

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Features

Serially Controlled, Low-Voltage, 8-Channel/Dual 4-Channel Multiplexers

General Description

The MAX349/MAX350 are 8-channel and dual 4-channel serially controlled multiplexers (muxes). These muxes conduct equally well in either direction. On-resistance $(100\Omega \text{ max})$ is matched between switches to $16\Omega \text{ max}$ and is flat (10 Ω max) over the specified signal range.

These CMOS devices can operate continuously with dual power supplies ranging from ±2.7V to ±8V or a single supply between +2.7V and +16V. Each mux can handle rail-to-rail analog signals. The off-leakage current is only 0.1nA at +25°C or 5nA at +85°C.

Upon power-up, all switches are off and the internal shift registers are reset to zero.

The serial interface is compatible with SPI™/QSPI™ and MICROWIRE™. Functioning as a shift register, it allows data (at DIN) to be clocked in synchronously with the rising edge of clock (SCLK). The shift register's output (DOUT) enables several MAX349s or MAX350s to be daisy chained.

All digital inputs have 0.8V or 2.4V logic thresholds, ensuring both TTL and CMOS-logic compatibility when using ±5V supplies or a single +5V supply.

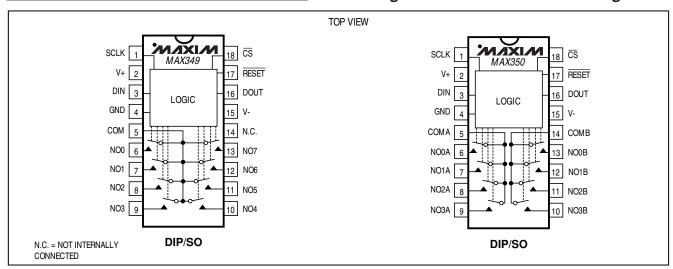
Applications

Serial Data-Acquisition Systems

Avionics Audio Signal Routing Industrial and Process-Control Systems ATE Equipment

Networking

♦ SPI/QSPI, MICROWIRE-Compatible Serial


- Interface
- **♦ 8 Separately Controlled SPST Switches**
- ♦ Single 8-to-1 Mux (MAX349) Dual 4-to-1 Mux (MAX350)
- **♦ 100**Ω Signal Paths with ±5V Supplies
- ♦ Rail-to-Rail[®] Signal Handling
- ♦ Asynchronous RESET Input
- ♦ ±2.7V to ±8V Dual Supplies +2.7V to +16V Single Supply
- → >2kV ESD Protection per Method 3015.7
- ♦ TTL/CMOS-Compatible Inputs (with +5V or ±5V) Supplies)

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX349CPN	0°C to +70°C	18 Plastic DIP
MAX349CWN	0°C to +70°C	18 Wide SO
MAX349CAP	0°C to +70°C	20 SSOP
MAX349C/D	0°C to +70°C	Dice*

Ordering Information continued at end of data sheet. *Contact factory for dice specifications.

Pin Configurations/Functional Diagrams

Pin Configurations continued at end of data sheet.

SPI and QSPI are trademarks of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corp. Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

NIXIN

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to GND	
V+	0.3V, +17V
V	17V, +0.3V
V+ to V	0.3V, +17V
SCLK, CS, DIN, DOUT, RESET	0.3V to (V+ + 0.3V)
NO, COM	(V 2V) to (V+ + 2V)
Continuous Current into Any Terminal	±30mA
Peak Current, NO or COM	
(pulsed at 1ms, 10% duty cycle)	±100mA

Continuous Power Dissipation (T _A = +70°C)	
18-Pin Plastic DIP (derate 11.11mW/°C above +70	°C)889mW
18-Pin SO (derate 9.52mW/°C above +70°C)	762mW
20-Pin SSOP (derate 8.00mW/°C above +70°C)	640mW
18-Pin CERDIP (derate 10.53mW/°C above +70°C	C)842mW
Operating Temperature Ranges	
MAX349C, MAX350C0	°C to +70°C
MAX349E, MAX350E40	°C to +85°C
MAX349M, MAX350M55°	C to +125°C
Storage Temperature Range65°	C to +150°C
Lead Temperature (soldering, 10sec)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

 $(V+ = +4.5V \text{ to } +5.5V, V- = -4.5V \text{ to } -5.5V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}\text{C.}$)

PARAMETER	SYMBOL		CONDITIONS		MIN	TYP (Note 1)	MAX	UNITS
ANALOG SWITCH	1	1						1
Analog Signal Range	VCOM, VNO			C, E, M	V-		V+	V
COM-NO On-Resistance	Ron		V+ = 5V, V- = -5V,			60	100	Ω
COIVI-NO OIT-Nesistance	HON	$V_{COM} = \pm 3V$, $I_{NO} = 1mA$		C, E, M			125] 52
COM-NO On-Resistance Match	ΔR _{ON}	V+ = 5V, V- =	-5V,	$T_A = +25^{\circ}C$			16	Ω
Between Channels (Note 2)	ΔhON	$V_{COM} = \pm 3V$, $I_{NO} = 1mA$		C, E, M			20] \(\(\)2
COM-NO On-Resistance	DEL ATIONS	V+ = 5V, V- = -	V+ = 5V, V- = -5V, INO = 1mA,				10	0
Flatness (Note 2)	RFLAT(ON)			C, E, M			15	Ω
		.,	5 5\ <i>1</i>	T _A = +25°C	-0.1	0.002	0.1	
	Novoet,	$V+ = 5.5V, V- = -5.5V, V_{COM} = -4.5V, V_{NO} = 4.5V$		C, E	-5		5	nA
NO Off-Leakage Current (Note 3)				М	-10		10	
	INO(OFF)	V+ = 5.5V, V- = -5.5V, VCOM = 4.5V, VNO = -4.5V		T _A = +25°C	-0.1	0.002	0.1	
				C, E	-5		5	
		VCON = 4.5 V,	100101 = 1101, 1100 = 1101		-10		10	
				T _A = +25°C	-0.1	0.002	0.1	
		V+ = 5.5V,	MAX349	C, E	-10		10	
		V- = -5.5V,		М	-100		100	
		V _{COM} = ±4.5V,		T _A = +25°C	-0.1	0.002	0.1	1
		$V_{NO} = \pm 4.5V$	MAX350	C, E	-5		5	1
COM Off-Leakage Current				М	-50		50	1 .
(Note 3)	ICOM(OFF)			T _A = +25°C	-0.2	0.002	0.2	nA
		V+ = 5.5V,	MAX349	C, E	-10		10	1
		V- = -5.5V,		M	-100		100	1
		VCOM =		T _A = +25°C	-0.2	0.002	0.2	†
		-4.5V, V _{NO} = 4.5V	MAX350	C, E	-5		5	†
				M	-50		50	1

