

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

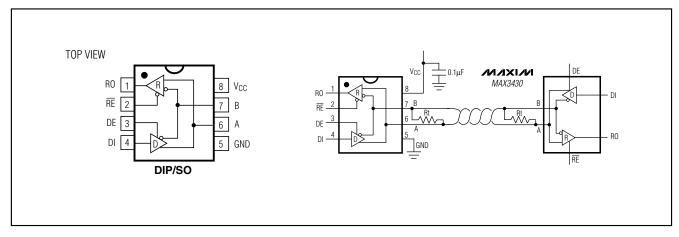
The MAX3430 fault-protected RS-485 transceiver features ±80V protection from overvoltage signal faults on communication bus lines. Each device contains one driver and one receiver, and the output pins can withstand faults, with respect to ground, of up to ±80V. Even if the faults occur when the transceiver is active, shut down, or powered off, the device will not be damaged. The MAX3430 operates from a 3.3V supply and features a slew-rate-limited driver that minimizes EMI and reduces reflections caused by improperly terminated cables, allowing errorfree data transmission at data rates up to 250kbps. The MAX3430 has a 1/4-unit-load receiver input impedance allowing up to 128 transceivers on a single bus and features fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open.

Hot-swap circuitry eliminates false transitions on the data cable during circuit initialization or connection to a live backplane. Short-circuit current limiting and thermal-shutdown circuitry protect the driver against excessive power dissipation.

The MAX3430 is available in 8-pin SO and 8-pin PDIP packages, and is specified over commercial and industrial temperature ranges.

Applications

RS-422/RS-485 Communications Lighting Systems Industrial-Control Local Area Networks **Profibus Applications** Multimaster RS-485 Networks


Features

- ♦ ±80V Fault Protection
- ♦ ±12kV ESD Protection
- ♦ +3.3V Operation
- ♦ Internal Slew-Rate Limiting
- ♦ 250kbps Data Rate
- ♦ Allows Up to 128 Transceivers on the Bus
- ◆ -7V to +12V Common-Mode Input Voltage Range
- ♦ True Fail-Safe Inputs
- ♦ Hot-Swap Input Structure on DE
- ♦ Available in 8-Pin SO and PDIP Packages

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3430CPA	0°C to +70°C	8 Plastic DIP
MAX3430CSA	0°C to +70°C	8 SO
MAX3430EPA	-40°C to +85°C	8 Plastic DIP
MAX3430ESA	-40°C to +85°C	8 SO

Pin Configuration and Typical Operating Circuit

MIXIM

ABSOLUTE MAXIMUM RATINGS

(All voltages are referenced to GND.)
VCC+5V
RE, DE, DI0.3V to (V _{CC} + 0.3V)
Driver Output Voltage (A, B) (Note 1)±80V
Receiver Input Voltage (A, B) (Note 1)±80V
RO0.3V to (V _{CC} + 0.3V)
Continuous Power Dissipation ($T_A = +70^{\circ}C$)
8-Pin SO (derate 5.88mW/°C above +70°C)471mW
8-Pin Plastic DIP (derate 9.09mW/°C above +70°C)727mW

Operating Temperature Ranges	
MAX3430C	0°C to +70°C
MAX3430E	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	
Lead Temperature (soldering, 10	0s)+300°C

Note 1: A, B must be terminated with 54Ω or 100Ω to guarantee $\pm 80V$ fault protection.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3.3V \pm 10\%, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = +3.3V \text{ and } T_A = +25^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
DRIVER	1		•			•	
Differential Driver Output	Von	Figure 1, $R_L = 100\Omega$	2.0		Vcc	V	
Differential Driver Output	V _{OD}	Figure 1, $R_L = 54\Omega$	1.5		Vcc] v	
Change in Magnitude of Differential Output Voltage	ΔV _{OD}	Figure 1, $R_L = 100\Omega$ or 54Ω (Note 2)			0.2	V	
Driver Common-Mode Output Voltage	Voc	Figure 1, $R_L = 100\Omega$ or 54Ω		V _{CC} / 2	3	V	
Change in Magnitude of Common-Mode Voltage	ΔV _{OC}	Figure 1, $R_L = 100\Omega$ or 54Ω (Note 2)			0.2	V	
DRIVER LOGIC	1		•			•	
Driver Input High Voltage	VIH	DI	2.0			V	
Driver Input Low Voltage	VIL	DI			0.8	V	
Driver Input Current	I _{IN}	DI			±1	μΑ	
Driver Short-Circuit Output	loop	0 ≤ V _{OUT} ≤ 12V (Note 3)			+250	mΛ	
Current	losp	-7V ≤ V _{OUT} ≤ V _{CC} (Note 3)	-250			mA	
Driver Short-Circuit Foldback	loope	$(V_{CC} - 1V) \le V_{OUT} \le 12V \text{ (Note 3)}$	+10			mΛ	
Output Current	losdf	-7V ≤ V _{OUT} ≤ 1V (Note 3)		-10		mA	
RECEIVER							
		$DE = GND, \overline{RE} = GND, V_{IN} = +12V$			250		
Input Current (A, B)	I _{A, B}	$DE = GND, \overline{RE} = GND, V_{IN} = -7V$			-200	μΑ	
		$V_{IN} = -80V \text{ to } +80V$	-6		+6	mA	
Receiver Differential Threshold Voltage	VTH	-7V ≤ V _{CM} ≤ 12V	-200		-50	mV	
Receiver Input Hysteresis	ΔV_{TH}	$V_A + V_B = 0$		25		mV	

DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +3.3V \pm 10\%, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = +3.3V \text{ and } T_A = +25^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
RECEIVER LOGIC			·			
RO Output High Voltage	Vон	I _O = -1.6mA	V _{CC} - 0.6			V
RO Output Low Voltage	VoL	I _O = 1mA			0.4	V
Three-State Output Current at Receiver	lozr	0 ≤ V _O ≤ V _{CC}			± 1	μΑ
Receiver Input Resistance	R _{IN}	-7V ≤ V _{CM} ≤ 12V	48			kΩ
Receiver Output Short-Circuit Current	Iosr	0 ≤ V _{RO} ≤ V _{CC}			±95	mA
CONTROL						
Control Input High Voltage	VCIH	DE, RE	2.0			V
Control Input Low Voltage	V _{CIL}	DE, RE			0.8	V
Input Current DE Current Latch During First DE Rising Edge				80		μΑ
Input Current RE Current Latch During First RE Rising Edge				80		μA

PROTECTION SPECIFICATIONS

 $(V_{CC} = +3.3V \pm 10\%, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V_{CC} = +3.3V \text{ and } T_A = +25^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ESD Protection		A, B Human Body Model			±12		kV
SUPPLY CURRENT							
		No loa	ad, $\overline{RE} = 0$, DE = V _{CC} , DI = 0 or V _{CC}		3.5	10	
Supply Current	Icc	No load, $\overline{RE} = V_{CC}$, DE = V_{CC} , DI = 0 or V_{CC}			3.0	8	mA
Supply Current in Shutdown Mode	Ishdn	$\overline{RE} = V_{CC}, DE = 0$				200	μΑ

