DDIOH} , outputs source/sink 0mA		1020			
Active Mode	I ICODE EACT	7.3728MHz oscillator enabled, total current into V _{CORE} pins, CPU in Active mode 0MHz execution, inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} , outputs source/sink 0mA		356		μΑ	
V _{DDA} Fixed Current, Active Mode		120MHz oscillator enabled, total current into V _{DDA} pins, CPU in Active mode 0MHz execution, inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} , outputs source/sink 0mA , V _{CORE} and V _{DDA} voltage monitors enabled		348		μΑ	
		7.3728MHz oscillator enabled, total current into V_{DDA} pins, CPU in Active mode 0MHz execution, inputs tied to V_{SS} , V_{DDIO} , or V_{DDIOH} , outputs source/sink 0mA , V_{CORE} and V_{DDA} voltage monitors enabled		39		μΛ	

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. General Purpose I/O are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
V _{CORE} Dynamic Current, Sleep Mode	ICORE_DSLP	Total current into V _{CORE} pins, CPU in Sleep mode, standard DMA with two channels active		114		µA/MHz
V _{CORE} Fixed Current,	loops so s	f _{SYS_CLK} = 120MHz, total current into V _{CORE} pins, CPU in Sleep mode, standard DMA with two channels active		1020		
Sleep Mode	ICORE_FSLP	f_{SYS_CLK} = 7.3728MHz, total current into V_{CORE} pins, CPU in Sleep mode, standard DMA with two channels active		356		· μΑ
V _{DDA} Fixed Current,	1	f _{SYS_CLK} = 120MHz, total current into V _{DDA} pins, CPU in Sleep mode, Standard DMA with two channels active		348		
Sleep Mode	IDDA_FSLP	f_{SYS_CLK} = 7.3728MHz, total current into V_{DDA} pins, CPU in Sleep mode, standard DMA with two channels active		49		- μA
V _{CORE} Dynamic Current, Background Mode	I _{CORE_DBKG}	f_{SYS_CLK} = 7.3728MHz, total current into V_{CORE} pins, CPU in Deep-sleep mode, SmartDMA active		66		μΑ/MHz
V _{CORE} Fixed Current, Background Mode	CORE_FBGD	7.3728MHz oscillator enabled, total current into $V_{\mbox{CORE}}$ pins, CPU in Deep-sleep mode, SmartDMA active		162		μА
V _{CORE} Fixed Current, Deep-Sleep Mode	ICORE_FDSL	Standby state with full data retention		70		μA
V _{DDA} Fixed Current, Deep-Sleep Mode	I _{DDA_FDSL}	Standby state with full data retention, $V_{\mbox{CORE}}$ and $V_{\mbox{DDA}}$ voltage monitors enabled		132		nA
V _{RTC} Fixed Current, Deep-Sleep Mode	I _{DDRTC_FDSL}	Standby state with full data retention, V _{RTC} = 1.8V, RTC enabled		540		nA
V _{CORE} Fixed Current, Backup Mode	ICORE_FBKU	No SRAM retention (0KB)		30		nA
V _{DDA} Fixed Current, Backup Mode	I _{DDA_FBKU}	V _{DDA} voltage monitor enabled		132		nA
		RTC enabled, retention regulator off		540		
V _{RTC} Fixed Current, Backup Mode	IDDRTC_FBKU	RTC enabled, 32KB SRAM retained, retention regulator on		720		nA
		RTC disabled, retention regulator off		156		
Sleep Mode Resume Time	t _{SLP_ON}			575		ns
Deep-Sleep Mode	too	Wake to 40MHz		9		lie.
Resume Time	t _{DSL_ON}	Wake to 120MHz	18			μs
Backup Mode Resume Time	t _{BKU_ON}			5		ms

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. General-purpose I/O are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
USB						
USB Supply Voltage	V_{DDB}		3.0	3.3	3.6	V
D+, D- Pin Capacitance	C _{IN_USB}	Pin to V _{SS}		8		pF
Driver Output Resistance	R_{DRV}	Steady state drive		45 ±10%		Ω
USB/FULL SPEED						
Single-Ended Input High Voltage (DP, DM)	V _{IH_USB}		2.0			V
Single-Ended Input Low Voltage (DP, DM)	V _{IL_USB}				0.6	V
Output High Voltage (DP, DM)	V _{OH_USB}	R_L = 1.5 kΩ from DP and DM to V_{SS} , I_{OH} = -4mA	V _{DDB} - 0.4		V _{DDB}	V
Output Low Voltage (DP, DM)	V _{OL_USB}	R_L = 1.5 kΩ from DP to V_{DDB} , I_{OL} = 4mA	V _{SS}		0.4	V
Differential Input Sensitivity	V_{DI}	DP to DM	0.2			V
Common Mode Voltage Range	V_{CM}	Includes V _{DI} range	0.8		2.5	V
Transition Time (Rise/Fall) D+, D- (Note 11)	t _{RF}	C _L = 50pF	4		20	ns
Pullup Resistor on Upstream Ports	R _{PU}		1.05	1.5	1.95	kΩ
USB/HI-SPEED						
Hi-Speed Data Signaling Common-Mode Voltage Range	V _{HSCM}		-50		+500	mV
Hi-Speed Squelch	V_{HSSQ}	Squelch detected		100		mV
Detection Threshold	* HSSQ	No squelch detected		200		1110
Hi-Speed Idle Level Output Voltage	V _{HSOI}		-10		+10	mV
Hi-Speed Low Level Output Voltage	V_{HSOL}		-10		+10	mV
Hi-Speed High Level Output Voltage	V _{HSOH}			400 ± 40		mV
Chirp-J Output Voltage (Differential)	V _{CHIRPJ}			900 ±200		mV
Chirp-K Output Voltage (Differential)	V _{CHIRPK}			-700 ±200		mV

