

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

The MAX3612 evaluation kit (EV kit) is a fully assembled and tested demonstration board that simplifies evaluation of the MAX3612 low-jitter clock generator. The EV kit includes an on-board 25MHz crystal and switches for selecting different modes of operation. The reference inputs and clock outputs use SMA connectors and are AC-coupled to simplify connection to test equipment.

EV Kit Contents

♦ MAX3612 EV Kit Board

Features

- ◆ Fully Assembled and Tested
- ♦ On-Board 25MHz Crystal
- **♦** Switches for Selecting Modes of Operation
- ♦ SMA Connectors and AC-Coupled Clock I/Os

Ordering Information

PART	TYPE
MAX3612EVKIT+	EV Kit

⁺Denotes lead(Pb)-free and RoHS compliant.

Component List

DESIGNATION	QTY	DESCRIPTION
C1–C10, C14, C15, C16, C18– C24, C27–C32, C35, C36, C37	29	0.1µF ±10% ceramic capacitors (0402)
C11	1	2.2µF ±10% ceramic capacitor (0603)
C12	1	0.1µF ±10% ceramic capacitor (0603)
C13	1	33µF ±10% tantalum capacitor (B case) AVX TAJB336K010R
C17	1	27pF ±5% ceramic capacitor (0402)
C25	1	33pF ±5% ceramic capacitor (0402)
C26	1	10μF ±20% ceramic capacitor (0603)
J1–J9, J11, J13–J20, J22, J23, J24	21	SMA connectors, edge-mount, tab-contact Johnson 142-0701-851
J10, J12	2	Test points Keystone 5000
L1, L4, L5, L8, L9, L11, L13, L16, L17, L20, L21, L24, L25, L28, L29, L32, L35, L36	18	Ferrite beads (0402) Murata BLM15HD102SN1

DESIGNATION	QTY	DESCRIPTION
L2, L3, L6, L7, L10, L12, L14, L15, L18, L19, L22, L23, L26, L27, L30, L31, L33, L34	18	4.7µH ±10% inductors (0805) Murata LQM21NN4R7K10
R1–R10, R12, R15–R18, R20, R21, R22	18	150Ω ±1% resistors (0402)
R11	1	49.9Ω ±1% resistor (0402)
R13	1	10.5Ω ±1% resistor (0402)
S1, S2, S9, S11, S13–S17	9	Switches, SP3T, slide Alps SSS211900
S3, S6, S18–S21	6	Switches, SPDT, slide E-Switch EG1218
TP1, TP2	2	Test points Keystone 5000
U1	1	Clock generator (48 TQFN-EP*) Microsemi MAX3612ETM+
U2	1	25MHz crystal NDK EXS00A-AT00429
_	1	PCB: MAX3612 EVALUATION BOARD+ REV B

^{*}EP = Exposed pad.

Quick Start

1) Set the switches to the following settings to generate a 156.25MHz LVDS output from the 25MHz crystal reference:

IN_SEL = XO

 $PLL_BP = LOW$

DM = LOW

DF = LOW

DA = LOW

DB = LOW

DC = LOW

 $QA_CTRL1 = LVDS$

QA_CTRL2 = DISABLED

QB_CTRL = DISABLED

QC_CTRL = DISABLED

QA_TERM1 = LVDS

QA_TERM2 = LVDS

 $QB_TERM = LVDS$

 $QC_TERM = LVDS$

- 2) Connect a +3.3V supply to VCC (J10) and GND (J12).
- 3) Set the supply current limit to 500mA. Using SMA cables, connect QA0 and QA0 to a phase noise analyzer or scope. Terminate all unused enabled outputs (QA1, QA1, QA2, QA2).

Detailed Description

The MAX3612 evaluation kit (EV kit) simplifies evaluation by providing the hardware needed to evaluate all the MAX3612 functions. Table 1 contains functional descriptions for the switches. Table 2 provides the divider settings for various frequency configurations.

LVCMOS Clock Input

The LVCMOS clock input (CIN) is AC-coupled at the SMA connector and has an on-board 50Ω termination. For optimal performance, it is important to use a low-jitter square-wave clock source. Clock signals should be applied to CIN only when the switch IN SEL is set to CIN.

Differential Clock Input

The differential clock input (DIN) is AC-coupled at the SMA connectors and has an internal 100 Ω differential termination. For optimal performance, it is important to use a low-jitter, differential, square-wave clock source. Clock signals should be applied to DIN only when the switch IN_SEL is set to DIN.