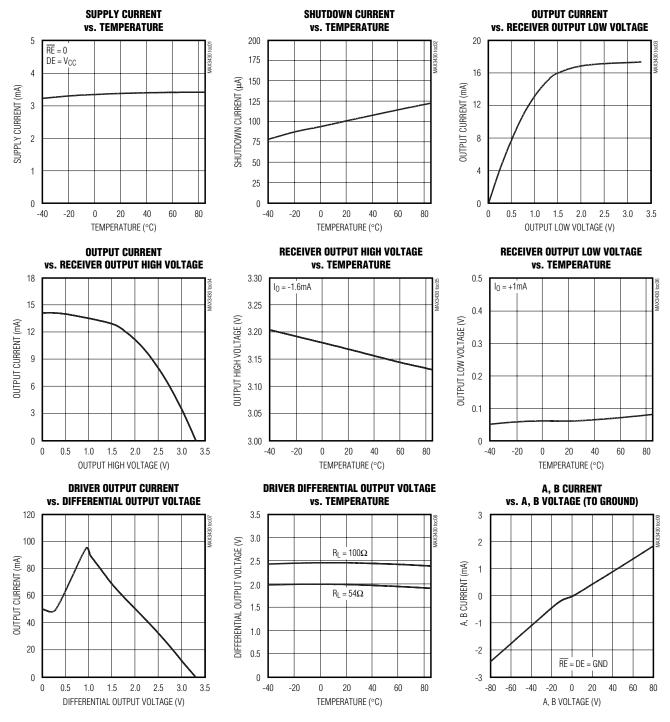
DRIVER SWITCHING CHARACTERISTICS

 $(V_{CC} = +3.3V \pm 10\%, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V_{CC} = +3.3V \text{ and } T_A = +25^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Driver Propagation Delay	tDPLH	Figures 2 and 3, $R_L = 54\Omega$, $C_L = 50pF$		700	1500	ns
Driver i Topagation Delay	tdphl	1 igures 2 and 3, 11 = 3452, 6 = 30pi		700	1500	115
Driver Differential Output Rise or Fall Time	t _{DR} , t _{DF}	Figures 2 and 3, $R_L = 54\Omega$, $C_L = 50pF$	250		1200	ns
Differential Driver Output Skew, ltdphh - tdphhl	tDSKEW	Figures 2 and 3, $R_L = 54\Omega$, $C_L = 50pF$		150	200	ns
Maximum Data Rate			250			kbps
Driver Enable to Output Low	tDZL	Figure 4, C _L = 50pF			5200	ns
Driver Disable Time from Output Low	t _{DLZ}	Figure 4, C _L = 50pF			1000	ns
Driver Output Enable Time from Shutdown	tDZL(SHDN)	Figure 4, C _L = 50pF			8000	ns
Driver Enable to Output High	tDZH	Figure 5, C _L = 50pF			5200	ns
Driver Disable Time from Output High	tDHZ	Figure 5, C _L = 50pF			1000	ns
Driver Output Enable Time from Shutdown	tDZH(SHDN)	Figure 5, C _L = 50pF			8000	ns
Driver Time to Shutdown	tshdn			•	1000	ns

RECEIVER SWITCHING CHARACTERISTICS

 $(V_{CC} = +3.3V \pm 10\%, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V_{CC} = +3.3V \text{ and } T_A = +25^{\circ}C.)$


PARAMETER	SYMBOL	CONDITIONS		TYP	MAX	UNITS
Receiver Propagation Delay	trplh	── Figure 6, CL = 20pF, V _{ID} = 2V, V _{CM} = 0			120	20
Receiver Propagation Delay	trphl				120	ns
Receiver Output Skew, ItRPLH - tRPHLI	tskew	Figure 6, C _L = 20pF			40	ns
Receiver Enable to Output Low	trzl	Figure 7, R = $1k\Omega$, $C_L = 20pF$			80	ns
Receiver Enable to Output High	trzh	Figure 7, R = $1k\Omega$, $C_L = 20pF$			80	ns
Receiver Disable Time from Low	t _{RLZ}	Figure 7, R = $1k\Omega$, $C_L = 20pF$			80	ns
Receiver Disable Time form High	t _{RHZ}	Figure 7, R = $1k\Omega$, $C_L = 20pF$			80	ns
Receiver Output Enable Time from Shutdown	trzh(shnd), trzh(shnd)	Figure 7, R = 1k Ω , C _L = 20pF			5000	ns
Receiver Time to Shutdown	tshdn				1000	ns

Note 2: ΔV_{OD} and ΔV_{OC} are the changes in V_{OD} and V_{OC} , respectively, when the DI input changes state.

Note 3: The short-circuit output current applies to peak current just prior to foldback current limiting; the short-circuit foldback output current applies during current limiting to allow a recovery from bus contention.

Typical Operating Characteristics

 $(V_{CC} = +3.3V, T_A = +25^{\circ}C, unless otherwise noted.)$

Test Circuits/Timing Diagrams

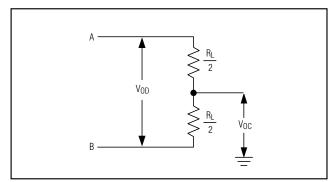


Figure 1. Driver DC Test Load

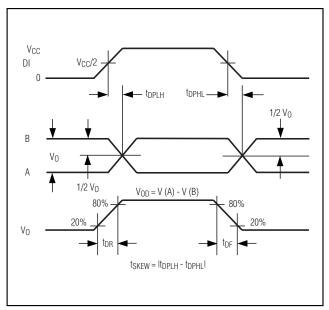


Figure 3. Driver Propagation Delays

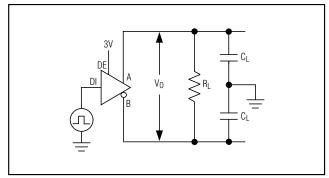


Figure 2. Driver Timing Test Circuit

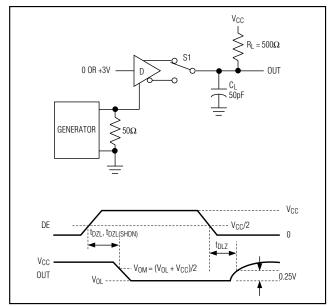


Figure 4. Driver Enable and Disable Times (t_{DZL}, t_{DLZ}, t_{DLZ}(SHDN))