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. General Purpose I/O are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CLOCKS						
System Clock Frequency	f _{SYS_CLK}		0.256		120,000	kHz
System Clock Period	tsys_clk		1/	fsys_cl	.K	ns
High-Speed Oscillator Frequency	f _{HSCLK}	Measured at +25°C, 120MHz		120 ±1		MHz
Low-Power Oscillator Frequency	fLPCLK			40		MHz
7MHz Oscillator Frequency	f ₇ MCLK			7.3728		MHz
Nano-Ring Oscillator Frequency	f _{NANO}			8		KHz
RTC Input Frequency	f _{32KIN}	32kHz watch crystal, C_L = 6pF, ESR < 70kΩ		32.768		kHz
RTC Operating Current	I _{RTC_ACTSLP}	Sleep or Active mode		0.39		μΑ
RTC Power Up Time	t _{RTC} ON			250		ms
GENERAL-PURPOSE I/O						
Input Low Voltage for All GPIO	V _{IL_VDDIO}	V _{DDIO} selected as I/O supply			0.3 × V _{DDIO}	V
Input Low Voltage for All GPIO except P1.[21:18], P1.[16:11], P3.0	V _{IL_} VDDIOH	V _{DDIOH} selected as I/O supply			0.3 × V _{DDIOH}	V
Input Low Voltage for RSTN	V _{IL_RSTN}				0.3 × V _{DDIO}	V
Input High Voltage for All GPIO	V _{IH_VDDIO}	V _{DDIO} selected as I/O supply	0.75 × V _{DDIO}			V
Input High Voltage for All GPIO except P1.[21:18], P1.[16:11], P3.0	V _{IH_} VDDIOH	V _{DDIOH} selected as I/O supply	0.75 × V _{DDIOH}			V
Input High Voltage for RSTN	V _{IH_RSTN}		0.75 x V _{DDIO}			V
		V_{DDIO} selected as I/O supply, V_{DDIO} = 1.71V, DS[1:0] = 00, I _{OL} = 1mA		0.2	0.4	
Output Low Voltage for All	V	V_{DDIO} selected as I/O supply, V_{DDIO} = 1.71V, DS[1:0] = 01, I _{OL} = 2mA		0.2	0.4	V
GPIO	Vol_vddio	V_{DDIO} selected as I/O supply, V_{DDIO} = 1.71V, DS[1:0] = 10, I _{OL} = 4mA		0.2	0.4	V
		V_{DDIO} selected as I/O supply, V_{DDIO} = 1.71V, DS[1:0] = 11, I _{OL} = 8mA		0.2	0.4	

