: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

12.5Gbps CML 2×2 Crosspoint Switch

General Description
The MAX3841 is a low-power, $12.5 \mathrm{Gbps} 2 \times 2$ crosspoint switch IC for high-speed serial data loopback, redundancy, and switching applications. The MAX3841 current-mode logic (CML) inputs and outputs have isolated V_{CC} connections to enable DC-coupled interfaces to 1.8 V , 2.5 V , or 3.3 V CML ICs. Fully differential signal paths and Maxim's second-generation SiGe technology provide optimum signal integrity, minimizing jitter, crosstalk, and signal skew. The MAX3841 is ideal for serial OC-192 and 10GbE optical module, line card, switch fabric, and similar applications.
The MAX3841 has 150 mV P-p minimum differential input sensitivity, and 500 mV P-p nominal differential output swing. Unused outputs can be powered down individually to conserve power. In addition to functioning as a 2 $\times 2$ switch, the MAX3841 can be configured as a 2:1 multiplexer, 1:2 buffer, or dual 1:1 buffer. The MAX3841 is available in a $4 \mathrm{~mm} \times 4 \mathrm{~mm} 24$-pin thin QFN package, and consumes only 215 mW with both outputs enabled.

Applications

OC-192, 10GbE Switch/Line Cards
OC-192, 10GbE Optical Modules
System Redundancy/Self Test
Clock Fanout

- Up to 12.5Gbps Operation		
- Less Than 10psp-p Deterministic Jitter		
- Less Than 0.7psRms Random Jitter		
-1.8V, 2.5V, and 3.3V DC-Coupled CML I/O		
- Independent Output Power-Down		
- $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Thin QFN Package		
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Operation		
- +3.3V Core Supply		
- 215mW Power Consumption (Excluding Termination Currents)		
Ordering Information		
PART	TEMP RANGE	PIN-PACKAGE
MAX3841ETG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Thin QFN-EP*
MAX3841ETG+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Thin QFN-EP*

+Denotes a lead(Pb)-free/RoHS-compliant package. *EP $=$ Exposed pad.

Pin Configuration appears at end of data sheet.

12.5Gbps CML 2×2 Crosspoint Switch

ABSOLUTE MAXIMUM RATINGS

S	-0.5V to +4
CML Supply Voltage (VCC_IN, VCC_OUT)	
Continuous Output Current (OUT1 \pm, OUT2 \pm) $\pm 25 \mathrm{~mA}$	
CML Input Voltage (IN1 \pm, IN2 \pm)..........-0.5V to (VCC_IN + 0.5V)	
LVCMOS Input Voltage (SEL1, SEL2,	
ENO1, ENO2)	.5V to ($\left.\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}\right)$

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}\right.$)
24-Pin Thin QFN (derate 20.8mW/ ${ }^{\circ} \mathrm{C}$
above $+85^{\circ} \mathrm{C}$)... $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Temperature Range $55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range............................. $300^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 s).......................

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{VCC} _\mathrm{N}=+1.71 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{VCC} _\mathrm{OUT}=+1.71 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=$ $+3.3 \mathrm{~V}, \mathrm{VCC}$ _IN $=$ VCC_OUT $=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Core Supply Current	ICC	Excluding CML termination currents	65	90	mA
Data Rate		(Note 1)	0	12.5	Gbps
CML Input Differential	V IN	AC-coupled or DC-coupled (Note 2)	150	1200	mVP-P
CML Input Common Mode		DC-coupled	VCC_IN - 0.3	VCC_IN	V
CML Input Termination		Single ended	42.550	57.5	Ω
CML Input Return Loss		Up to 10GHz	12		dB
CML Output Differential	VOUT	(Note 2)	400500	600	$m V_{P-P}$
CML Output Termination		Single ended	42.550	57.5	Ω
CML Output Transition Time	$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	20\% to 80\% (Notes 1, 3)		30	ps
Deterministic Jitter		(Notes 1, 4)		10	psp-p
Random Jitter		$\mathrm{V}_{\text {IN }}=150 \mathrm{mV} \mathrm{P}_{\text {-P }}($ Notes 1, 5)	0.3	0.7	psRMS
Propagation Delay		Any input to output (Note 1)	100	140	ps
Channel-to-Channel Skew		(Note 1)		12	ps
Output Duty-Cycle Skew		50\% input duty cycle (Notes 1, 3)		8	ps
LVCMOS Input Current	$\mathrm{IIH} \mathrm{I}_{\text {IL }}$		-10	+10	$\mu \mathrm{A}$
LVCMOS Input High Voltage	V_{IH}		1.7		V
LVCMOS Input Low Voltage	V_{IL}			0.7	V

Note 1: Guaranteed by design and characterization.
Note 2: Differential swing is defined as $\mathrm{V}_{\mathrm{IN}}=\left(\mathrm{IN}_{-}+\right)$- (IN_-) and $\mathrm{V}_{\text {OUT }}=($ OUT_+) - (OUT_-). See Figure 1.
Note 3: Measured using a 0000011111 pattern at 12.5 Gbps , and $\mathrm{V}_{\mathbb{I N}}=400 \mathrm{mV}$ P-p differential.
Note 4: Measured at $9.953 G b p s$ using a pattern of 100 ones, $2^{7}-1$ PRBS, 100 zeros, $2^{7}-1$ PRBS, and at 12.5 Gbps using a \pm K28.5 pattern. VCC_IN $=$ VCC_OUT $=1.8 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{IN}}=400 \mathrm{mV}$ P-p differential
Note 5: Refer to Application Note 1181: HFAN-04.5.1: Measuring Random Jitter on a Digital Sampling Oscilloscope.

