: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

155Mbps to 3.2Gbps, Low-Power SFP Limiting Amplifiers

General Description

The MAX3747A/MAX3747B multirate limiting amplifiers function as data quantizers for OC-3 through OC-48 synchronous optical network (SONET), Fibre-Channel, and Gigabit Ethernet optical receivers. They are pin-for-pin compatible with the SY88993V from Micrel Semiconductor, Inc. The amplifiers accept a wide range of input voltages and provide constant-level, currentmode logic (CML) output voltages with controlled edge speeds. The MAX3747A/MAX3747B output voltages are 800 mV P-p. The MAX3747B has enhanced LOS operation under overload conditions.
The MAX3747A/MAX3747B limiting amplifiers feature a programmable loss-of-signal detect (LOS) and an optional disable function (DISABLE) that can be combined to implement squelch.
The MAX3747A/MAX3747B are available in a 3mm, 10pin $\mu M A X ®$ package ideal for small formfactor receivers.

Applications

Gigabit Ethernet SFP/SFF Optical Transceiver Modules 1G/2G Fibre-Channel SFP/SFF Optical Transceiver Modules
Multirate OC-3 to OC-48 FEC SFP/SFF Optical Transceiver Modules
10G LX4 Transceiver Modules

Features

- Pin Compatible with Micrel SY88993V
- 155Mbps to 3.2Gbps Operation
- > 57dB of Gain
- $<10^{-12}$ BER with 2mVp-p Input Amplitude
- 18mA Supply Current
- Chatter-Free LOS with Programmable Threshold
- Output DISABLE Function
- PECL-Compatible Inputs

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3747AEUB +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$
MAX3747BEUB +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$

+Denotes a lead(Pb)-free/RoHS-compliant package.
$\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.

Pin Configuration appears at end of data sheet.

Typical Application Circuit

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

MAX3747A/MAX3747B

155Mbps to 3.2Gbps, Low-Power SFP Limiting Amplifiers

ABSOLUTE MAXIMUM RATINGS

Power-Supply Voltage (VCC).

.$(\mathrm{VCC}-2.4 \mathrm{~V})$ to $(\mathrm{VCC}+0.5 \mathrm{~V})$
$\mathrm{F} \ldots-0.5 \mathrm{~V}$ to $(\mathrm{VCC}+0.5 \mathrm{~V})$
$\ldots-0.5 \mathrm{~V}$ to +4.5 V
Voltage at IN+, IN- \qquad
Current into LOS
S, TH, VREF
..-0.5V to . 1 mA to +9 mA
Current into VREF .2mA
Differential Input Voltage (IN+ - IN-)
.2.5V
Continuous Current at CML Outputs
(OUT+, OUT-) ...-25mA to +25 mA

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) 10-Pin $\mu \mathrm{MAX}$ (derate $6.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	
Operating Junction Temperature Range (TJ)-5	$55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Ambient Temperature Range (TS)..........-5	$55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s).	$+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow)	$+260^{\circ} \mathrm{C}$

10-Pin MAX (derion $1{ }^{\circ} \mathrm{C}$ above 10-Pin μ MAX (derate $6.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 552 mW
 Lead Temperature (soldering, 10s)..................................... $+300^{\circ} \mathrm{C}$ Soldering Temperature (reflow)
$+260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+2.97 \mathrm{~V}\right.$ to +3.63 V , CML output load is 50Ω to $\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY						
Supply Current (Note 2)	IcC	MAX3747A including the CML output current		36	41	mA
		MAX3747B including the CML output current		38	43	
		MAX3747A excluding the CML output current		18	24	
		MAX3747B excluding the CML output current		20	26	
Power-Supply Noise Rejection	PSNR	$\mathrm{f}<2 \mathrm{MHz}$		30		dB
INPUT SPECIFICATION						
Input Sensitivity	VIN-MIN	(Note 3)			4	$m V_{P-P}$
Input Overload	VIN-MAX	(Note 3)	1200			$m V_{\text {P-P }}$
OUTPUT SPECIFICATION						
Output Resistance	Rout	(Note 4)	42	50	58	Ω
Differential Output Return Loss		DUT is powered on, $\mathrm{f}<3 \mathrm{GHz}$		15		dB
CML Differential Output Voltage		$\begin{aligned} & \text { MAX3747A/MAX3747B } \\ & 4 m V_{P-P} \leq \text { VIN }^{2} \leq 1200 \mathrm{mV} V_{\text {P-P }} \end{aligned}$	600	800	1000	$m V_{\text {P-P }}$
Differential Output Signal When Disabled		AC-coupled outputs, VIN-MAX applied to the input (Note 4)			15	$m V_{\text {P-P }}$
Data-Output Transition Time		20\% to 80\% (Note 4)		70	120	ps
TRANSFER CHARACTERISTIC						
Deterministic Jitter (Notes 4, 5)	DJ	K28.5 pattern at 3.2Gbps		13.2	19	psp-p
		PRBS 223-1 equivalent pattern at 2.7 Gbps (Note 6)		14	25	
		K28.5 pattern at 2.1Gbps		12	17	
		PRBS 2^{23} - 1 equivalent pattern at 155 Mbps (Note 6)		85	150	
Random Jitter		$\mathrm{V}_{\text {IN }}=4 \mathrm{mV}$ P-P $($ Notes 4, 7)		3.5	5	pSRMS