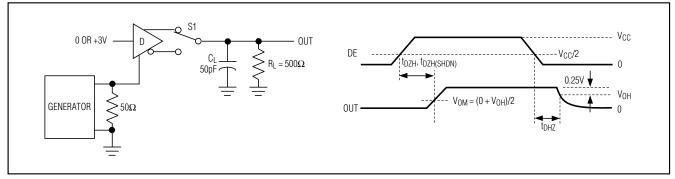


Figure 5. Driver Enable and Disable Times (tDHZ, tDZH, tDZH(SHDN))

Test Circuits/Timing Diagrams (continued)

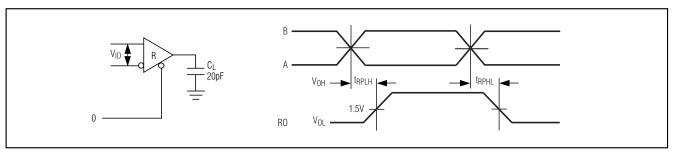


Figure 6. Receiver Propagation Delays

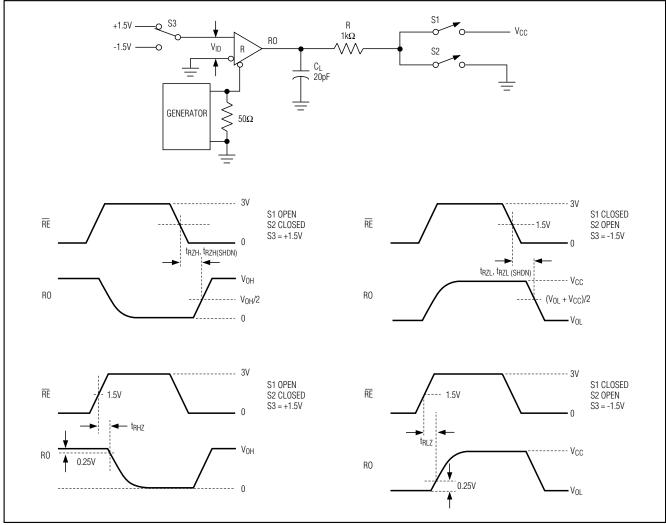


Figure 7. Receiver Enable and Disable Times

Pin Description

PIN	NAME	FUNCTION
1	RO	Receiver Output
2	RE	Receiver Output Enable. RO is enabled when \overline{RE} is low; RO is high impedance when \overline{RE} is high. The device enters a low-power shutdown mode if \overline{RE} is high and DE is low.
3	DE	Driver Output Enable. Driving DE high enables the driver outputs. Pulling DE low puts the driver outputs in a high-impedance state. If $\overline{\text{RE}}$ is high and DE is low, the device enters a low-power shutdown mode. If the driver outputs are enabled, the device functions as a line driver, and when they are high impedance it functions as a line receiver if $\overline{\text{RE}}$ is low.
4	DI	Driver Input. A logic low on DI forces output A low and output B high, while a logic high on DI forces output A high and output B low.
5	GND	Ground
6	А	Noninverting Receiver Input/Driver Output
7	В	Inverting Receiver Input/Driver Output
8	Vcc	Positive Supply, V _{CC} = +3.3V ±10%. Bypass V _{CC} to GND with a 0.1µF ceramic capacitor.

Function Tables

Table 1. Transmitting

	INPUTS		OUTPUTS		MODE
RE	DE	DI	В	Α	MODE
Х	1	1	0	1	Normal
Х	1	0	1	0	Normal
0	0	Χ	High-Z	High-Z	Normal
1	0	Χ	High-Z	High-Z	Shutdown

X = Don't care.

Table 2. Receiving

	INPUTS		OUTPUTS	MODE
RE	DE	(A - B)	RO	WIODE
0	0	≥ -50mV	1	Normal
0	0	≤ -200mV	0	Normal
0	0	Inputs open	1	Normal
1	0	Χ	High-Z	Shutdown

X = Don't care.

Detailed Description

Driver

The driver accepts a single-ended, logic-level input (DI) and transfers it to a differential, RS-485 level output (A and B). Driving DE high enables the driver, while pulling DE low places the driver outputs (A and B) into a high-impedance state.

Receiver

The receiver accepts a differential, RS-485 level input (A and B), and transfers it to a single-ended, logic-level output (\overline{RO}). Pulling \overline{RE} low enables the receiver, while driving \overline{RE} high and DE low places the receiver inputs (A and B) into a high-impedance state.