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. General-purpose I/O are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		V_{DDIOH} selected as I/O supply, V_{DDIOH} = 1.71V, DS[1:0] = 00, I _{OL} = 1mA		0.2	0.4	
Output Low Voltage for All	V	V _{DDIOH} selected as I/O supply, V _{DDIOH} = 1.71V, DS[1:0] = 01, I _{OL} = 2mA		0.2	0.4	
GPIO except P1.[21:18], P1.[16:11], P3.0	V _{OL_} VDDIOH	V _{DDIOH} selected as I/O supply, V _{DDIOH} = 1.71V, DS[1:0] = 10, I _{OL} = 4mA		0.2	0.4	V
		V _{DDIOH} selected as I/O supply, V _{DDIOH} = 1.71V, DS[1:0] = 11, I _{OL} = 8mA		0.2	0.4	
Combined I _{OL} , All GPIO	I _{OL_TOTAL}				48	mA
		V_{DDIO} selected as I/O supply, V_{DDIO} = 1.71V, DS[1:0] = 00, I _{OL} = -1mA	V _{DDIO} - 0.4			
Output High Voltage for	V	V_{DDIO} selected as I/O supply, V_{DDIO} = 1.71V, DS[1:0] = 01, I _{OL} = -2mA	V _{DDIO} - 0.4			V
All GPIO	V _{OH} _VDDIO	V_{DDIO} selected as I/O supply, V_{DDIO} = 1.71V, DS[1:0] = 10, I_{OL} = -4mA	V _{DDIO} - 0.4			V
		V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, DS[1:0] = 00, I _{OL} = -8mA	V _{DDIO} - 0.4			
		V _{DDIOH} selected as I/O supply, V _{DDIOH} = 1.71V, DS[1:0] = 00, I _{OL} = -1mA	V _{DDIOH} - 0.4			V
Output High Voltage for All GPIO except P1.[21:18],		V_{DDIOH} selected as I/O supply, V_{DDIOH} = 1.71V, DS[1:0] = 01, I _{OL} = -2mA	V _{DDIOH} - 0.4			
P1.[16:11], P3.0		V_{DDIOH} selected as I/O supply, V_{DDIOH} = 1.71V, DS[1:0] = 10, I_{OL} = -8mA	V _{DDIOH} - 0.4			
		V_{DDIOH} selected as I/O supply, V_{DDIOH} = 1.71V, DS[1:0] = 11, I _{OL} = -8mA	V _{DDIOH} - 0.4			
Combined I _{OH} , All GPIO	I _{OH_TOTAL}				-48	mA
Input Hysteresis (Schmitt)	V _{IHYS}			300		mV
Input Leakage Current Low	I _{IL}	V_{DDIO} = 1.89V, V_{DDIOH} = 3.6V, V_{DDIOH} selected as I/O supply, V_{IN} = 0V, internal pullup disabled	-1000		+1000	nA
	I _{IH}	$V_{\rm DDIO}$ = 1.89V, $V_{\rm DDIOH}$ = 3.6V, $V_{\rm DDIOH}$ selected as I/O supply, $V_{\rm IN}$ = 3.6V, internal pulldown disabled	-1000		+1000	nA
Input Leakage Current High	l _{OFF}	V_{DDIO} = 0V, V_{DDIOH} = 0V, V_{DDIO} selected as I/O supply, V_{IN} < 1.89V	-1		+1	
	I _{IH3V}	$V_{DDIO} = V_{DDIOH} = 1.71V$, V_{DDIO} selected as I/O supply, $V_{IN} = 3.6V$	-2		+2	μA
Input Pullup Resistor TMS, TCK, TDI	R _{PU_T}			25		kΩ
Input Pullup Resistor RSTN	R _{PU_R}			1		ΜΩ

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. General-purpose I/O are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Pullup/Pulldown	R _{PU1}	Normal resistance		25		kΩ
Resistor for All GPIO	R _{PU2}	Highest resistance		1		МΩ
FLASH MEMORY						
Floob France Times	t _{M_ERASE}	Mass erase		30		
Flash Erase Time	t _P ERASE	Page erase		30		ms
Flash Programming Time Per Word	t _{PROG}			60		μs
Flash Endurance			10			kcycles
Data Retention	t _{RET}	T _A = +85°C	10			years
ADC (DELTA-SIGMA)						
Resolution				10		Bits
ADC Clock Rate	fACLK		0.1		8	MHz
ADC Clock Period	t _{ACLK}			1/f _{ACLK}		μs
		AIN[3:0], ADC_CHSEL = 0-3, ADC_REFSEL = 1	V _{SSA} + 0.05		V _{BG} /2	
Input Voltage Range	V _{AIN}	AIN[3:0], ADC_CHSEL = 0-3, ADC_REFSEL = 0	V _{SSA} + 0.05		V_{BG}	V
		AIN[1:0], ADC_CHSEL = 4-5, ADC_REFSEL = 0	V _{SSA} + 0.05		5.5	
Input Impedance	R _{AIN}	AIN[1:0], ADC_CHSEL = 4-5, ADC active		40		kΩ
		Fixed capacitance to V _{SSA}		1		pF
Analog Input Capacitance	C _{AIN}	Dynamically switched capacitance		250		fF
Integral Nonlinearity	INL		-2		+2	LSb
Differential Nonlinearity	DNL		-1		+2	LSb
Offset Error	Vos			±1		LSb
Gain Error	GE			±2		LSb
ADC Active Current	I _{ADC}	ADC active, reference buffer enabled, input buffer disabled		210		μA
ADC Setup Time	t _{ADC_SU}	Any powerup of: ADC clock or ADC bias to CpuAdcStart			10	μs
ADC Output Latency	t _{ADC}			1025		t _{ACLK}
ADC Sample Rate	f _{ADC}				7.8	ksps
ADC lawyth and		AIN0 or AIN1, ADC inactive or channel not selected		0.01		A
ADC Input Leakage		AIN2 or AIN3, ADC inactive or channel not selected		0.01		nA

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. General-purpose I/O are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
AIN0/AIN1 Resistor Divider Error		ADC_CHSEL = 4 or 5, not including ADC offset/gain error.		±2		LSb
Full-Scale Voltage	V _{FS}	ADC code = 0x3FF		1.2		V
Bandgap Temperature Coefficient	V _{TEMPCO}	From +25°C to +105°C		15		ppm