LVDS/LVPECL Clock Outputs

The LVDS/LVPECL clock outputs (QA[4:0], QB[2:0], QC) are configured using switches S14–S21. Each output has an on-board bias-T, which provides DC-bias when configured as LVPECL and AC-coupling for direct connection to 50Ω -terminated test equipment. Unused outputs should be disabled (using switches S14–S17) or have 50Ω terminations placed on the SMA connectors. For optimal jitter measurements, a balun is recommended for differential to single-ended conversion when connected to single-ended test equipment such as a phase noise analyzer. See Figure 1 for the measurement setup.

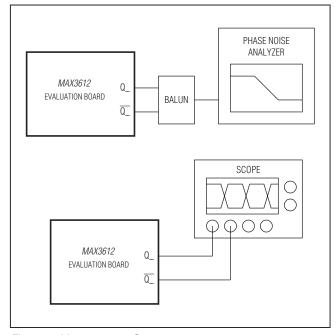


Figure 1. Measurement Setup

Table 1. Switch Descriptions

COMPONENT	NAME	FUNCTION
S1	IN_SEL	Selects input reference clock source. DIN = Differential input DIN, DIN CIN = LVCMOS input CIN XO = Crystal reference (25MHz on-board)
S2	PLL_BP	Selects PLL bypass mode. HIGH = All outputs PLL bypass OPEN = C output bank PLL bypass LOW = All outputs PLL enabled
S3	DM	Selects input divider M. See Table 2.
S6	DF	Selects feedback divider F. See Table 2.
S9	DA	Selects output divider A. See Table 2.
S11	DB	Selects output divider B. See Table 2.
S13	DC	Selects output divider C. See Table 2.
S14	QA_CTRL1	Selects QA[2:0] output interface (LVPECL, LVDS, or DISABLED).
S15	QA_CTRL2	Selects QA[4:3] output interface (LVPECL, LVDS, or DISABLED).
S16	QB_CTRL	Selects QB[2:0] output interface (LVPECL, LVDS, or DISABLED).
S17	QC_CTRL	Selects QC output interface (LVPECL, LVDS, or DISABLED).
S18	QA_TERM1	Selects QA[2:0] output termination. Provides DC path to GND for QA[2:0] bias-Ts when switched to LVPECL. DC path to GND is open when switched to LVDS.
S19	QA_TERM2	Selects QA[4:3] output termination. Provides DC path to GND for QA[4:3] bias-Ts when switched to LVPECL. DC path to GND is open when switched to LVDS.
S20	QB_TERM	Selects QB[2:0] output termination. Provides DC path to GND for QB[2:0] bias-Ts when switched to LVPECL. DC path to GND is open when switched to LVDS.
S21	QC_TERM	Selects QC output termination. Provides DC path to GND for QC bias-Ts when switched to LVPECL. DC path to GND is open when switched to LVDS.

Table 2. Divider Settings for Various Frequency Configurations

	_							
INPUT FREQUENCY	INPUT DIVIDER	FEEDBACK DIVIDER	VCO FREQUENCY OUTPUT DIVIDER		OIVIDER VCO FREQUENCY DIVIDER OUTPUT F		OUTPUT FREQUENCY (MHz)	
(MHz)	DM	DF	(101112)	DA, DB, DC	(WIT12)			
25	LOW	LOW	625 -	OPEN	312.5			
31.25	LOW	HIGH		LOW	156.25			
125	HIGH	LOW		HIGH	125			
156.25	HIGH	HIGH		ПІВП	125			