Low-Power Shutdown

Force DE low and $\overline{\text{RE}}$ high to shut down the MAX3430. A time delay of 1µs prevents the device from accidentally entering shutdown due to logic skews when switching between transmit and receive modes. Holding DE low and $\overline{\text{RE}}$ high for at least 1ms guarantees that the MAX3430 enters shutdown. In shutdown, the device consumes 100µA supply current.

±80V Fault Protection

The driver outputs/receiver inputs of RS-485 devices in industrial network applications often experience voltage faults resulting from transients that exceed the -7V to +12V range specified in the EIA/TIA-485 standard. In these applications, ordinary RS-485 devices (typical absolute maximum ratings -8V to +12.5V) require costly external protection devices. To reduce system complexity and the need for external protection, the driver outputs/receiver inputs of the MAX3430 withstand voltage faults of up to ±80V with respect to ground without damage (see the *Absolute Maximum Ratings* section, Note 1). Protection is guaranteed regardless of whether the device is active, shut down, or without power.

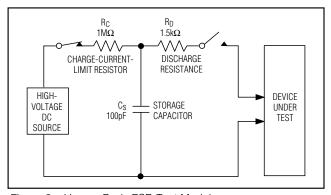


Figure 8a. Human Body ESD Test Model

True Fail-Safe

The MAX3430 uses a -50mV to -200mV differential input threshold to ensure true fail-safe receiver inputs. This threshold guarantees the receiver outputs a logic high for shorted, open, or idle data lines. The -50mV to -200mV threshold complies with the ±200mV threshold EIA/TIA-485 standard.

±12kV ESD Protection

As with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against ESD encountered during handling and assembly. The MAX3430 receiver inputs/driver outputs (A, B) have extra protection against static electricity found in normal operation. Maxim's engineers have developed state-of-the-art structures to protect these pins against ±12kV ESD without damage. After an ESD event, the MAX3430 continues working without latchup.

ESD protection can be tested in several ways. The receiver inputs are characterized for protection up to ±12kV using the Human Body Model.

ESD Test Conditions

ESD performance depends on a number of conditions. Contact Maxim for a reliability report that documents test setup, methodology, and results.

Human Body Model

Figure 8a shows the Human Body Model, and Figure 8b shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the device through a $1.5 \mathrm{k}\Omega$ resistor.

Driver Output Protection

Two mechanisms prevent excessive output current and power dissipation caused by faults or bus contention. The first, a foldback current limit on the driver output

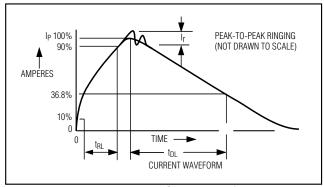


Figure 8b. Human Body Model Current Waveform

stage, provides immediate protection against short circuits over the whole common-mode voltage range. The second, a thermal shutdown circuit, forces the driver outputs into a high-impedance state if the die temperature exceeds +160°C. Normal operation resumes when the die temperature cools by +140°C, resulting in a pulsed output during continuous short-circuit conditions.

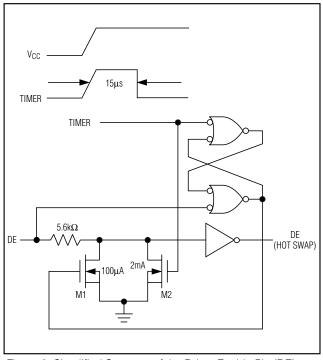


Figure 9. Simplified Structure of the Driver Enable Pin (DE)

Hot-Swap Capability Hot-Swap Inputs

Inserting circuit boards into a hot, or powered backplane may cause voltage transients on DE, RE, and receiver inputs A and B that can lead to data errors. For example, upon initial circuit board insertion, the processor undergoes a power-up sequence. During this period, the highimpedance state of the output drivers makes them unable to drive the MAX3430 enable inputs to a defined logic level. Meanwhile, leakage currents of up to 10µA from the high-impedance output, or capacitively coupled noise from VCC or GND, could cause an input to drift to an incorrect logic state. To prevent such a condition from occurring, the MAX3430 features hot-swap input circuitry on DE to safeguard against unwanted driver activation during hot-swap situations. When VCC rises, an internal pulldown circuit holds DE low for at least 10µs, and until the current into DE exceeds 200µA. After the initial power-up sequence, the pulldown circuit becomes transparent, resetting the hot-swap tolerable input.