Electrical Characteristics—SPI

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
MASTER MODE						
SPI Master Operating Frequency	f _{MCK}	f _{MCK(MAX)} = f _{SYS_CLK} /2			60	MHz
SPI Master SCK Period	t _{MCK}			1/f _{MCK}		ns
SCK Output Pulse-Width High/Low	t _{MCH} , t _{MCL}		t _{MCK} /2			ns
MOSI Output Hold Time After SCK Sample Edge	t _{MOH}		t _{MCK} /2			ns
MOSI Output Valid to Sample Edge	t _{MOV}		t _{MCK} /2			ns
MISO Input Valid to SCK Sample Edge Setup	t _{MIS}			5		ns
MISO Input to SCK Sample Edge Hold	t _{MIH}			t _{MCK} /2		ns
SLAVE MODE	,		·			
SPI Slave Operating Frequency	fsck				48	MHz
SPI Slave SCK Period	t _{SCK}			1/f _{SCK}		ns
SCK Input Pulse-Width High/Low	t _{SCH} , t _{SCL}			t _{SCK} /2		
SSx Active to First Shift Edge	t _{SSE}			10		ns
MOSI Input to SCK Sample Edge Rise/Fall Setup	tsis			5		ns
MOSI Input from SCK Sample Edge Transition Hold	tsiH			1		ns
MISO Output Valid After SCLK Shift Edge Transition	t _{SOV}			5		ns
SCK Inactive to SSx Inactive	t _{SSD}			10		ns
SSx Inactive Time	tssh			1/f _{SCK}		μs

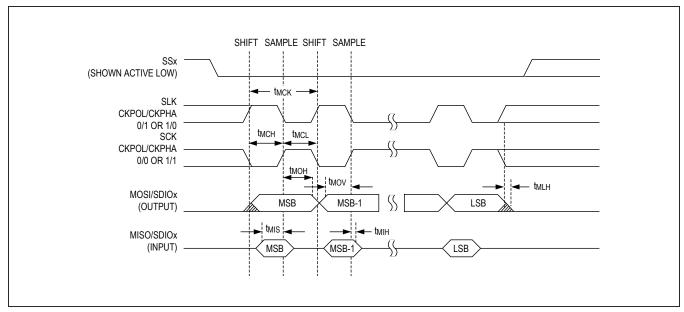


Figure 1. SPI Master Mode Timing Diagram

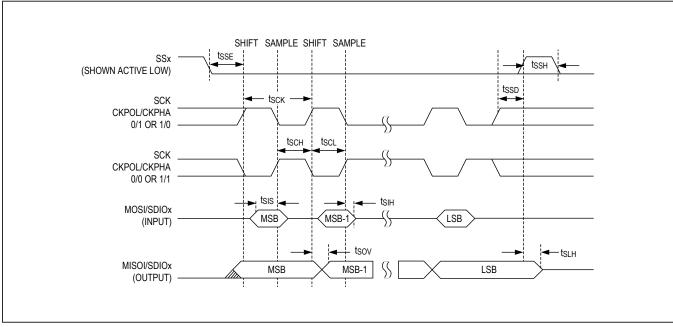


Figure 2. SPI Slave Mode Timing Diagram

Electrical Characteristics—I²C

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
STANDARD MODE						
Output Fall Time	t _{OF}	Standard mode, from V _{IH(MIN)} to V _{IL(MAX)}		150		ns
SCL Clock Frequency	f _{SCL}		0		100	kHz
Low Period SCL Clock	t _{LOW}		4.7			μs
High Time SCL Clock	tHIGH		4.0			μs
Setup Time for Repeated Start Condition	t _{SU;STA}		4.7			μs
Hold Time for Repeated Start Condition	t _{HD;STA}		4.0			μs
Data Setup Time	t _{SU;DAT}			300		ns
Data Hold Time	t _{HD;DAT}			10		ns
Rise Time for SDA and SCL	t _R			800		ns
Fall Time for SDA and SCL	t _F			200		ns
Setup Time for a Stop Condition	t _{SU;STO}		4.0			μs
Bus Free Time Between a Stop and Start Condition	t _{BUS}		4.7			μs
Data Valid Time	t _{VD;DAT}		3.45			μs
Data Valid Acknowledge Time	t _{VD;ACK}		3.45			μs
FAST MODE						
Output Fall Time	t _{OF}	From V _{IH(MIN)} to V _{IL(MAX)}		150		ns
Pulse Width Suppressed by Input Filter	t _{SP}			75		ns
SCL Clock Frequency	f _{SCL}		0		400	kHz
Low Period SCL Clock	t _{LOW}		1.3			μs
High Time SCL Clock	tHIGH		0.6			μs
Setup Time for Repeated Start Condition	t _{SU;STA}		0.6			μs
Hold Time for Repeated Start Condition	t _{HD;STA}		0.6			μs
Data Setup Time	tsu;dat			125		ns
Data Hold Time	t _{HD;DAT}			10		ns
Rise Time for SDA and SCL	t _R			30		ns
Fall Time for SDA and SCL	t _F			30		ns
Setup Time for a Stop Condition	t _{SU;STO}		0.6			μs
Bus Free Time Between a Stop and Start Condition	t _{BUS}		1.3			μs
Data Valid Time	t _{VD;DAT}		0.9			μs
Data Valid Acknowledge Time	t _{VD;ACK}		0.9		,	μs

Electrical Characteristics—I²C (continued)