12.5Gbps CML 2×2 Crosspoint Switch

Typical Operating Characteristics
$\left(\mathrm{V}_{C C}=3.3 \mathrm{~V}, \mathrm{VCC}\right.$ _IN, VCC _OUT $=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=500 \mathrm{mV}$ P-P, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

12.5Gbps CML 2×2 Crosspoint Switch

Pin Description

PIN	NAME	
1,12	VCC	+3.3V Core Supply Voltage
2,5	VCC1IN	Supply Voltage for CML Input IN1. Connect to 1.8V, 2.5V, or 3.3V.
3	IN1+	Positive Serial Data Input 1, CML
4	IN1-	Negative Serial Data Input 1, CML
6	SEL1	Output 1 Select, LVCMOS Input. See Table 1.
7	SEL2	Output 2 Select, LVCMOS Input. See Table 1.
8,11	VCC2IN	Supply Voltage for CML Input IN2. Connect to 1.8V, 2.5V, or 3.3V.
9	IN2+	Positive Serial Data Input 2, CML
10	IN2-	Negative Serial Data Input 2, CML
13,24	GND	Supply Ground
14,17	VCC1OUT	Supply Voltage for CML Output OUT1. Connect to 1.8V, 2.5V, or 3.3V.
15	OUT1-	Negative Serial Data Output 1, CML
16	OUT1+	Positive Serial Data Output 1, CML
18	ENO1	Output 1 Enable, LVCMOS Input. See Table 1.
19	ENO2	Output 2 Enable, LVCMOS Input. See Table 1.
20,23	VCC2OUT	Supply Voltage for CML Output OUT2. Connect to 1.8V, 2.5V, or 3.3V.
21	OUT2-	Negative Serial Data Output 2, CML
22	OUT2+	Positive Serial Data Output 2, CML
-	EP	Exposed Pad. The exposed pad must be soldered to the circuit board ground for proper thermal and electrical performance.

Detailed Description

The MAX3841 contains a pair of CML inputs that drive two $2: 1$ multiplexers, with separate select inputs SEL1 and SEL2, providing a 2×2 crosspoint data path. The outputs of the multiplexers each drive a high-performance CML output that can be disabled (powered down) using the ENO1/ENO2 inputs. All of the data paths are fully differential to minimize jitter, crosstalk, and signal skew. See Figure 1 for the functional diagram.

CML Input and Output Buffers

The MAX3841 input and output buffers are terminated with 50Ω to independent supply lines, and are also compatible with 100Ω differential terminations. (See Figures 3 and 4.) Separate power-supply connections are provided for the core, input buffers, and output buffers to allow DCcoupling to $1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, or 3.3 V CML ICs. If desired, the CML inputs and outputs can be AC-coupled.

The CML inputs accept serial NRZ data with differential amplitude from $150 \mathrm{~m} V_{P-P}$ to $1200 \mathrm{mV} \mathrm{P}_{-P}$ (see Figure 2). The CML outputs provide 500mVp-p nominal differential swing, resulting in low power consumption.

Figure 1. Functional Diagram

12.5Gbps CML 2×2 Crosspoint Switch

Figure 2. Definition of Differential Voltage Swing

Figure 3. Equivalent CML Input Circuit

Figure 4. Equivalent CML Output Circuit

Table 1. Output Controls

ENO1	ENO2	SEL1	SEL2	OUT1	OUT2
0	0	0	0	IN2	IN1
0	0	0	1	IN2	IN2
0	0	1	0	IN1	IN1
0	0	1	1	IN1	IN2
1	1	X	X	Disabled	Disabled

Applications Information

Select and Enable Controls
The MAX3841 provides two LVCMOS-compatible select inputs, SEL1 and SEL2. Either data input can be connected to either or both data outputs. The MAX3841 provides two LVCMOS-compatible enable inputs, ENO1 and ENO2, so each output can be disabled independently. The MAX3841 can also be used as a 1:2 driver, 2:1 multiplexer, or a dual 1:1 buffer by using the LVCMOS control inputs accordingly (see Table 1).

Power-Supply Connections
Each of the input and output power-supply connections (VCC1IN, VCC2IN, VCC1OUT, VCC2OUT) is independent and need not be connected to the same voltage. The input and output supplies can be connected to $1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, or 3.3 V , but the core supply $(\mathrm{V} \mathrm{CC})$ must be connected to 3.3 V for proper operation.

Input and Output Interfaces

The MAX3841 inputs and outputs can be AC-coupled or DC-coupled according to the application. If an input or output is not used it should be terminated with 50Ω to the correct input or output supply voltage. For more information about interfacing with logic families, refer to Application Note 291: HFAN-01.0: Introduction to LVDS, PECL, and CML.

Package and Layout Considerations

The MAX3841 is packaged in a $4 \mathrm{~mm} \times 4 \mathrm{~mm} 24$-pin thin QFN with exposed pad. The exposed pad provides thermal and electrical connectivity to the IC and must be soldered to a high-frequency ground plane. Use multiple vias to connect the exposed pad underneath the package to the PC board ground plane.
Use good layout techniques for the 10Gbps PC board transmission lines, and configure the layout near the IC to minimize impedance discontinuities. Power-supply decoupling capacitors should be located as close as possible to the IC.

12.5Gbps CML 2×2 Crosspoint Switch

Pin Configuration

Chip Information
TRANSISTOR COUNT: 950
PROCESS: SiGe BiCMOS
Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
24 TQFN-EP	T2444-3	$\underline{\mathbf{2 1 - 0 1 3 9}}$

12.5Gbps CML 2×2 Crosspoint Switch

REVISION NUMBER	REVISION DATE		PAGES CHANGED
0	$8 / 03$	Initial release.	-
1	$3 / 09$	Added a lead-free package to the Ordering Information table.	Changed the package code from T2444-1 to T2444-3 and replaced the package outline drawings with the Package Information table.