Hot-Swap Input Circuitry

At the driver enable input (DE), there are two NMOS devices, M1 and M2 (Figure 9). When VCC ramps from 0, an internal 15µs timer turns on M2 and sets the SR latch, which also turns on M1. Transistors M2, a 2mA current sink, and M1, a 100µA current sink, pull DE to GND through a $5.6k\Omega$ resistor. M2 pulls DE to the disabled state against an external parasitic capacitance up to 100pF that may drive DE high. After 15µs, the timer deactivates M2 while M1 remains on, holding DE low against three-state leakage currents that may drive DE high. M1 remains on until an external current source overcomes the required input current. At this time, the SR latch resets M1 and turns off. When M1 turns off, DE reverts to a standard, high-impedance CMOS input. Whenever VCC drops below 1V, the input is reset.

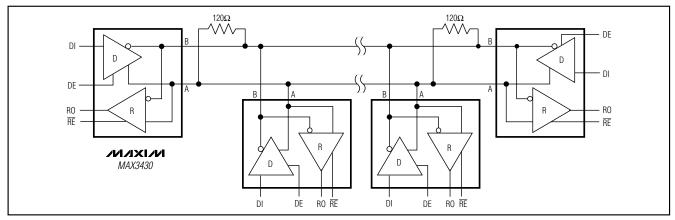


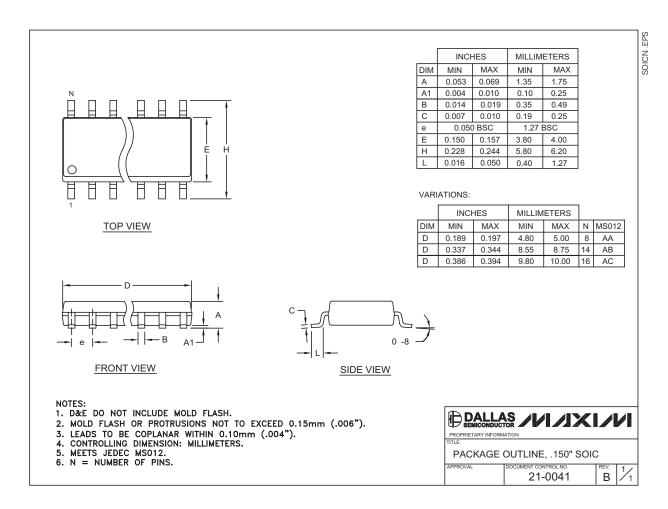
Figure 10. Typical RS-485 Network

Applications Information

128 Transceivers on the Bus

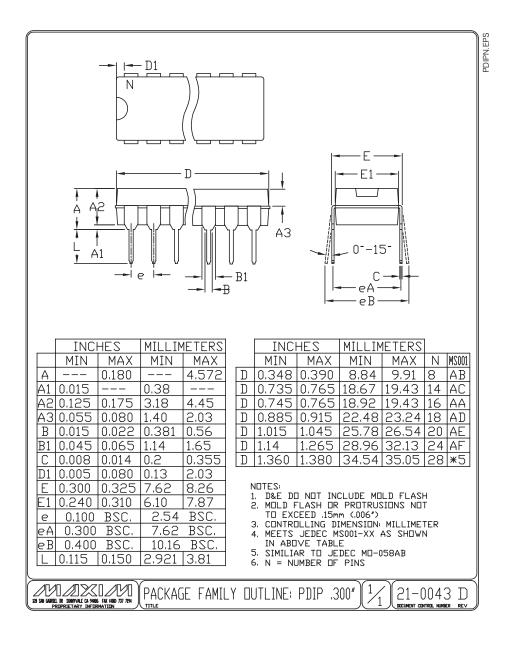
The standard RS-485 receiver input impedance is $12k\Omega$ (one-unit load), and a standard driver can drive up to 32-unit loads. The MAX3430 transceiver 1/4-unit-load receiver input impedance (48k Ω) allows up to 128 transceivers connected in parallel on one communication line. Connect any combination of these devices, and/or other RS-485 devices, for a maximum of 32 unit loads to the line.

RS-485 Applications


The MAX3430 transceiver provides bidirectional data communications on multipoint bus transmission lines. Figure 10 shows a typical network applications circuit. The RS-485 standard covers line lengths up to 4000ft. The signal line must be terminated at both ends in its characteristic impedance, and stub lengths off the main line kept as short as possible.

Chip Information

TRANSISTOR COUNT: 300 PROCESS: BICMOS


Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.