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

 $(V+ = +4.5V \text{ to } +5.5V, V- = -4.5V \text{ to } -5.5V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}\text{C.}$)

COM On-Leakage Current (Note 3) V+ = 5.5V, V- = -5.5V, V- = -5	PARAMETER	SYMBOL	co	NDITIONS		MIN	TYP (Note 1)	MAX	UNITS
COM On-Leakage Current (Note 3) ICOM(ON) V = -5.5V, VCOM = VNO = ±4.5V MAX350 Ta = +25°C -0.2 0.02 0.					T _A = +25°C	-0.2	0.001	0.2	
COM On-Leakage Current (Note 3) V- = -5.5 V. VCOM = VNO = ±4.5 V. VCOM = VNO =			V+ = 5.5V.	MAX349	C, E	-10		10	1
VCOM = VNO = ±4.5V MAX350 Ta = ±25°C .0.2 0.02 0.2	COM On-Leakage Current	la a a . n			M	-100		100]
DIGITAL I/O	(Note 3)	ICOM(ON)	VCOM = VNO =		T _A = +25°C	-0.2	0.02	0.2	nA
DIN, SCLK, CS, RESET Input Voltage Logic Threshold High VIL Voltage Logic Threshold Low VIL VOLTAGE LOGIC HIGH OF LOW VIL VIL VOLTAGE LOGIC HIGH OF LOW VIL VOLTAGE LOGIC HIGH OF LOW VIL VID LOGIC HIGH OF LOW VID LODUT OLD LOGIC HIGH VOLTAGE LOGIC LOW VDOUT VID LODUT = -1.6mA C, E, M			±4.5V	MAX350	C, E	-5		5	1
DIN, SCLK, CS, RESET Input Voltage Logic Threshold High VIL VIL C, E, M 2.4 V V V V V C, E, M C, E, M C, E, M V V V V V V V V V					М	-50		50	1
Voltage Logic Threshold High VIH VIH C, E, M 2.4 V V Voltage Logic Threshold Low VIL C, E, M C, E, M V V V V V V V V V	DIGITAL I/O		1						
Voltage Logic Threshold Low VIL C, E, M 0.8 V DIN, SCLK, CS, RESET Input Current Logic High or Low IIH, IIL VDIN, VSCLK, VCS = 0.8V or 2.4V C, E, M -1 0.03 1 μA DOUT Output Voltage Logic Low VDOUT IDOUT = 0.8mA C, E, M 2.8 V+ V DOUT Output Voltage Logic Low VDOUT IDOUT = -1.6mA C, E, M 0 0.4 V SCLK Input Hysteresis SCLKHYST C, E, M 100 mV 0 0.4 V SWITCH DYNAMIC CHARACTERISTICS SCLKHYST C, E, M 100 mV 0 0 0.4 V Turn-On Time top From rising edge of CS TA = +25°C 200 275 ns ns Turn-Off Time topF From rising edge of CS TA = +25°C 90 150 ns Break-Before-Make Delay tbBM From rising edge of CS TA = +25°C 5 40 ns Charge Injection (Note 4) VCTE CL = 1nF, Vhop = 0V, Rs = 0Ω TA =		ViH			C, E, M	2.4			V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		VIL			C, E, M			0.8	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		IIH, IIL		·V	C, E, M	-1	0.03	1	μА
SCLK Input Hysteresis SCLKHYST C, E, M 100 mV SWITCH DYNAMIC CHARACTERISTICS Turn-On Time toN From rising edge of \overline{CS} $\overline{TA} = +25^{\circ}C$ 200 275 ns Turn-Off Time toFF From rising edge of \overline{CS} $\overline{TA} = +25^{\circ}C$ 90 150 ns Break-Before-Make Delay tbBM From rising edge of \overline{CS} $\overline{TA} = +25^{\circ}C$ 90 150 ns Charge Injection (Note 4) VCTE $CL = 1$ nF, $V_{NO} = 0$ V, $R_S = 0$ Ω $\overline{TA} = +25^{\circ}C$ 5 40 ns Charge Injection (Note 4) VCTE $CL = 1$ nF, $V_{NO} = 0$ V, $R_S = 0$ Ω $\overline{TA} = +25^{\circ}C$ 5 40 ns Charge Injection (Note 4) VCTE $CL = 1$ nF, $V_{NO} = 0$ V, $R_S = 0$ Ω $\overline{TA} = +25^{\circ}C$ 5 40 ns Charge Injection (Note 4) VCTE $CL = 1$ nF, $V_{NO} = 0$ V, $R_S = 0$ Ω $\overline{TA} = +25^{\circ}C$ 1 1 10 pC COM Off-Capacitance $CNO(0$ FF) $V_{COM} = 0$ ND, $f = 1$ MHz $T_A = +25^{\circ}C$ 8 pF <t< td=""><td>DOUT Output Voltage Logic High</td><td>VDOUT</td><td colspan="2">IDOUT = 0.8mA C, E, M</td><td>C, E, M</td><td>2.8</td><td></td><td>V+</td><td>V</td></t<>	DOUT Output Voltage Logic High	VDOUT	IDOUT = 0.8mA C, E, M		C, E, M	2.8		V+	V
	DOUT Output Voltage Logic Low	VDOUT	IDOUT = -1.6mA		C, E, M	0		0.4	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SCLK Input Hysteresis	SCLKHYST	C, E, M		C, E, M		100		mV
Turn-Off Time $toff$ From rising edge of \overline{CS} \overline{C} , \overline{E} , \overline{M} $\overline{A00}$ \overline{MS} M	SWITCH DYNAMIC CHARACTER	ISTICS							
Turn-Off Time $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn On Timo	ton	From riging odgo	of <u>CC</u>			200	275	ne
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Time	UN	Trom nsing edge	01 03					113
Break-Before-Make Delay t_{BBM} From rising edge of \overline{CS} $T_A = +25^{\circ}C$ 5 40 ns Charge Injection (Note 4) V_{CTE} $C_L = 1nF, V_{NO} = 0V, R_S = 0\Omega$ $T_A = +25^{\circ}C$ 1 10 pc NO Off-Capacitance $C_{NO(OFF)}$ $V_{NO} = GND, f = 1MHz$ $T_A = +25^{\circ}C$ 2 pF COM Off-Capacitance $C_{COM(OFF)}$ $V_{COM} = GND, f = 1MHz$ $T_A = +25^{\circ}C$ 2 pF Switch On-Capacitance $C_{COM(OFF)}$ $V_{COM} = V_{NO} = GND, f = 1MHz$ $T_A = +25^{\circ}C$ 2 pF Switch On-Capacitance C_{COM} $V_{COM} = V_{NO} = GND, f = 1MHz$ $V_{AB} = 100$ $V_{AB} $	Turn-Off Time	toee.	From rising edge	of CS			90		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.011	• •					300	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•					5			_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,							10	pC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	C _{NO(OFF)}							pF
Switch On-Capacitance $C(ON)$ $f = 1MHz$ $IA = +25^{\circ}C$ 8 pF $IA = +25^{\circ}C$ S $IA = +25^{\circ}C$ S S $IA = +25^{\circ}C$ S S $IA = +25^{\circ}C$ S S S $IA = +25^{\circ}C$ S	COM Off-Capacitance	CCOM(OFF)			T _A = +25°C		2		pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Switch On-Capacitance	C _(ON)	f = 1MHz	, 	T _A = +25°C		8		pF
POWER SUPPLY Power-Supply Range	Off-Isolation	V _{ISO}			T _A = +25°C		> 90		dB
Power-Supply Range $V+$, $V C$, E , M E	Channel-to-Channel Crosstalk	Vст			T _A = +25°C		< -90		dB
V + Supply Current	POWER SUPPLY		•						
V+ Supply Current I+ RESET = 0V or V+ C, E, M OIN = \overline{CS} = SCLK = 0V or V+, \overline{TA} = +25°C -1 0.1 1	Power-Supply Range	V+, V-			C, E, M	±3		±8	V
W Supply Current $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V. Supply Current	L			T _A = +25°C		7	20	
	v+ Supply Guilell	1+			1 ' '			30	- μΑ
RESET = 0V or V+ C , E, M -2 2	V. Supply Current	1				-1	0.1		
	v- Supply Cullent				C, E, M	-2		2	μΑ