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+2.97 \mathrm{~V}\right.$ to +3.63 V , CML output load is 50Ω to $\mathrm{V}_{C C}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{C C}=+3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input-Referred Noise		$\mathrm{V}_{\text {IN }}=4 \mathrm{mV} \mathrm{V}_{\text {- }}$ ((Note 4)		120	150	$\mu \mathrm{V}_{\text {RMS }}$
Low-Frequency Cutoff				6.4		kHz
LOS Hysteresis		$10 \log \left(V_{\text {DEASSERT }} / V_{\text {ASSERT }}\right.$) (Note 4)	1.25			dB
LOS Assert/Deassert Time		MAX3747A (Notes 4, 8)	2.3		40.0	$\mu \mathrm{S}$
		MAX3747B (Notes 4, 8, 9)				
Low LOS Assert Level		$\mathrm{V}_{\text {TH }}=-1.3 \mathrm{~V}$ (Notes 4, 10)	2.5	4.1	5.9	$m V_{P-P}$
Low LOS Deassert Level		$\mathrm{V}_{\text {TH }}=-1.3 \mathrm{~V}$ (Notes 4, 10)		6.2	9.3	$m V_{P-P}$
Medium LOS Assert Level		$\mathrm{V}_{\text {TH }}=-0.68 \mathrm{~V}$ (Notes 4, 10)	22.0	29.0	36.0	$m V_{P-P}$
Medium LOS Deassert Level		$\mathrm{V}_{\text {TH }}=-0.68 \mathrm{~V}$ (Notes 4, 10)		44.8	62.0	$m V_{P-P}$
High LOS Assert Level		$\mathrm{V}_{\text {TH }}=-0.114 \mathrm{~V}$ (Notes 4, 10)	36.0	53.7	63.6	$m V_{P-P}$
High LOS Deassert Level		$\mathrm{V}_{\text {TH }}=-0.114 \mathrm{~V}$ (Notes 4, 10)		86.0	115	$m V_{P-P}$
TTL/CMOS I/O						
Vref Voltage	VREF		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}- \\ 1.35 \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}- \\ 1.3 \mathrm{~V} \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}- \\ 1.19 \end{gathered}$	V
LOS Output High Voltage	V OH	RLOS $=4.7 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {CC__HOST }}(3 \mathrm{~V})$	2.4			V
LOS Output Low Voltage	VOL	RLOS $=4.7 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {CC_HOST }}(3.6 \mathrm{~V}$)			0.4	V
DISABLE Input High	V_{IH}		2.0			V
DISABLE Input Low	$\mathrm{V}_{\text {IL }}$				0.8	V
DISABLE Input Current		RLOS $=4.7 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {CC_ }}$ HOST			10	$\mu \mathrm{A}$

Note 1: The data-input transition time is controlled by a 4th-order Bessel filter with $\mathrm{f}-3 \mathrm{~dB}=0.75 \times 2.667 \mathrm{GHz}$ for all data rates of 2.667 Gbps and below. The $\mathrm{f}-3 \mathrm{db}=0.75 \times 3.2 \mathrm{GHz}$ for a data rate of 3.2 Gbps .