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
FAST MODE PLUS			·			
Output Fall Time	t _{OF}	From V _{IH(MIN)} to V _{IL(MAX)}		80		ns
Pulse Width Suppressed by Input Filter	t _{SP}			75		ns
SCL Clock Frequency	f _{SCL}		0		1000	kHz
Low Period SCL Clock	t _{LOW}		0.5			μs
High Time SCL clock	tHIGH		0.26			μs
Setup Time for Repeated Start Condition	t _{SU;STA}		0.26			μs
Hold Time for Repeated Start Condition	t _{HD;STA}		0.26			μs
Data Setup Time	t _{SU;DAT}			50		ns
Data Hold Time	t _{HD;DAT}			10		ns
Rise Time for SDA and SCL	t_{R}			50		ns
Fall Time for SDA and SCL	t _F			30		ns
Setup Time for a Stop Condition	t _{SU;STO}		0.26			μs
Bus Free Time Between a Stop and Start Condition	t _{BUS}		0.5			μs
Data Valid Time	t _{VD;DAT}		0.45			μs
Data Valid Acknowledge Time	t _{VD;ACK}		0.45			μs

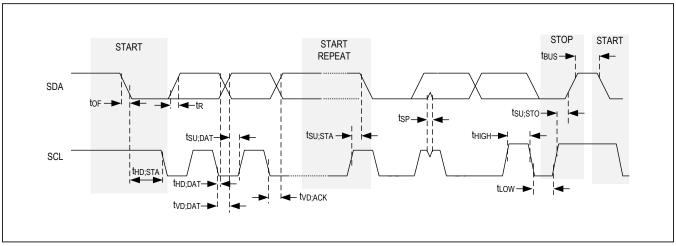


Figure 3. I²C Timing Diagram

Electrical Characteristics—I²C Slave

(Timing specifications are guaranteed by design and not production tested, $T_A = -40$ °C to +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Bit Clock Frequency	f _{BCLK}	96kHz LRCLK frequency			3.072	MHz
BCLK High Time	twbclkh			0.5		1/f _{BCLK}
BCLK Low Time				0.5		1/f _{BCLK}
LRCLK Setup Time	tLRCLK_BLCK			25		ns
Delay Time, BCLK to SD (Output) Valid	tBCLK_SDO			12		ns
Setup Time for SD (Input)	^t su_sdi			6		ns
Hold Time SD (Input)	t _{HD} SDI			3		ns

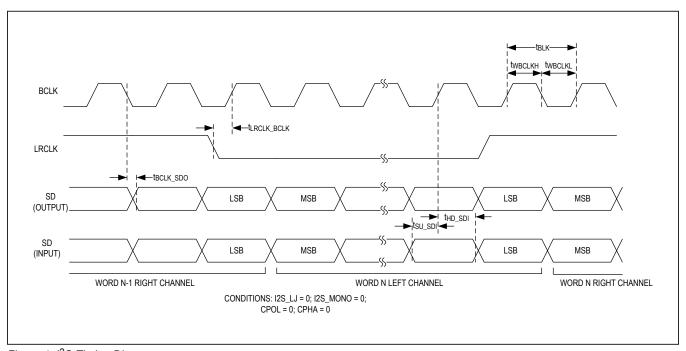


Figure 4. I²S Timing Diagram

Electrical Characteristics—SD/SDIO/SDHC/MMC

 $(T_A = -40^{\circ}C \text{ to } +105^{\circ}C)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Clock Frequency in Data Transfer Mode	fSDHC_CLK		0		f _{HSCLK} /2	MHz
Clock Period	t _{CLK}			1/f _{SDHC_} CLK		ns
Clock Low Time	t _{WCL}			7		ns
Clock High Time	twch			7		
Input Setup Time	t _{ISU}			5		ns
Input Hold Time	t _{IHLD}			1		ns
Output Valid Time	t _{OVLD}			5		ns
Output Hold Time	^t OHLD			6		ns

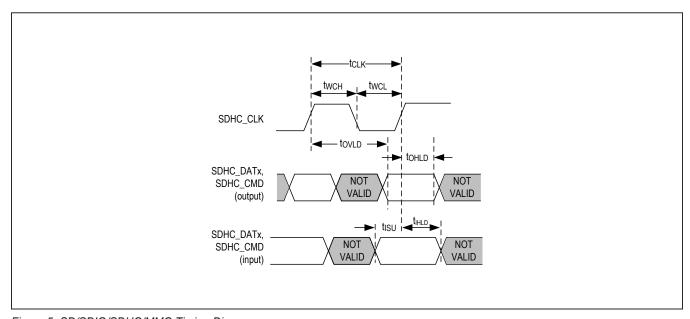


Figure 5. SD/SDIO/SDHC/MMC Timing Diagram

Electrical Characteristics—HyperBus

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
HYP_CLK, HYP_CLKN Frequency	fHYP_CLK				60	MHz
HYP_CLK, HYP_CLKN Period	tHYP_CLK		1/f _{HYP} _ CLK			ns
HYP_CLK, HYP_CLKN High Time	twhckh			7		ns
HYP_CLK, HYP_CLKN Low Time	twhckl			7		ns
CS Setup to RWDS	t _{CSSU}			6		ns
RWDS Setup to CK	t _{RWDS_CK}			10		ns
Dx Output Setup	tosu			5		ns
Dx Output Hold	tон			3		ns
CS Hold After CK Falling Edge	t _{CSH}			5		ns
CS High Between Transactions	^t CHSI			15		ns
Dx Input Setup to RWDS	t _{ISU}			4		ns
Dx Input Hold	t _{IHD}			2		ns