TIMING CHARACTERISTICS—Dual Supplies (Figure 1)

 $(V+ = +4.5V \text{ to } +5.5V, V- = -4.5V \text{ to } -5.5V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 1)	MAX	UNITS
SERIAL DIGITAL INTERFACE	l	,					'
SCLK Frequency	fsclk		C, E, M	0		2.1	MHz
Cycle Time	tcH + tcL		C, E, M	480			ns
CS Lead Time	tcss		C, E, M	240			ns
CS Lag Time	tCSH2		C, E, M	240			ns
SCLK High Time	tcH		C, E, M	190			ns
SCLK Low Time	tcL		C, E, M	190			ns
Minimum Data Setup Time	tDS		C, E, M		17	100	ns
Data Hold Time	tDH		C, E, M	0	-17		ns
DIN Data Valid after Falling SCLK	tno	50% of SCLK to 10% of DOUT,	T _A = +25°C		85		ns
(Note 4)	tDO	C _L = 10pF	C, E, M			400	
Rise Time of DOUT (Note 4)	tDR	20% of V+ to 70% of V+, C _L = 10pF	C, E, M			100	ns
Allowable Rise Time at DIN, SCLK (Note 4)	tscr	20% of V+ to 70% of V+, C _L = 10pF	C, E, M			2	μs
Fall Time of DOUT (Note 4)	tDF	20% of V+ to 70% of V+, C _L = 10pF	C, E, M			100	ns
Allowable Fall Time at DIN, SCLK (Note 4)	tscf	20% of V+ to 70% of V+, C _L = 10pF	C, E, M			2	μs
RESET Minimum Pulse Width	t _{RW}		T _A = +25°C		70		ns

- Note 1: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
- Note 2: ΔR_{ON} = R_{ON(max)} R_{ON(min)}. On-resistance match between channels and on-resistance flatness are guaranteed only with specified voltages. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.
- Note 3: Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at room temp.
- Note 4: Guaranteed by design.
- Note 5: Leakage testing at single supply is guaranteed by testing with dual supplies.
- Note 6: See Figure 6. Off-isolation = $20\log_{10} V_{COM}/V_{NO}$, V_{COM} = output. NO = input to off switch.
- Note 7: Between any two switches. See Figure 3.

ELECTRICAL CHARACTERISTICS—Single +5V Supply

 $(V+ = +4.5V \text{ to } +5.5V, V- = 0V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C.})$

PARAMETER	SYMBOL	Co	ONDITIONS		MIN	TYP (Note 1)	MAX	UNITS
ANALOG SWITCH		1		1				
Analog Signal Range	VCOM, VNO			C, E, M	V-		V+	V
COM-NO On-Resistance	Dov	V+ = 5V, V _{COM} =	= 3.5V,	T _A = +25°C		125	175	
COM-NO On-Resistance	Ron	I _{NO} = 1mA		C, E, M			225	Ω
	hiera	V 5 5 V V 4 5 V		T _A = +25°C C, E	-0.1	0.002	0.1	
		V+ = 5.5V, VCON $V_{NO} = 0V$	$V_{+} = 5.5V, V_{COM} = 4.5V,$		-5		5]
NO Off-Leakage Current		110 01		М	-10		10	nA
(Notes 4, 5)	INO(OFF)	\/.	. 0\/	T _A = +25°C	-0.1	0.002	0.1	
		$V_{+} = 5.5V, V_{COM}$ $V_{NO} = 4.5V$	1 = UV,	C, E	-5		5	
		110 - 1.01		М	-10		10]
		V+ = 5.5V, V _{COM} = 4.5V,		T _A = +25°C	-0.1	0.002	0.1	
			MAX349	C, E	-10		10	1
				М	-100		100	1
		$V_{NO} = 4.5V,$ $V_{NO} = 0V$		T _A = +25°C	-0.1	0.002	0.1]
		110	MAX350	C, E	-5		5	nA
COM Off-Leakage Current	looworn			М	-50		50	
(Notes 4, 5)	ICOM(OFF)			T _A = +25°C	-0.2	0.002	0.2	
			MAX349	C, E	-10		10	
		V+ = 5.5V, $V_{COM} = 0V,$		М	-100		100	
		$V_{NO} = 0V$, $V_{NO} = 4.5V$		T _A = +25°C	-0.2	0.002	0.2	
		110	MAX350	C, E	-5		5	
				М	-50		50	1
			MAX349	T _A = +25°C	-0.2	0.01	0.2	
				C, E	-10		10	
COM On-Leakage Current	la avvavo	V+ = 5.5V,		М	-100		100]
(Notes 4, 5)	ICOM(ON)	V _{COM} = V _{NO} = ±4.5V		T _A = +25°C	-0.2	0.02	0.2	- nA
			MAX350	C, E	-5		5	1
				М	-50		50	1
DIGITAL I/O			<u>'</u>					•
DIN, SCLK, CS, RESET Input Voltage Logic Threshold High	V _{IH}			C, E, M	2.4			V
DIN, SCLK, CS, RESET Input Voltage Logic Threshold Low	VIL			C, E, M			0.8	V
DIN, SCLK, CS, RESET Input Current Logic High or Low	I _{IH} , I _{IL}	V _{DIN} , V _{SCLK} , V _{CS} = 0.8V or 2.	4V	C, E, M	-1	0.03	1	μΑ
DOUT Output Voltage Logic High	V _{DOUT}	I _{DOUT} = 0.8mA		C, E, M	2.8		V+	V
DOUT Output Voltage Logic Low	V _{DOUT}	I _{DOUT} = -1.6mA		C, E, M	0		0.4	V
SCLK Input Hysteresis	SCLKHYST	1		C, E, M		100		mV
POWER SUPPLY		ı						
		$DIN = \overline{CS} = SCLK = 0V \text{ or } V_+, T$		T _A = +25°C		7	20	
V+ Supply Current	I+	RESET = 0V or V		C, E, M			30	⊢ μΑ

ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)

 $(V+ = +4.5V \text{ to } +5.5V, V- = 0V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}\text{C.}$)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 1)	MAX	UNITS
SWITCH DYNAMIC CHARACTER	RISTICS						
Turn-On Time	ton	From rising edge of $\overline{\text{CS}}$	T _A = +25°C		160	400	ns
	ton	From fishing edge of C3	C, E, M			500	1115
Turn-Off Time	toff	From rising edge of $\overline{\text{CS}}$	T _A = +25°C		60	200	ns
			C, E, M			300	
Break-Before-Make Delay	tBBM	From rising edge of $\overline{\text{CS}}$	T _A = +25°C		15		ns
Charge Injection (Note 4)	VCTE	$C_L = 1nF$, $V_{NO} = 0V$, $R_S = 0\Omega$	$T_A = +25^{\circ}C$		1	10	рC
Off-Isolation (Note 6)	V _{ISO}	$R_L = 50\Omega$, $C_L = 15pF$, $V_{NO} = 1V_{RMS}$, $f = 100kHz$	T _A = +25°C		> 90		dB
Channel-to-Channel Crosstalk (Note 7)	Vст	$R_L = 50\Omega$, $C_L = 15pF$, $V_{NO} = 1V_{RMS}$, $f = 100kHz$	T _A = +25°C		< -90		dB

TIMING CHARACTERISTICS—Single +5V Supply (Figure 1)

 $(V+ = +4.5V \text{ to } +5.5V, V- = 0V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 1)	MAX	UNITS
SERIAL DIGITAL INTERFACE							
SCLK Frequency	fSCLK		C, E, M	0		2.1	MHz
Cycle Time (Note 4)	tcH + tcL		C, E, M	480			ns
CS Lead Time (Note 4)	tcss		C, E, M	240			ns
CS Lag Time (Note 4)	tCSH2		C, E, M	240			ns
SCLK High Time (Note 4)	tсн		C, E, M	190			ns
SCLK Low Time (Note 4)	tcL		C, E, M	190			ns
Minimum Data Setup Time (Note 4)	tDS		C, E, M		17	100	ns
Data Hold Time (Note 4)	tDH		C, E, M		-17		ns
DIN Data Valid after Falling SCLK	tpo	50% of SCLK to 10% of	T _A = +25°C		85		ns
(Note 4)	ibo	DOUT, C _L = 10pF	C, E, M			400	115
Rise Time of DOUT (Note 4)	tDR	20% of V+ to 70% of V+, C _L = 10pF	C, E, M			100	ns
Allowable Rise Time at DIN, SCLK (Note 4)	tscr	20% of V+ to 70% of V+, C _L = 10pF	C, E, M			2	μs
Fall Time of DOUT (Note 4)	tDF	20% of V+ to 70% of V+, C _L = 10pF	C, E, M			100	ns
Allowable Fall Time at DIN, SCLK (Note 4)	tscf	20% of V+ to 70% of V+, C _L = 10pF	C, E, M			2	μs
RESET Minimum Pulse Width	t _{RW}		T _A = +25°C		70		ns

- Note 1: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
- Note 2: ΔR_{ON} = R_{ON(max)} R_{ON(min)}. On-resistance match between channels and on-resistance flatness are guaranteed only with specified voltages. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.
- Note 3: Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at room temp.
- Note 4: Guaranteed by design.
- Note 5: Leakage testing at single supply is guaranteed by testing with dual supplies.
- Note 6: See Figure 6. Off-isolation = $20\log_{10} V_{COM}/V_{NO}$, V_{COM} = output. NO = input to off switch.
- Note 7: Between any two switches. See Figure 3.

ELECTRICAL CHARACTERISTICS—Single +3V Supply

 $(V+ = +3.0V \text{ to } +3.6V, V- = 0V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C.})$

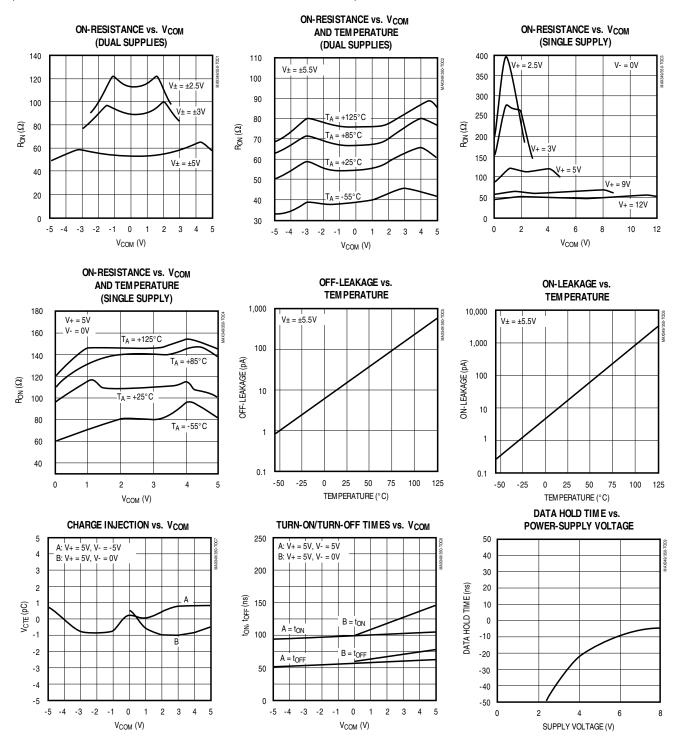
PARAMETER	SYMBOL	col	NDITIONS		MIN	TYP (Note 1)	MAX	UNITS
ANALOG SWITCH	II.	1		1				
Analog Signal Range	V _{COM} , V _{NO}			C, E, M	V-		V+	V
COM-NO On-Resistance	Ron	$V_{+} = 3.0V, V_{COM} = 1.5V,$		T _A = +25°C		270	500	Ω
CON-NO On-nesistance	HON	INO = 1mA	I _{NO} = 1mA				600] 52
				T _A = +25°C	-0.1	0.002	0.1	
			MAX349	C, E	-10		10	
		$V_{+} = 3.6V,$ $V_{COM} = 3V,$		М	-100		100	
		$V_{NO} = 0V$		T _A = +25°C	-0.1	0.002	0.1	
	looworr		MAX350	C, E	-5		5	
COM Off-Leakage Current				М	-50		50	1
(Notes 4, 5)	ICOM(OFF)			T _A = +25°C	-0.2	0.002	0.2	nA
		V+ = 3.6V, VCOM = 0V, V _{NO} = 3V	MAX349	C, E	-10		10	1
				М	-100		100	-
				T _A = +25°C	-0.2	0.002	0.2	
		110 - 51	MAX350	C, E	-5		5	
				М	-50		50	1
				T _A = +25°C	-0.2	0.01	0.2	nA
			MAX349	C, E	-10		10	
COM On-Leakage Current	ICOM(ON)	V+ = 3.6V,		М	-100		100	
(Notes 4, 5)		V _{COM} = V _{NO} = 3V		$T_A = +25^{\circ}C$	-0.2	0.02	0.2	
			MAX350	C, E	-5		5	
				М	-50		50	
DIGITAL I/O	1	,	•					
DIN, SCLK, CS, RESET Input Voltage Logic Threshold High	ViH			C, E	2.4			V
DIN, SCLK, CS, RESET Input Voltage Logic Threshold Low	VIL			C, E			0.8	V
DIN, SCLK, CS, RESET Input Current Logic High or Low	I _{IH} , I _{IL}	V _{DIN} , V _{SCLK} , V _{CS} = 0.8V or 2.4	V	C, E	-1	0.03	1	μА
DOUT Output Voltage Logic High	VDOUT	IDOUT = 0.1mA		C, E, M	2.8		V+	V
DOUT Output Voltage Logic Low	VDOUT	IDOUT = -1.6mA		C, E, M	0		0.4	V
SCLK Input Hysteresis	SCLKHYST			C, E, M		100		mV
POWER SUPPLY	•	1		1				-
V. Supply Current	1.			T _A = +25°C		6	20	^
V+ Supply Current				C, E, M			30	μΑ

