: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Precision, Quad, SPDT, CMOS Analog Switch

Abstract

General Description The MAX333A is a precision, quad, single-pole doublethrow (SPDT) analog switch. The four independent switches operate with bipolar supplies ranging from $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$, or with a single-ended supply between +10 V and +30 V . The MAX333A offers low on resistance (less than 35Ω), guaranteed to match within 2Ω between channels and to remain flat over the analog signal range ($\Delta 3 \Omega$ max). It also offers break-before-make switching (10ns typical), with turn-off times less than 145ns and turn-on times less than 175ns. The MAX333A is ideal for portable operation since quiescent current runs less than $50 \mu \mathrm{~A}$ with all inputs high or low. This monolithic, quad switch is fabricated with Maxim's new improved silicon-gate process. Design improvements guarantee extremely low charge injection (10pC), low power consumption $(3.75 \mathrm{~mW})$, and electrostatic discharge (ESD) greater than 2000V. Logic inputs are TTL and CMOS compatible and guaranteed over a +0.8 V to +2.4 V range-regardless of supply voltage. Logic inputs and switched analog signals can range anywhere between the supply voltages without damage.

Applications

Test Equipment
Communications Systems
PBX, PABX
Heads-Up Displays
Portable Instruments
Pin Configuration

Upgraded Replacement for a DG211/DG212 Pair
or Two DG403s
Low On Resistance < 17Ω Typical (35Ω Max)
Guaranteed Matched On Resistance Between
Channels < 2Ω
Guaranteed Flat On Resistance over Analog
Signal Range $\Delta 3 \Omega$ Max
Guaranteed Charge Injection < 10pC

- Guaranteed Off-Channel Leakage < 6nA at $+85^{\circ} \mathrm{C}$
- ESD Guaranteed > 2000V per Method 3015.7
- Single-Supply Operation (+10V to +30V) Bipolar-Supply Operation ($\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$)
- TTL-/CMOS-Logic Compatibility
- Rail-to-Rail Analog Signal Handling Capability

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX333ACPP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Plastic DIP
MAX333ACWP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Wide SO
MAX333ACUP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 TSSOP
MAX333AC/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$
MAX333AEPP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Plastic DIP
MAX333AEWP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Wide SO
MAX333AEUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP
MAX333AMJP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 CERDIP

* Contact factory for dice specifications.

Typical Operating Circuit

Precision, Quad, SPDT, CMOS Analog Switch

ABSOLUTE MAXIMUM RATINGS

V+ to V-	44V
$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {COM }}, \mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$. V - to V+
($\mathrm{V}_{\mathrm{NO}}-\mathrm{V}_{\mathrm{NC}}$)	32V
V + to Ground.	30 V
V- to Ground.	-30V
Current, Any Terminal Except $\mathrm{V}_{\text {com }}$, V_{N}	30 mA
Continuous Current, $\mathrm{V}_{\text {com }} \mathrm{V}^{\text {NO}}$, or V_{NC}	20 mA
Peak Current, $\mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{NO}}$, or V_{NC} (Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle max)	70mA
	2000

Note 1: Device mounted with all leads soldered to PC board.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and function-
al operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure al operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

(GND $=0 \mathrm{~V}, \mathrm{~V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Precision, Quad, SPDT, CMOS Analog Switch

ELECTRICAL CHARACTERISTICS-DUAL SUPPLIES (continued)

(GND $=0 \mathrm{~V}, \mathrm{~V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	$\begin{gathered} \hline \text { TYP } \\ \text { Votes 2, 3) } \\ \hline \end{gathered}$	MAX	UNITS
LOGIC INPUT							
Input Voltage Low	VIL			V-		0.8	V
Input Voltage High	VIH			2.4		V+	V
Input Current	IIN	V IN $=\mathrm{V}-$, $\mathrm{V}+$		-1.0	0.0001	1.0	$\mu \mathrm{A}$
SWITCH							
Analog Signal Range	Vcom			V-		V+	V
On Circuit Resistance	Ron	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{COM}}=10 \mathrm{~V}, \mathrm{I}(\mathrm{NC} \text { or } \mathrm{NO})=1 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{COM}}=-10 \mathrm{~V}, \mathrm{I}(\mathrm{NC} \text { or } \mathrm{NO}=1 \mathrm{~mA} \end{aligned}$	C, E			45	Ω
			M			45	
On Circuit Leakage Current	ICOM	$\begin{aligned} & V_{C O M}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=-15 \mathrm{~V}, \\ & \mathrm{~V}+=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \end{aligned}$	C, E	-10		10	nA
			M	-60		60	
On Circuit Leakage Current	InC or ${ }^{\text {INO }}$	$\begin{aligned} & V_{C O M}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=-15 \mathrm{~V}, \\ & \mathrm{~V}+=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \end{aligned}$	C, E	-6		6	nA
			M				

ELECTRICAL CHARACTERISTICS—Single Supply

(GND $=0 \mathrm{~V}, \mathrm{~V}+=+12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Note 2: The algebraic convention, whereby the most negative value is a minimum and the most positive is a maximum, is used in this data sheet.
Note 3: Typical values are for design aid only, not guaranteed or subject to production testing.
Note 4: On resistance match between channels and flatness are guaranteed only with bipolar-supply operation.

Precision, Quad, SPDT, CMOS Analog Switch

$\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted).
Typical Operating Characteristics

Precision, Quad, SPDT, CMOS Analog Switch

Pin Description

PIN	NAME	FUNCTION
$1,10,11,20$	IN1-IN4	Logic-Level Inputs
$2,9,12,19$	NO1-NO4	Normally Open Switches
$3,8,13,18$	COM1-COM4	Common Switch Poles
$4,7,14,17$	NC1-NC4	Normally Closed Switches
5	V-	Negative Power Supply
6	GND	Ground
15	N.C.	Not Internally Connected
16	V+	Positive Power Supply

Applications Information

Operation with Supply Voltages Other than $\pm 15 V_{0}$ The main limitation of supply voltages other than $\pm 15 \mathrm{~V}$ is a reduction in the analog signal range. The MAX333A operates with $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ bipolar supplies. The Typical Operating Characteristics and graphs show typical on resistance for $\pm 15 \mathrm{~V}, \pm 10 \mathrm{~V}, \pm 5$ supplies. Switching times increase by a factor of two or more for $\pm 5 \mathrm{~V}$ operation. The MAX333A can operate from +10 V to +24 V unipolar supplies. It can be powered from a single +10 V to +24 V supply, as well as from unbalanced supplies such as +24 V and -5 V . Connect V- to 0 V when operating with a single supply.

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. It is important not to exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the devices. Always sequence V+ on first, followed by VL, V -, and logic inputs. If power-supply sequencing is not possible, add two small signal diodes in series with the supply pins (Figure 1). Adding the diodes reduces the analog signal range to 1 V below $\mathrm{V}+$ and 1 V below V -, but low switch resistance and low leakage characteristics are unaffected.

Figure 1. Overvoltage Protection Using Blocking Diodes

Figure 2. Switching-Time Test Circuit

Precision, Quad, SPDT, CMOS Analog Switch

Test Circuits/Timing Diagrams

Figure 3. Channel-Off Capacitance

Figure 4. Channel-On Capacitance

Figure 5. Break-Before-Make

Figure 6. Charge Injection

Precision, Quad, SPDT, CMOS Analog Switch

Figure 7. Off-Isolation

Figure 8. Crosstalk

Precision, Quad, SPDT, CMOS Analog Switch

TRANSISTOR COUNT: 145;
SUBSTRATE CONNECTED TO V+. implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