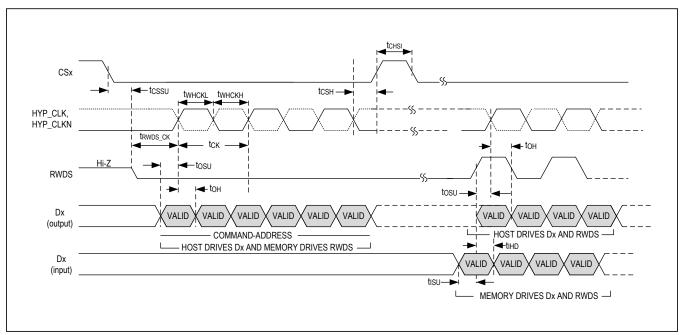


Figure 6. HyperBus/Xccela Bus Timing Diagram

Electrical Characteristics—One Wire Master

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN T	YP MAX	UNITS	
Write 0 Low Time	4	Standard	(60		
While o Low Time	t _{WOL}	Overdrive		8	μs	
		Standard		6		
Write 1 Low Time	t _{W1L}	Standard, Long Line mode		8	μs	
		Overdrive		1		
		Standard	-	70		
Presence Detect Sample	t _{MSP}	Standard, Long Line mode	8	35	μs	
		Overdrive		9		
		Standard		15		
Read Data Value	t _{MSR}	Standard, Long Line mode	2	24	μs	
		Overdrive 3		3		
		Standard 10 t _{REC0} Standard, Long Line mode 20		10		
Recovery Time	t _{REC0}			20	μs	
		Overdrive 4		4		
Dood Time High	+	Standard	480		μs	
Reset Time High	^t RSTH	Overdrive	58			
Reset Time Low	4	Standard		600		
Reset Time LOW	^t RSTL	Overdrive 70		70	– µs	
Time Clet	4	Standard	70			
Time Slot	^I SLOT	t _{SLOT} Overdrive 12		12	μs	