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

 $(V+ = +3.0 \text{V to} +3.6 \text{V}, V- = 0 \text{V}, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25 ^{\circ}\text{C.})$

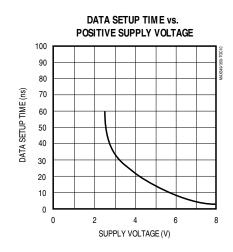
PARAMETER	SYMBOL	CONDITIONS			TYP (Note 1)	MAX	UNITS		
SWITCH DYNAMIC CHARACTERISTICS									
Turn-On Time (Note 4)	ton	From rising edge of $\overline{\text{CS}}$	T _A = +25°C		275	600	ns		
Turr-Oir filine (Note 4)	ton		C, E, M			700	1 115		
Turn-Off Time (Note 4)	tOFF	From rising edge of $\overline{\text{CS}}$	$T_A = +25^{\circ}C$		120	300	ns		
			C, E, M			400			
Break-Before-Make Delay (Note 4)	t _{BBM}	From rising edge of $\overline{\text{CS}}$	T _A = +25°C	5	15		ns		
Charge Injection (Note 4)	VCTE	$C_L = 1nF, V_{NO} = 0V, R_S = 0\Omega$	T _A = +25°C		1	10	рC		
Off-Isolation (Note 6)	Viso	$R_L = 50\Omega$, $C_L = 15pF$, $V_{NO} = 1V_{RMS}$, $f = 100kHz$	T _A = +25°C		> 90		dB		
Channel-to-Channel Crosstalk (Note 7)	Vст	$R_L = 50\Omega$, $C_L = 15pF$, $V_{NO} = 1V_{RMS}$, $f = 100kHz$	T _A = +25°C		< -90		dB		

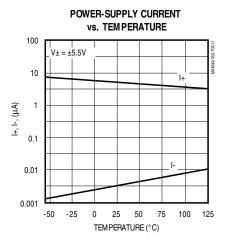
TIMING CHARACTERISTICS—Single +3V Supply (Figure 1)

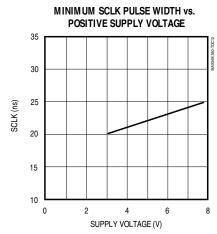

 $(V+ = +3.0 \text{V to} +3.6 \text{V}, V- = 0 \text{V}, T_A = T_{MIN} \text{ to} T_{MAX}, \text{ unless otherwise noted}$. Typical values are at $T_A = +25 ^{\circ} \text{C.}$)

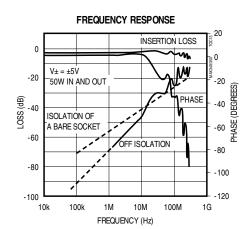
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 1)	MAX	UNITS
SERIAL DIGITAL INTERFACE							
SCLK Frequency	fsclk		C, E, M	0		2.1	MHz
Cycle Time (Note 4)	tch + tcl		C, E, M	480			ns
CS Lead Time (Note 4)	tcss		C, E, M	240			ns
CS Lag Time (Note 4)	tCSH2		C, E, M	240			ns
SCLK High Time (Note 4)	tсн		C, E, M	190			ns
SCLK Low Time (Note 4)	tcL		C, E, M	190			ns
Minimum Data Setup Time (Note 4)	t _{DS}		C, E, M		38	120	ns
Data Hold Time (Note 4)	tDH		C, E, M		-38		ns
DIN Data Valid after Falling SCLK	tpo	50% of SCLK to 10% of	T _A = +25°C		150		ns
(Note 4)	סטי	DOUT, C _L = 10pF	C, E, M			400	115
Rise Time of DOUT (Note 4)	t _{DR}	20% of V+ to 70% of V+, C _L = 10pF	C, E, M			100	ns
Allowable Rise Time at DIN, SCLK (Note 4)	tscr	20% of V+ to 70% of V+, C _L = 10pF	C, E, M			2	μѕ
Fall Time of DOUT (Note 4)	tDF	20% of V+ to 70% of V+, C _L = 10pF	C, E, M			100	ns
Allowable Fall Time at DIN, SCLK (Note 4)	tscf	20% of V+ to 70% of V+, C _L = 10pF	C, E, M			2	μs
RESET Minimum Pulse Width (Note 4)	t _{RW}		T _A = +25°C		105		ns

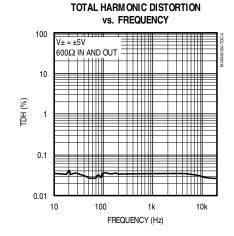
- Note 1: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
- Note 2: ΔR_{ON} = R_{ON(max)} R_{ON(min)}. On-resistance match between channels and on-resistance flatness are guaranteed only with specified voltages. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.
- Note 3: Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at room temp.
- Note 4: Guaranteed by design.
- Note 5: Leakage testing at single supply is guaranteed by testing with dual supplies.
- Note 6: See Figure 6. Off-isolation = $20\log_{10} V_{COM}/V_{NO}$, V_{COM} = output. NO = input to off switch.
- Note 7: Between any two switches. See Figure 3.