Note 2: Supply current is measured with unterminated outputs or with AC-coupled output termination (see Figure 1).
Note 3: Between sensitivity and overload, all AC specifications are met and the output is $0.95 \times$ limited output amplitude.
Note 4: Guaranteed by design and characterization.
Note 5: The deterministic jitter (DJ) caused by the input filter is not included in the DJ generation specification.
Note 6: The PRBS $2^{23}-1$ equivalent pattern consists of a K28.5 pattern plus 240 ones plus K28.5 pattern plus 240 zeros.
Note 7: Random jitter was measured without using a filter at the input.
Note 8: The signal at the input is switched between two amplitudes, Signal_ON and Signal_OFF, as shown in Figure 2A.
Note 9: The signal at the input is switched between 1.2VP-p and Signal_OFF as shown in Figure 2B.
Note 10: V_{TH} is the voltage at pin 5 referenced to V_{CC} (see Figure 5).

MAX3747A/MAX3747B

155Mbps to 3.2Gbps, Low-Power SFP Limiting Amplifiers

Figure 1. Power-Supply Current Measurement

Figure 2A. LOS Deassert Threshold—Set 1dB Below Receiver Sensitivity

Figure 2B. LOS Deassert Threshold—Operating at Input Overload

MAX3747A/MAX3747B
 155Mbps to 3.2Gbps, Low-Power SFP
 Limiting Amplifiers

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

50ps/div

70ps/div

TRANSFER FUNCTION
(OUTPUT VOLTAGE vs. INPUT VOLTAGE)

OUTPUT EYE DIAGRAM

50ps/div

80ps/div

RANDOM JITTER vs. TEMPERATURE

OUTPUT EYE DIAGRAM

70ps/div

SUPPLY CURRENT vs. TEMPERATURE (EXCLUDES OUTPUT CURRENT)

RANDOM JITTER vs. INPUT AMPLITUDE

MAX3747A/MAX3747B
 155Mbps to 3.2Gbps, Low-Power SFP Limiting Amplifiers

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

MAX3747A/MAX3747B
 155Mbps to 3.2Gbps, Low-Power SFP
 Limiting Amplifiers

Pin Description

PIN	NAME		FUNCTION
	MAX3747A/ MAX3747B	MICREL SY8893V	
1	DISABLE	$\overline{\mathrm{EN}}$	Disable Function Pin. The data outputs are held static when this pin is asserted high, transistor-to-transistor logic (TTL). The data outputs are enabled when this pin is held low. LOS functions remain active when outputs are disabled. For normal operation connect to GND.
2	$1 \mathrm{~N}+$	DIN	Noninverted Input Signal
3	IN-	$\overline{\text { DIN }}$	Inverted Input Signal
4	$V_{\text {REF }}$	$V_{\text {REF }}$	Reference Voltage for LOS Threshold Setting
5	TH	LOSLVL	Loss-of-Signal Level Set. A voltage on this pin created by a two-resistor divider sets the threshold level. Connect one resistor from this pin to V_{CC} and another from this pin to $V_{\text {REF }}$ (see Figure 5).
6	GND	GND	Ground
7	LOS	LOS	Loss of Signal. Open collector for the MAX3747A; internal 100k Ω pullup to V_{CC} for the MAX3747B. LOS is high when the level of the input signal drops below the preset threshold set by the TH input. LOS is deasserted low when the signal level is above the threshold.
8	OUT-	$\overline{\text { DOUT }}$	Inverted Data Output, CML
9	OUT+	DOUT	Noninverted Data Output, CML
10	VCC	VCC	Positive Power Supply

Detailed Description

The limiting amplifiers consist of a multistage amplifier, offset-correction circuitry, an output buffer, and loss-ofsignal detect circuitry (see the Functional Diagram).

Input Stage
The input stage is shown in Figure 3. It provides 50Ω termination to VREF for each input signal, IN+ and IN-. The MAX3747A/MAX3747B should be AC-coupled.

Multistage Amplifier
The high-bandwidth multistage amplifier provides approximately 61 dB of gain for the MAX3747A/MAX3747B.

