: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

CVAXINV
 3.3V, 622Mbps LVDS, Dual 4:2 Crosspoint Switch

Abstract

General Description The MAX3640 is a dual-path crosspoint switch for use at OC-12 data rates. The MAX3640 can be used to receive and transmit 622Mbps low-voltage differential signals (LVDS) across a backplane with minimum jitter accumulation. Each path incorporates input buffers, multiplexers, a crosspoint switch, and output drivers The four output channels have a redundant set of outputs for test or fanning purposes. The device offers sig-nal-path redundancy for critical data streams. The MAX3640 has a unique power-saving feature When a set of four output channels has been de-selected, the output drivers are powered down to reduce power consumption by 165 mW . The fully differential architecture ensures low crosstalk, jitter accumulation, and signal skew. The MAX3640 is available in a 48-pin TQFP package and operates from a +3.3 V supply over the $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications
SONET/SDH Backplanes
High-Speed Parallel Links
Digital Cross-Connects
System Interconnects
ATM Switch Cores

Features

- Single +3.3V Supply
- 257mW Power Consumption (four output channels enabled)
- 2.8psRms Output Random Jitter
- 42ps Output Deterministic Jitter
- Power-Down Feature for Deselected Outputs
- 110ps Channel-to-Channel Skew
- 240ps Output Edge Speed
- LVDS Inputs/Outputs
- LVDS Output 3-State Enable

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX3640UCM	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 TQFP

Pin Configuration appears at end of data sheet.

Typical Operating Circuit

For free samples and the latest literature, visit www.maxim-ic.com or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

3.3V, 622Mbps LVDS,
 Dual 4:2 Crosspoint Switch

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, VCC. \qquad
TTL) \qquad-0.5V to 5.0 V
Input Voltage (LVDS, TTL) -0.5 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}\right)$

Operating Temperature Range
.. $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Output Voltage (LVDS) \qquad -0.5 V to $(\mathrm{VCC}+0.5 \mathrm{~V})$

Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$)
48-Pin TQFP (derate $12.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$). \qquad .813 mW

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=+3.0 \mathrm{~V}\right.$ to 3.6 V , LVDS differential load $=100 \Omega \pm 1 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	IcC	Eight outputs enabled		130	175	mA
		Four outputs enabled		78		
LVDS INPUTS AND OUTPUTS						
Input Voltage Range	VIN		0		2400	mV
Differential Input Threshold	VIDTH		-100		100	mV
Threshold Hysteresis	VHYST			90		mV
Differential Input Impedance	RIN		85	100	115	Ω
Input Common-Mode Current	Ios	LVDS input, V OS $=1.2 \mathrm{~V}$		245		$\mu \mathrm{A}$
Output Voltage High	VOH	Figure 1			1.475	V
Output Voltage Low	VOL	Figure 1	0.925			V
Output Voltage Swing	IVODI	Figure 1	250		400	mV
Change in Magnitude of Differential Output for Complementary States	${ }^{\prime} \mathrm{V}_{\text {OD }}{ }^{\text {l }}$				25	mV
Offset Output Voltage	Vos	Figure 1	1.125		1.275	mV
Change in Magnitude of Output Offset Voltage for Complementary States	${ }^{\prime} \mathrm{V}_{\text {OS }} \mathrm{l}$				25	mV
Differential Output Impedance		ENA, ENB = GND	1			$\mathrm{M} \Omega$
		ENA, ENB = VCC	80		120	Ω
Output Current		Shorted together			12	mA
TTL INPUTS						
Input Voltage High	V_{IH}		2.0			V
Input Voltage Low	VIL				0.8	V
Input Current High	IIH	$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$	-250			$\mu \mathrm{A}$
Input Current Low	IIL	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	-550			$\mu \mathrm{A}$

3.3V, 622Mbps LVDS, Dual 4:2 Crosspoint Switch

AC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=+3.0 \mathrm{~V}\right.$ to 3.6 V , LVDS differential load $=100 \Omega \pm 1 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Parallel Input/Output Data Rate				622		Mbps
Output Rise/Fall Time	tr, tf	20\% to 80\%	150	240	350	ps
Output Random Jitter	RJ			2.8	4	psRMS
Output Deterministic Jitter	DJ	(Note 2)		42	200	ps
LVDS Output Differential Skew	tSKEW1			24	50	ps
LVDS Output Channel-toChannel Skew	tSKEW2				110	ps
LVDS Output Enable Time				266		ns
LVDS Output Disable Time				66		ns
LVDS Propagation Delay from Input to Output	tD				2.5	ns

Note 1: AC characteristics are guaranteed by design and characterization.
Note 2: Deterministic jitter (DJ) is the arithmetic sum of pattern-dependent jitter and pulse-width distortion. DJ is measured while applying 100 mVp -p noise ($\mathrm{f} \leq 2 \mathrm{MHz}$) to the power supply.