Typical Operating Characteristics


 $(V+ = +5V, V- = -5V, GND = 0V, T_A = +25^{\circ}C, unless otherwise noted.)$




Typical Operating Characteristics (continued)


 $(V+ = +5V, V- = -5V, GND = 0V, T_A = +25^{\circ}C, unless otherwise noted.)$

Pin Description

	PI	IN					
MAX349		MAX	(350	NAME	FUNCTION		
DIP/SO	SSOP	DIP/SO	SSOP				
1	1	1	1	SCLK	Serial Clock Digital Input		
2	2	2	2	V+	Positive Analog Supply Voltage Input		
3	3	3	3	DIN	Serial Data Digital Input		
4	4	4	4	GND	Ground. Connect to digital ground. (Analog signals have no ground reference; they are limited to V+ and V)		
5	5	_	_	COM	Common Analog Switch (mux output)		
6–13	6–9, 11–14	_	_	NO0-NO7	Normally Open Analog Switch Inputs 0-7		
_	_	5	5	COMA	Common Analog Switch "A" (mux output)		
_	_	6–9	6–9	NO0A-NO3A	Normally Open Analog Switch "A" Inputs 0-3		
_	_	10–13	11–14	NO3B-NO0B	Normally Open Analog Switch "B" Inputs 0-3		
_	_	14	15	COMB	Common Analog Switch "B" (mux output)		
14	10, 15, 16	_	10, 16	N.C.	No Connect, not internally connected.		
15	17	15	17	V-	Negative Analog Supply Voltage Input. Connect to GND for single-supply operation.		
16	18	16	18	DOUT	Serial Data Digital Output. Output high is V+.		
17	19	17	19	RESET	RESET Input. Connect to logic high (or V+) for normal operation. Drive low to set all switches off and set internal shift registers to 0.		
18	20	18	20	CS	Chip-Select Digital Input (Figure 1)		

Note: NO and COM pins are identical and interchangeable. Either may be considered as an input or an output; signals pass equally well in either direction.

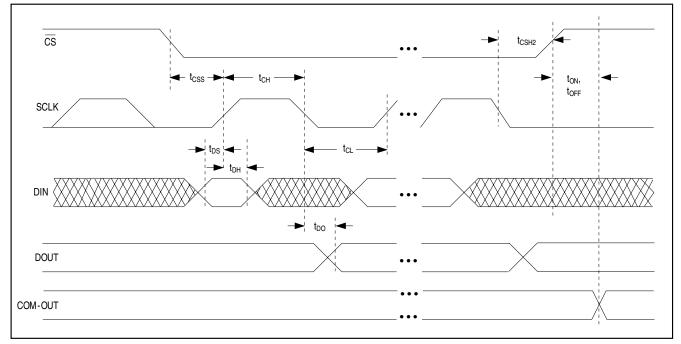


Figure 1. Timing Diagram

Detailed Description

Basic Operation

The MAX349/MAX350 are 8-channel and dual 4-channel, serially controlled multiplexers (muxes). These muxes are unusual in that any, all, or none of the input channels can be directed to the output. All switches are bidirectional, so inputs and outputs are interchangeable. When multiple inputs are connected to an output, they are also connected to one another, separated from each other only by the on-resistance of two switches. Both parts require eight bits of serial data to set all eight switches.

Serial Digital Interface

The MAX349/MAX350 interface can be thought of as an 8-bit shift register controlled by $\overline{\text{CS}}$ (Figure 2). While $\overline{\text{CS}}$ is low, input data appearing at DIN is clocked into the shift register synchronously with SCLK's rising edge. The input is an 8-bit word, each bit controlling one of the eight switches (Tables 1 and 2). DOUT is the output of the shift register, with data appearing synchronously with SCLK's falling edge. Data at DOUT is simply the input data delayed by eight clock cycles.

When shifting the input data, D7 is the first bit in and out of the shift register. While shifting data, the switches remain in their previous configuration. When the eight bits of data have been shifted in, \overline{CS} is driven high. This updates the new switch configuration and inhibits further data from entering the shift register. Transitions at DIN and SCLK have no effect when CS is high, and DOUT holds the first input bit (D7) at its output.

More or fewer than eight clock cycles can be entered during the \overline{CS} low period. When this happens, the shift register contains only the last eight serial data bits, regardless of when they were entered. On the rising edge of \overline{CS} , all switches are set to the corresponding states.

The MAX349/MAX350 three-wire serial interface is compatible with SPI, QSPI, and MICROWIRE standards. If interfacing with a Motorola processor serial interface, set CPOL = 0. The MAX349/MAX350 are considered to be slave devices (Figures 2 and 3). At power-up, the shift register contains all zeros, and all switches are off.

The latch that drives the analog switch is updated on the rising edge of $\overline{\text{CS}}$, regardless of SCLK's state. This meets all SPI and QSPI requirements.

Daisy-Chaining

For a simple interface using several MAX349s and MAX350s, "daisy-chain" the shift registers as shown in Figure 5. The $\overline{\text{CS}}$ pins of all devices are connected,

and a stream of data is shifted through the MAX349s or MAX350s in series. When \overline{CS} is brought high, all switches are updated simultaneously. Additional shift registers may be included anywhere in series with the MAX349/MAX350 data chain. Note that the DOUT high level is V+, which may not be compatible with TTL/CMOS devices if V+ differs from the logic supply for these other devices.

Addressable Serial Interface

When several serial devices are configured as slaves, addressable by the processor, \overline{DIN} pins of each decode logic individually control \overline{CS} of each slave device. When a slave is selected, its \overline{CS} pin is driven low, data is shifted in, and \overline{CS} is driven high to latch the data. Typically, only one slave is addressed at a time. DOUT is not used.

_Applications Information

8x1 Multiplexer

The MAX349 can be programmed normally, with only one channel selected for every eight clock pulses, or it can be programmed in a fast mode, where channel changing occurs on each clock pulse.

In fast mode, select the channels by sending a single high pulse (corresponding to the selected channel) at DIN, and a corresponding $\overline{\text{CS}}$ low pulse for every eight clock pulses. As SCLK clocks this through the register, each switch sequences one channel at a time, starting with channel 0.