Offset Correction Loop
The MAX3747A/MAX3747B are susceptible to DC offsets in the signal path because they have high gain. In communication systems using NRZ data with a 50\% duty cycle, pulse-width distortion present in the signal or generated in the transimpedance amplifier appears as an input offset and is reduced by the offset correction loop.
The offset correction loop sets a low-frequency cutoff of 3.2 kHz .

Figure 3. Differential Input Stage

MAX3747A/MAX3747B

155Mbps to 3.2Gbps, Low-Power SFP Limiting Amplifiers

Functional Diagram

CML Output Buffer
The CML outputs of the MAX3747A/MAX3747B limiting amplifiers provide high tolerance to impedance mismatches and inductive connectors. The output current is approximately 16 mA for the MAX3747A/MAX3747B. Connecting the DISABLE pin to Vcc disables the output. If the LOS pin is connected to the DISABLE pin, the outputs OUT+ and OUT- are at a static voltage (squelch) whenever the input signal level drops below the LOS threshold. The output buffer can be AC- or DCcoupled to the load (Figure 4).
The MAX3747A/MAX3747B output is 800 mV P-P.

Figure 4. CML Output Buffer

MAX3747A/MAX3747B 155Mbps to 3.2Gbps, Low-Power SFP Limiting Amplifiers

Loss-of-Signal Indicator

The MAX3747A/MAX3747B are equipped with LOS circuitry that indicates when the input signal is below a programmable threshold, set by a voltage on the TH pin (see the Typical Operating Characteristics). The voltage on the TH pin is set by two resistors, one connecting from the TH pin to V_{CC} and the other connecting from TH to $\mathrm{V}_{\text {REF }}$ (Figure 5). An RMS power detector compares the input signal amplitude with this threshold and feeds the signal-detect information to the LOS output, which is open collector. To prevent LOS chatter in the region of the programmed threshold, approximately 2 dB of hysteresis is built into the LOS assert/deassert function. Once asserted, LOS is not deasserted until the input amplitude rises to the required level. Figure 6 shows the LOS output circuit.

 $V_{\text {TH }}=\left(R_{T H 2} x\left(V_{\text {REF }}-V_{C C}\right)\right) /\left(R_{T H 1}+R_{T H 2}\right)$ $V_{\text {TH }} I S V_{C C}$ REFERENCED $R_{T H 1}+R_{T H 2} \geq 5 \mathrm{~K} \Omega$

Figure 5. MAX3747A/MAX3747B LOS Threshold Circuit

Figure 6. MAX3747A/MAX3747B LOS Output Circuit

Applications Information

Program the LOS Assert Threshold

Program the LOS assert threshold according to Figure 5. The combination of RTH1 and RTH2 should be greater than or equal to $5 \mathrm{k} \Omega$, see the Assert/Deassert vs. VTH graph in the Typical Operating Characteristics.

Select the Coupling Capacitor

When AC-coupling is desired, coupling capacitors CIN and Cout should be selected to minimize the receiver's deterministic jitter. Jitter is decreased as the input low-frequency cutoff (fin) is decreased:

$$
\mathrm{fin}=1 /[2 \pi(50)(\mathrm{CIN})]
$$

For all applications, the recommended value for CIN and Cout is $0.1 \mu \mathrm{~F}$, which provides fin equal to 32 kHz . Refer to Application Note HFAN-1.1: Choosing ACCoupling Capacitors on the Maxim website (www.maximintegrated.com).

MAX3747A/MAX3747B

155Mbps to 3.2Gbps, Low-Power SFP Limiting Amplifiers

Pin Configuration

TOP VIEW

Chip Information
PROCESS: SiGe Bipolar

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO. $10 \mu \mathrm{MAX}$
$\mathrm{U} 10 \mathrm{CN}+1$	$\underline{21-0061}$	$\underline{90-0330}$	

MAX3747A/MAX3747B
 155Mbps to 3.2Gbps, Low-Power SFP Limiting Amplifiers

Revision History

REVISION NUMBER	REVISION DATE	PAGES CHANGED	
0	$5 / 05$	Initial release	-
1	$10 / 07$	Release of the MAX3747B.	$1-10$
2	$8 / 12$	Removed MAX3747 from data sheet, updated Electrical Characteristics.	$1-10$

[^0]
[^0]: Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