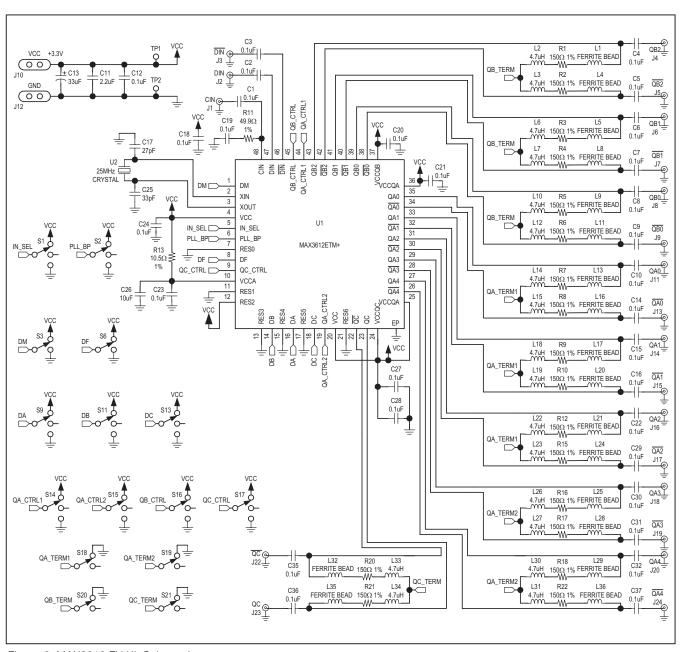


Figure 2. MAX3612 EV Kit Schematic

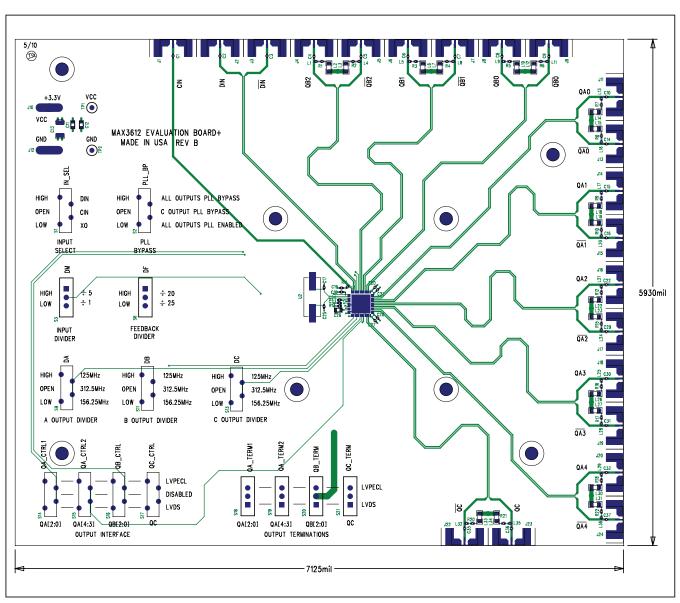


Figure 3. MAX3612 EV Kit Component Placement Guide—Component Side

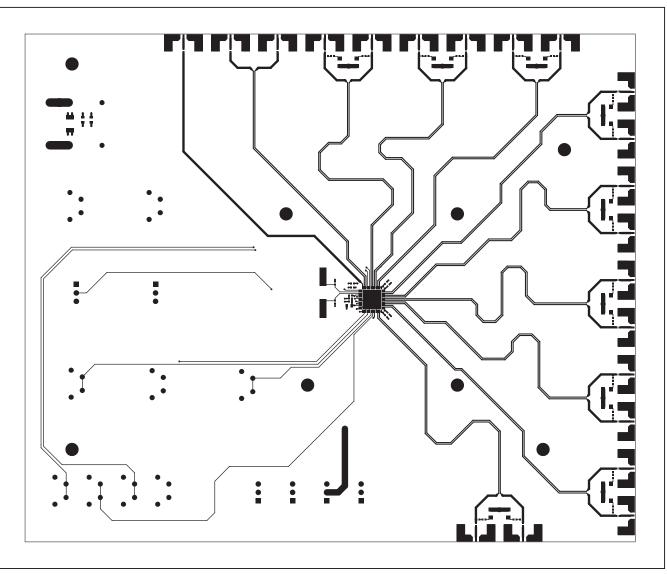


Figure 4. MAX3612 EV Kit PCB Layout—Component Side

Figure 5. MAX3612 EV Kit PCB Layout—Ground Plane

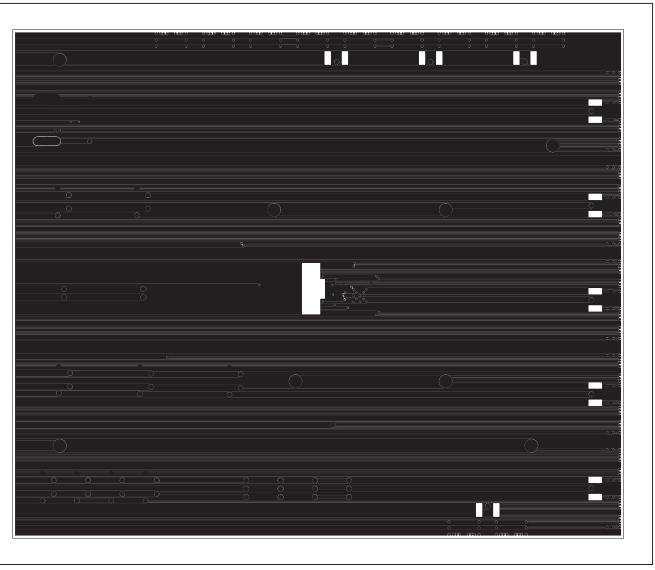


Figure 6. MAX3612 EV Kit PCB Layout—Power Plane



Figure 7. MAX3612 EV Kit PCB Layout—Solder Side

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	6/10	Initial release	_

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at **www.microsemi.com**.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.