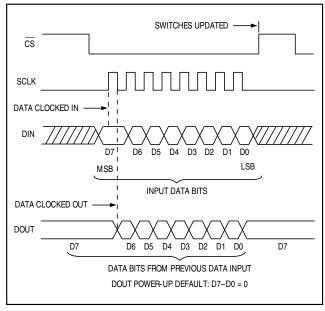


Figure 2. 3-Wire Interface Timing

Table 1. MAX349 Serial-Interface Switch Programming

RESET	DATA BITS								MAYO40 FUNOTION
NESEI	D7	D6	D5	D4	D3	D2	D1	D0	MAX349 FUNCTION
0	Х	Х	Х	Х	Х	Х	Х	Х	All switches open, D7–D0 = 0
1	0	0	0	0	0	0	0	0	All switches open, D7–D0 = 0
1	1	1	1	1	1	1	1	1	All switches closed to COM, D7–D0 = 1
1	0	Х	Х	Х	Х	Х	Х	Х	Switch 7 open (off)
1	1	Х	Х	Х	Х	Х	Х	Х	Switch 7 closed to COM
1	Х	0	Х	Х	Х	Х	Х	Х	Switch 6 open (off)
1	Х	1	Х	Х	Х	Х	Х	Х	Switch 6 closed to COM
1	Х	Х	0	Х	Х	Х	Х	Х	Switch 5 open (off)
1	Х	Х	1	Х	Х	Х	Х	Х	Switch 5 closed to COM
1	Х	Х	Х	0	Х	Х	Х	Х	Switch 4 open (off)
1	Х	Х	Х	1	Х	Х	Х	Х	Switch 4 closed to COM
1	Х	Х	Х	Х	0	Х	Х	Х	Switch 3 open (off)
1	Х	Х	Х	Х	1	Х	Х	Х	Switch 3 closed to COM
1	Х	Х	Х	Х	Х	0	Х	Х	Switch 2 open (off)
1	Х	Х	Х	Х	Х	1	Х	Х	Switch 2 closed to COM
1	Х	Х	Х	Х	Х	Х	0	Х	Switch 1 open (off)
1	Х	Х	Х	Х	Х	Х	1	Х	Switch 1 closed to COM
1	Х	Х	Х	Х	Х	Х	Х	0	Switch 0 open (off)
1	Х	Х	Х	Х	Х	Х	Х	1	Switch 0 closed to COM

Table 2. MAX350 Serial-Interface Switch Programming

RESET				MAYOSO FUNCTION					
NESEI	D7	D6	D5	D4	D3	D2	D1	D0	MAX350 FUNCTION
0	Х	Х	Х	Х	Х	Х	Х	Х	All switches open, D7–D0 = 0
1	0	0	0	0	0	0	0	0	All switches open, D7–D0 = 0
1	1	1	1	1	1	1	1	1	All "A" switches closed to COMA; All "B" switches closed to COMB, D7–D0 = 1
1	0	Х	Х	Х	Х	Х	Х	Х	Switch NO0B open (off)
1	1	Х	Х	Х	Х	Х	Х	Х	Switch NO0B closed
1	Х	0	Х	Х	Х	Х	Х	Х	Switch NO1B open (off)
1	Х	1	Х	Х	Х	Х	Х	Х	Switch NO1B closed
1	Х	Х	0	Х	Х	Х	Х	Х	Switch NO2B open (off)
1	Х	Х	1	Х	Х	Х	Х	Х	Switch NO2B closed
1	Х	Х	Х	0	Х	Х	Х	Х	Switch NO3B open (off)
1	Х	Х	Х	1	Х	Х	Х	Х	Switch NO3B closed
1	Х	Х	Х	Х	0	Х	Х	Х	Switch NO3A open (off)
1	Х	Х	Х	Х	1	Х	Х	Х	Switch NO3A closed
1	Х	Х	Х	Х	X	0	Х	X	Switch NO2A open (off)
1	Х	Х	Х	Х	Х	1	Х	X	Switch NO2A closed
1	Х	Х	Х	Х	Х	Х	0	Х	Switch NO1A open (off)
1	Х	X	Х	Х	Х	Х	1	Х	Switch NO1A closed
1	Х	Х	Х	Х	Х	Х	Х	0	Switch NO0A open (off)
1	X	X	Х	Х	X	Х	Х	1	Switch NO0A closed

X = Don't care. Data bit D7 is first bit in; data bit D0 is last in.

Dual, Differential 4-Channel Multiplexer

The MAX350 can be programmed normally, with only one differential channel selected for every eight clock pulses, or it can be programmed in a fast mode, where channel changing occurs on each clock pulse.

In fast mode, select the channels by sending two high pulses, spaced four clock pulses apart (corresponding to the two selected channels) at DIN, and a corresponding \overline{CS} low pulse for each of the first eight clock pulses. As SCLK clocks this through the register, each switch sequences one differential channel at a time, starting with channel 0. Repeat this process for subse-

quent channel sequencing after the first eight bits have been sent. For even faster channel sequencing, send only one DIN high pulse and one CS low pulse for every four clock pulses.

Reset Function

RESET is the internal reset pin. It is usually connected to a logic signal or V+. Drive RESET low to open all switches and set the contents of the internal shift register to zero simultaneously. When RESET is high, the part functions normally and DOUT is sourced from V+. RESET must not be driven beyond V+ or GND.

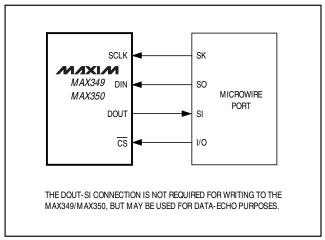


Figure 3. Connections for MICROWIRE

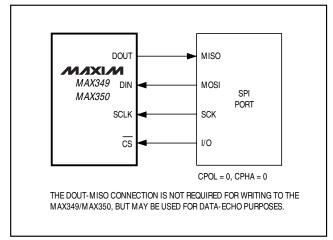


Figure 4. Connections for SPI and QSPI

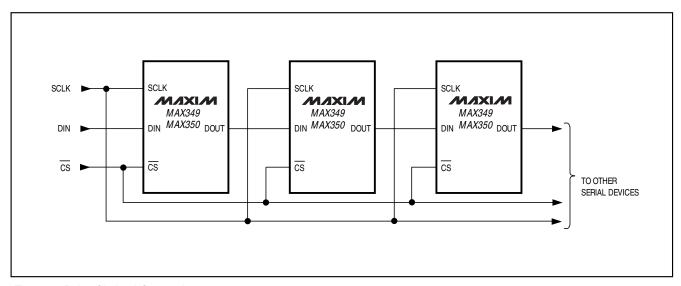


Figure 5. Daisy-Chained Connection

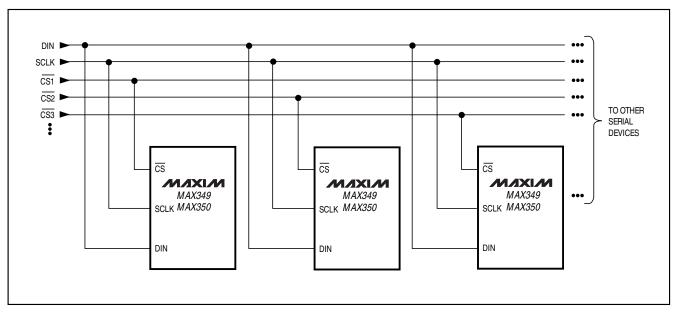


Figure 6. Addressable Serial Interface

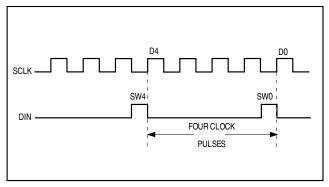


Figure 7. Differential Multiplexer Input Control

Power-Supply Considerations

Overview

The MAX349/MAX350 construction is typical of most CMOS analog switches. It has three supply pins: V+, V- and GND. V+ and V- are used to drive the internal CMOS switches, and they set the limits of the analog voltage on any switch. Reverse ESD-protection diodes are internally connected between each analog signal pin and both V+ and V-. If any analog signal exceeds V+ or V-, one of these diodes will conduct. During normal operation, these (and other) reverse-biased ESD diodes leak, forming the only current drawn from V+ or V-.