Figure 1. LVDS Output Levels

3.3V, 622Mbps LVDS, Dual 4:2 Crosspoint Switch

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

200ps/div

1.25Gbps EYE DIAGRAM

100ps/div

3.3V, 622Mbps LVDS, Dual 4:2 Crosspoint Switch

Pin Description

PIN	NAME	FUNCTION
$1,12,25,36$, 41	VCC	Positive Supply Voltage
$2,11,26,35$	GND	Supply Ground
$3,5,45,47$	DIA3+, DIA4+, DIA1+, DIA2+	Positive LVDS, Channel-A Data Input
$4,6,46,48$	DIA3-, DIA4-, DIA1-, DIA2-	Negative LVDS, Channel-A Data Input
$7,9,13,15$	DIB1+, DIB2+, DIB3+, DIB4+	Positive LVDS, Channel-B Data Input
$8,10,14,16$	DIB1-, DIB2-, DIB3-, DIB4-	Negative LVDS, Channel-B Data Input
$17-20$	SEL1-SEL4	Crosspoint Switch Select, TTL Input. (Table 1)
$21,23,27,29$	DOB4-, DOB3-, DOB2-, DOB1-	Negative LVDS, Channel-B Data Output
$22,24,28,30$	DOB4+, DOB3+, DOB2+, DOB1+	Positive LVDS, Channel-B Data Output
$31,33,37,39$	DOA4-, DOA3-, DOA2-, DOA1-	Negative LVDS, Channel-A Data Output
$32,34,38,40$	DOA4+, DOA3+, DOA2+, DOA1+	Positive LVDS, Channel-A Data Output
42	ENB	Channel-B Output Enable, TTL Input. ENB = high enables DOB1-DOB4. ENB = low powers down DOB1-DOB4 and sets them to a high-impedance state.
43	ENannel-A Output Enable, TTL Input. ENA = high enables DOA1-DOA4. ENA = low powers down DOA1-DOA4 and sets them to a high-impedance state.	
IN_SEL	Input Select Pin, TTL Input. Connect to logic high (or VCC) to select DIA1-DIA4. Connect to logic low (or GND) to select DIB1-DIB4.	

Detailed Description

Figure 2 shows the MAX3640's architecture. It consists of two data paths; each data path begins with four differential input buffers. The IN_SEL pin selects whether the A or B channels are passed to the 2×2 crosspoint switch that follows. The SEL_ pins control the routing of the crosspoint switch. Each crosspoint switch output drives a pair of LVDS output drivers. This provides a redundant set of outputs that can be used for fan-out or test purposes. Each set of outputs, DOA_ and DOB_, is enabled or disabled by the ENA and ENB pins. See Table 1 for routing controls.

LVDS Inputs and Outputs

The MAX3640 features LVDS inputs and outputs for interfacing with high-speed digital circuitry. The LVDS standard is based on the IEEE 1596.3 LVDS specification. This technology uses 500 mV to 800 mV differential low-voltage swings to achieve fast transition times, low power dissipation, and improved noise immunity.
For proper operation, the data outputs require 100Ω differential termination between the inverting and noninverting pins. Do not terminate these outputs to ground. See Figure 1 for LVDS output voltage specifications.
The data inputs are internally terminated with 100Ω differential and therefore do not require external termination.

3.3V, 622Mbps LVDS,
 Dual 4:2 Crosspoint Switch

MAX3640

Figure 2. Functional Diagram

3.3V, 622Mbps LVDS, Dual 4:2 Crosspoint Switch

Table 1. Output Routing

ROUTING CONTROLS		OUTPUT SIGNALS		
IN_SEL	SEL1	SEL2	Signal at DOA1/DOB1	Signal at DOA2/DOB2
0	0	0	DIB1	DIB1
0	0	1	DIB1	DIB2
0	1	0	DIB2	DIB1
0	1	1	DIB2	DIB2
1	0	0	DIA1	DIA1
1	0	1	DIA1	DIA2
1	1	0	DIA2	DIA1
1	1	1	DIA2	DIA2
IN_SEL	SEL3	SEL4	Signal at DOA3/DOB3	Signal at DOA4/DOB4
0	0	0	DIB3	DIB3
0	0	1	DIB3	DIB4
0	1	0	DIB4	DIB3
0	1	1	DIB4	DIB4
1	0	0	DIA3	DIA3
1	0	1	DIA3	DIA4
1	1	0	DIA4	DIA3
1	1	1	DIA4	DIA4

Note: Disabling the outputs by using ENA or ENB will drive the DOA_ or DOB_ data outputs to a high-impedance state.

Figure 3. LVPECL to LVDS Interface

3.3V, 622Mbps LVDS,
 Dual 4:2 Crosspoint Switch

Applications Information

Layout Techniques

Interfacing LVPECL Outputs to MAX3640 LVDS Inputs

To DC-couple between LVPECL and LVDS, use the resistor network shown in Figure 3. Note that the LVPECL output is optimized for a 50Ω load to $V_{C C}-2 \mathrm{~V}$, so an equivalent network is used. Also, the network attenuation should be such that the LVPECL output signal after attenuation is well within the LVDS input range.
Note that the LVDS input impedance is a true 100Ω between the inputs. The differential impedance does not contribute to the DC termination impedance, but does contribute to the AC termination impedance. This means that AC and DC impedance will always be different.

For best performance, use good high-frequency layout techniques. Filter voltage supplies, and keep ground connections short. Use multiple vias where possible. Also, use controlled-impedance transmission lines to interface with the MAX3640 data inputs and outputs.

Interface Models
Figure 4 shows the interface model for the LVDS inputs, while Figure 5 shows the model for the LVDS outputs.

Figure 4. LVDS Input Model

3.3V, 622Mbps LVDS, Dual 4:2 Crosspoint Switch

Figure 5. LVDS Output Model

Pin Configuration

3．3V，622Mbps LVDS，
 Dual 4：2 Crosspoint Switch

NDTES：
1．ALL DIMENSIUNING AND TQLERANCING CUNFロRM Tロ ANSI Y14．5－1982．
2．CDNTRZLLING DIMENSIDN：MILLIMETER．
3．THIS ZUTLINE CDNFIRMS TI JEDEC PUBLICATIUN 95 REGISTRATIUN Mロ－136，VARIATIUNS BC AND BE．
4．LEADS SHALL BE CDPLANAR WITHIN ． 004 INCH．

3.3V, 622Mbps LVDS, Dual 4:2 Crosspoint Switch

 NOTES
3.3V, 622Mbps LVDS,
 Dual 4:2 Crosspoint Switch

NOTES