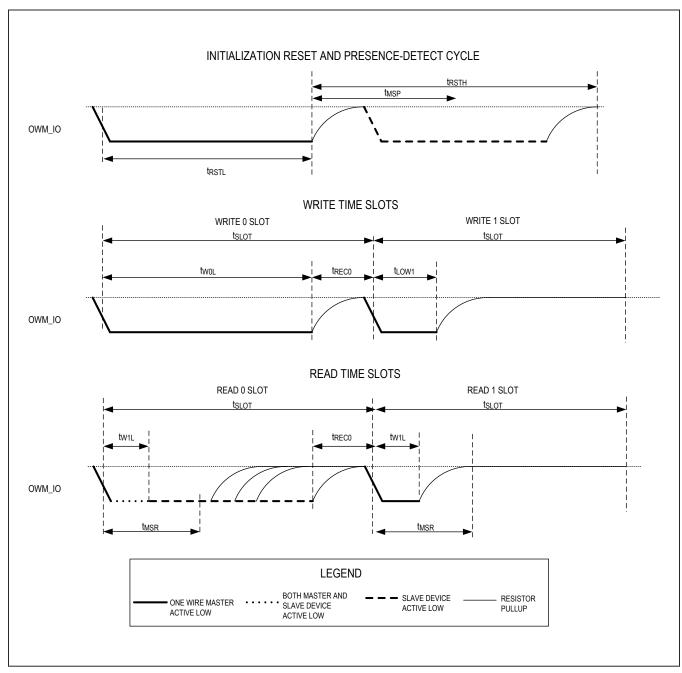
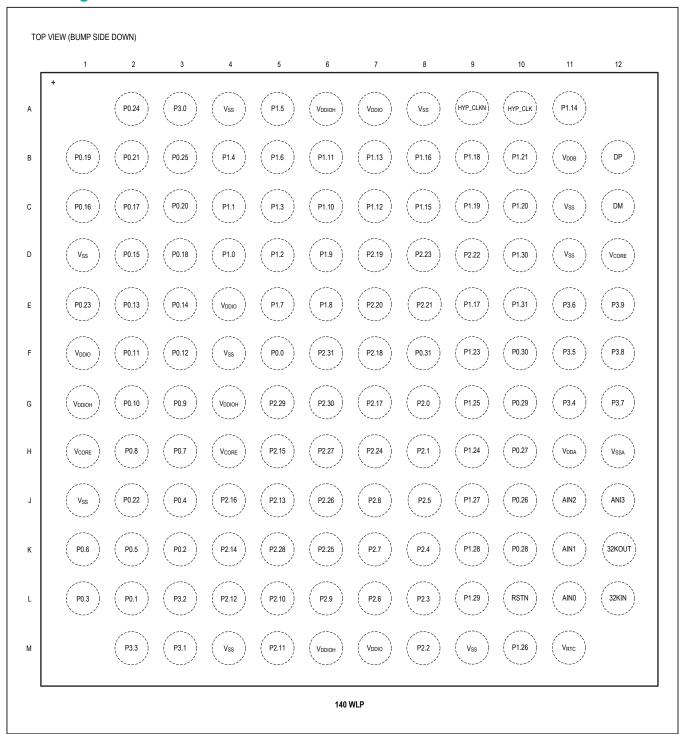
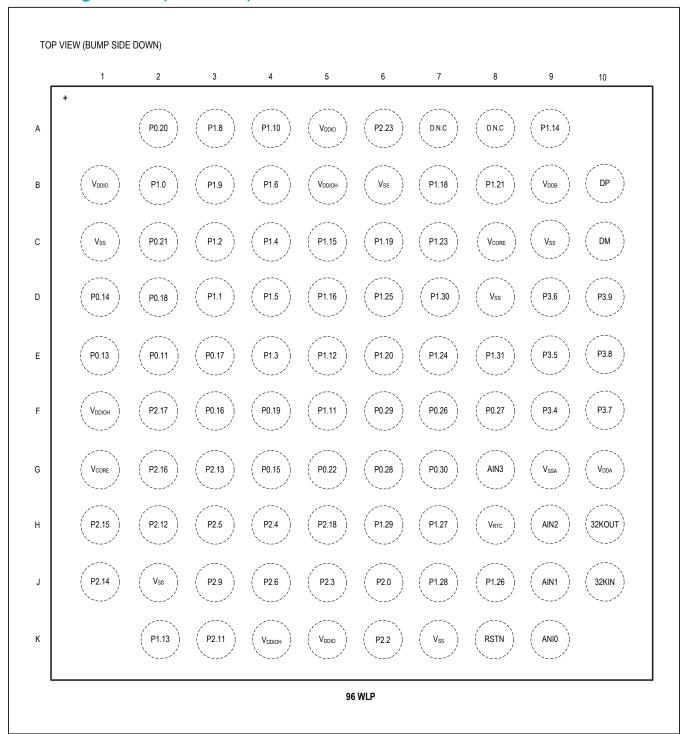
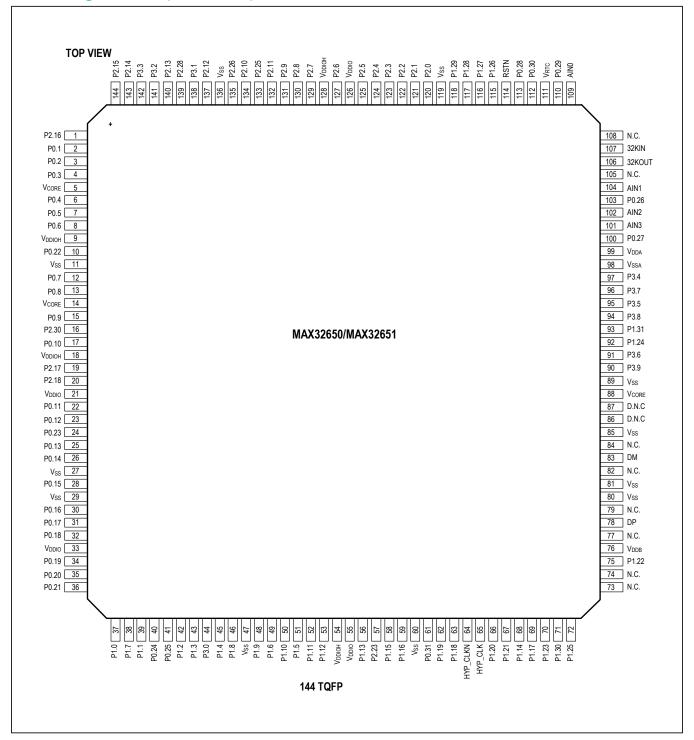




Figure 7. One-Wire Master Data Timing Diagram


Pin Configurations

Pin Configurations (continued)

Pin Configurations (continued)