Virtually all the analog leakage current is through the ESD diodes. Although the ESD diodes on a given signal pin are identical, and therefore fairly well balanced, they are reverse biased differently. Each is biased by either V+ or V- and the analog signal. This means their leakages vary as the signal varies. The *difference* in the two diode leakages to the V+ and V- pins constitutes the analog signal-path leakage current. All analog leakage current flows to the supply terminals, not to the other switch terminal. This is why both sides of a given switch can show leakage currents of either the same or opposite polarity.

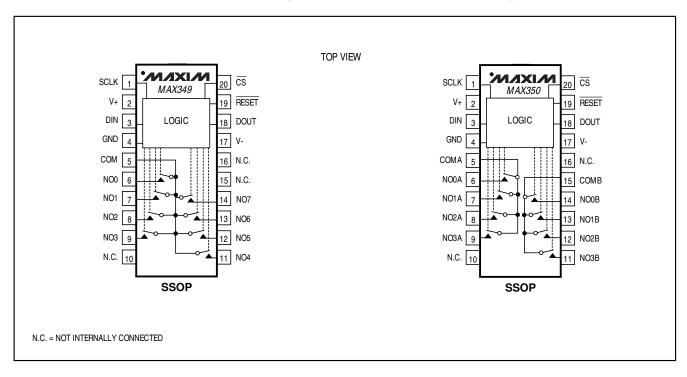
There is no connection between the analog signal paths and GND.

V+ and GND power the internal logic and logic-level translators, and set both the input and output logic limits. The logic-level translators convert the logic levels to switched V+ and V- signals to drive the analog signal gates. This drive signal is the only connection between the logic supplies (and signals) and the analog supplies. V+ and V- have ESD-protection diodes to GND. The logic-level inputs and output have ESD protection to V+ and to GND.

The logic-level thresholds are CMOS and TTL compatible when V+ is +5V. As V+ rises, the threshold increases slightly. Therefore, when V+ reaches +12V, the threshold is about 3.1V; above the TTL-guaranteed high-level minimum of 2.8V, but still compatible with CMOS outputs.

Bipolar Supplies

The MAX349/MAX350 operate with bipolar supplies from ± 3.0 V and ± 8 V. The V+ and V- supplies need not be symmetrical, but their sum cannot exceed the absolute maximum rating of 17V. Do not connect the MAX349/MAX350 V+ to +3V and connect the logic-level pins to TTL logic-level signals. This exceeds the absolute maximum ratings and can damage the part and/or external circuits.

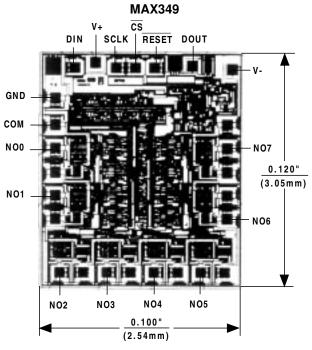

Single Supply

The MAX349/MAX350 operate from single supplies between +3V and +16V when V- is connected to GND. All of the bipolar precautions must be observed.

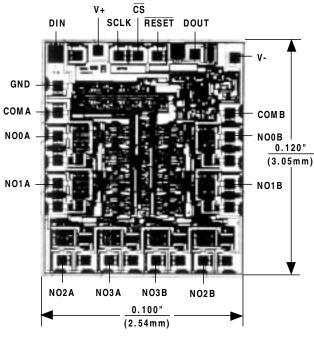
High-Frequency Performance

In 50Ω systems, signal response is reasonably flat up to 50MHz (see *Typical Operating Characteristics*). Above 20MHz, the on response has several minor peaks that are highly layout dependent. The problem is not turning the switch on, but turning it off. The off-state switch acts like a capacitor and passes higher frequencies with less attenuation. At 10MHz, off-isolation is about -45dB in 50Ω systems, becoming worse (approximately 20dB per decade) as frequency increases. Higher circuit impedances also make off-isolation worse. Adjacent channel attenuation is about 3dB above that of a bare IC socket, and is entirely due to capacitive coupling.

Pin Configurations/Functional Diagrams (continued)

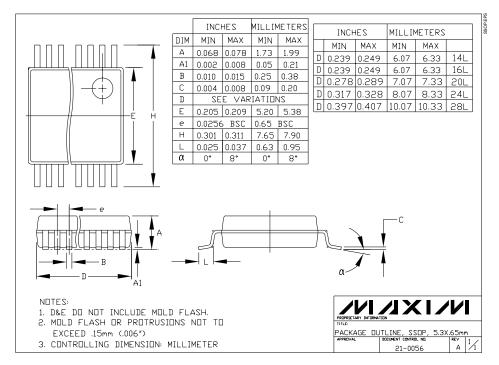

_____ /N/XI/W

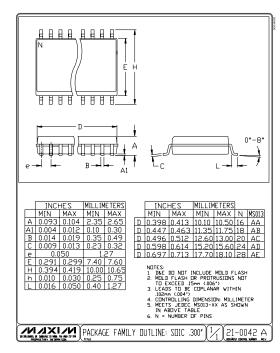
Ordering Information (continued)


PART	TEMP. RANGE	PIN-PACKAGE
MAX349EPN	-40°C to +85°C	18 Plastic DIP
MAX349EWN	-40°C to +85°C	18 Wide SO
MAX349EAP	-40°C to +85°C	20 SSOP
MAX349MJN	-55°C to +125°C	18 CERDIP**
MAX350CPN	0°C to +70°C	18 Plastic DIP
MAX350CWN	0°C to +70°C	18 Wide SO
MAX350CAP	0°C to +70°C	20 SSOP
MAX350C/D	0°C to +70°C	Dice*
MAX350EPN	-40°C to +85°C	18 Plastic DIP
MAX350EWN	-40°C to +85°C	18 Wide SO
MAX350EAP	-40°C to +85°C	20 SSOP
MAX350MJN	-55°C to +125°C	18 CERDIP**

- * Contact factory for dice specifications.
- ** Contact factory for availability.

Chip Topographies




MAX350

TRANSISTOR COUNT: 500 SUBSTRATE CONNECTED TO V+.

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

20 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600