Pin Description

	PIN			
140 WLP	96 WLP	144 TQFP	NAME	FUNCTION
POWER				
H1, H4, D12	G1, C8	5, 14, 88	V _{CORE}	Core Supply Voltage. This pin must be bypassed to V _{SS} with a 1.0µF capacitor as close as possible to the package.
H11	G10	99	V_{DDA}	1.8V Analog Supply Voltage. This pin must be bypassed to V_{SSA} with 1.0 μ F and 0.01 μ F capacitors as close as possible to the package.
B11	В9	76	V_{DDB}	USB Transceiver Supply Voltage. This pin must be bypassed to V _{SS} with a 1.0µF capacitor as close as possible to the package.
A7	A5	21		GPIO Supply Voltage. This pin must be bypassed to V_{SS} with 1.0 μ F and 0.01 μ F capacitors as close as possible to the package.
E4, F1	B1, K5	33, 55	V_{DDIO}	GPIO Supply Voltage. This pin must be bypassed to V_{SS} with a 1.0 μ F and a 0.01 μ F capacitor as close as possible to the package.
M7	_	126		GPIO Supply Voltage. This pin must be bypassed to V_{SS} with 1.0 μ F and 0.01 μ F capacitors as close as possible to the package.
A6	B5	9	\/	GPIO Supply Voltage, High. $V_{DDIOH} \ge V_{DDIO}$. This pin must be bypassed to V_{SS} with 1.0µF and 0.01µF capacitorx as close as possible to the package.
G1, G4, M6	F1, K4	18, 54, 128	V _{DDIOH}	GPIO Supply Voltage, High. $V_{DDIOH} \ge V_{DDIO}$. This pin must be bypassed to V_{SS} with 1.0µF and 0.01µF capacitors as close as possible to the package.
M11	H8	111	V _{RTC}	RTC Supply Voltage. This pin must be bypassed to V _{SS} with a 1.0µF capacitor as close as possible to the package.
A4, A8, C11, D1, D11, F4, J1, M4, M9	B6, C1, C9, D8, K7, J2	11, 27, 29, 47, 60, 80, 81, 85, 89, 119, 136	V _{SS}	Digital Ground
H12	G9	98	V _{SSA}	Analog Ground
RESET				1
L10	K8	114	RSTN	Hardware Power Reset (Active-Low) Input. The device remains in reset while this pin is in its active state. When the pin transitions to its inactive state, the device performs a POR reset (resetting all logic on all supplies except for real-time clock circuitry) and begins execution. This pin has an internal pullup to the $V_{\mbox{\scriptsize DDIO}}$ supply.
CLOCK				
L12	J10	107	32KIN	32kHz Crystal Oscillator Input. Connect a 32kHz crystal between 32KIN and 32KOUT for RTC operation. Optionally, an external clock source can be driven on 32KIN if the 32KOUT pin is left unconnected.
K12	H10	106	32KOUT	32kHz Crystal Oscillator Output
GPIO AND A	ALTERNATE	FUNCTIONS		
F5	_	_	P0.0	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
L2	_	2	P0.1	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.

Pin Description (continued)

	PIN		NAME	FINATION
140 WLP	96 WLP	144 TQFP	NAME	FUNCTION
K3	_	3	P0.2	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
L1	_	4	P0.3	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
J3	_	6	P0.4	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
K2	_	7	P0.5	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
K1	_	8	P0.6	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
H3	_	12	P0.7	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
H2	_	13	P0.8	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
G3	_	15	P0.9	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
G2	_	17	P0.10	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
F2	E2	22	P0.11	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
F3	_	23	P0.12	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
E2	E1	25	P0.13	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
E3	D1	26	P0.14	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , Table 4 and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
D2	G4	28	P0.15	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
C1	F3	30	P0.16	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.

Pin Description (continued)

	PIN		NIA	FUNCTION
140 WLP	96 WLP	144 TQFP	NAME	FUNCTION
C2	E3	31	P0.17	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
D3	D2	32	P0.18	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
B1	F4	34	P0.19	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
C3	A2	35	P0.20	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
B2	C2	36	P0.21	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
J2	G5	10	P0.22	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
E1	_	24	P0.23	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
A2	_	40	P0.24	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
ВЗ	_	41	P0.25	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
J10	F7	103	P0.26	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
H10	F8	100	P0.27	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
K10	G6	113	P0.28	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
G10	F6	110	P0.29	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
F10	G7	112	P0.30	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
F8	_	61	P0.31	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.

Pin Description (continued)

	PIN		NAME	FUNCTION
140 WLP	96 WLP	144 TQFP	NAME	FUNCTION
D4	B2	37	P1.0	General-Purpose I/O, Port 1. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
C4	D3	39	P1.1	General-Purpose I/O, Port 1. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
D5	C3	42	P1.2	General-Purpose I/O, Port 1. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
C5	E4	43	P1.3	General-Purpose I/O, Port 1. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
B4	C4	45	P1.4	General-Purpose I/O, Port 1. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
A5	D4	51	P1.5	General-Purpose I/O, Port 1. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
B5	B4	49	P1.6	General-Purpose I/O, Port 1. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
E5	_	38	P1.7	General-Purpose I/O, Port 1. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
E6	A3	46	P1.8	General-Purpose I/O, Port 1. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
D6	В3	48	P1.9	General-Purpose I/O, Port 1. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
C6	A4	50	P1.10	General-Purpose I/O, Port 1. Most port pins have multiple special functions. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
В6	F5	52	P1.11	General-Purpose I/O, Port 1. Most port pins have multiple special functions. This pin is connected to V _{DDIO} only. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
C7	E5	53	P1.12	General-Purpose I/O, Port 1. Most port pins have multiple special functions. This pin is connected to V _{DDIO} only. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
В7	K2	56	P1.13	General-Purpose I/O, Port 1. Most port pins have multiple special functions. This pin is connected to V _{DDIO} only. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.
A11	A9	68	P1.14	General-Purpose I/O, Port 1. Most port pins have multiple special functions. This pin is connected to V _{DDIO} only. See <u>Table 3</u> , <u>Table 4</u> and <u>Table 5</u> GPIO and Alternate Function Matrix tables for details.