: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Low-Voltage, Quad, SPDT, CMOS Analog Switch

Abstract

General Description The MAX394 is a precision, low-voltage, quad, single-pole/double-throw (SPDT) analog switch. The four independent switches operate with bipolar supplies ranging from $\pm 2.7 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$, or with a single supply of +2.7 V to +15 V . The MAX394 offers low on-resistance (less than 35Ω), guaranteed to match within 2Ω between channels and to remain flat over the analog signal range ($\Delta 4 \Omega$ max). It also offers break-before-make switching (10ns typical), with turn-off times less than 75ns and turn-on times less than 130ns. The MAX394 is ideal for portable operation since quiescent current runs less than $1 \mu \mathrm{~A}$ with all inputs high or low.

This monolithic, quad switch is fabricated with Maxim's low voltage silicon-gate process. Design improvements guarantee extremely low charge injection (10pC), low power consumption $(10 \mu \mathrm{~W})$, and electrostatic discharge (ESD) greater than 2000V. Logic inputs are TTL and CMOS compatible and guaranteed over a +0.8 V to +2.4 V range for supply voltages up to +8 V . When supplies exceed +8 V , the inputs are typically +0.8 V to +4 V . Logic inputs and switched analog signals can range anywhere between the supply voltages without damage.

Applications

Test Equipment
Communications Systems
PBX, PABX
Heads-Up Displays

Portable Instruments Audio Signal Routing Set-Top Boxes

Pin Configuration

Features

- Low On-Resistance, < 17Ω Typical (35Ω max)
- Guaranteed Matched On-Resistance Between Channels, $<2 \Omega$
- Guaranteed Flat On-Resistance over Analog Signal Range, $\Delta 4 \Omega$ Max
- Guaranteed Charge Injection < 10pC
- Guaranteed Off-Channel Leakage $<2.5 n A$ at $+85^{\circ} \mathrm{C}$
- ESD Guaranteed > 2000V per Method 3015.7
- Single-Supply Operation (+2.7V to +15V)

Bipolar-Supply Operation ($\pm 2.7 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$)

- TTL/CMOS-Logic Compatibility
- Rail-to-Rail Analog Signal Handling Capability
- Pin Compatible with MAX333, MAX333A

Ordering Information

PART	TEMPERATURE	PIN-PACKAGE
MAX394CPP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Plastic DIP
MAX394CWP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Wide SO
MAX394C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$
MAX394EPP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Plastic DIP
MAX394EWP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Wide SO
MAX394EUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP
MAX394MJP	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 CERDIP**
MAX394MWP/PR	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 Wide SO $^{* *}$
MAX394MWP/PR-T	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 Wide $\mathrm{SO}^{* *}$

*Contact factory for dice specifications.
** Contact factory for availability.
Typical Operating Circuit

Low-Voltage, Quad, SPDT,
 CMOS Analog Switch

ABSOLUTE MAXIMUM RATINGS

Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
Plastic DIP (derate $10.53 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	
Narrow SO (derate $8.70 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	
CERDIP (derate $10.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).............$~ 800 m W ~$	
TSSOP (derate $11.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	
Operating Temperature Ranges	
MAX394C_P	
MAX394E_P ... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
MAX394MJP ..-55 ${ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (soldering, 10s)	$+300^{\circ}$

Note 1: Signals on NC, NO, COM, or IN exceeding V+ or V- are clamped by internal diodes. Limit forward diode current to maximum current rating

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

$\left(\mathrm{V}+=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}-=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V} \operatorname{INL}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS		TEMP. RANGE	MIN	$\begin{aligned} & \text { TYP } \\ & \text { (Note 2) } \end{aligned}$	MAX	UNITS
SWITCH								
Analog Signal Range	VCOM, VNO, VNC	(Note 3)			V-		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V} \text { NO }= \pm 3.5 \mathrm{~V}, \\ & \mathrm{ICOM}=10 \mathrm{~mA}, \\ & \mathrm{~V} \text { INH }=2.4 \mathrm{~V}, \\ & \mathrm{~V} \text { INL }=0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}= \\ & +25^{\circ} \mathrm{C} \end{aligned}$	C, E		20	35	Ω
				M		20	30	
			$\begin{aligned} & T_{A}=T_{M I N} \\ & \text { to } T_{\text {MAX }} \end{aligned}$	C, E, M			45	
On-Resistance Match Between Channels (Note 4)	$\triangle \mathrm{RoN}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}= \pm 3 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA}, \\ & \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}= \\ & +25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	C, E, M		0.5	2	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to TMAX	C, E, M			4	
On-Resistance Flatness (Note 4)	RFLAt(ON)	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=3 \mathrm{~V}, 0 \mathrm{~V} \text {, } \\ & -3 \mathrm{~V} ; \mathrm{ICOM}=10 \mathrm{~mA}, \\ & \mathrm{~V}+=5 \mathrm{~V} ; \mathrm{V}-=-5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}= \\ & +25^{\circ} \mathrm{C} \end{aligned}$	C, E, M			4	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to TMAX	C, E, M			6	
NC or NO Off-Leakage Current (Note 5)	$\begin{aligned} & \text { INC(OFF) } \\ & \text { or } \\ & \text { INO(OFF) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}= \pm 4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}= \pm 4.5 \mathrm{~V}, \\ & \mathrm{~V}+=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}= \\ & +25^{\circ} \mathrm{C} \end{aligned}$	C, E	-0.2	-0.01	+0.2	nA
				M	-0.1	-0.01	+0.1	
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to TMAX	C, E	-2.5		+2.5	
				M	-20		+20	
COM Leakage Current (Note 5)	ICOM(ON)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}= \pm 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}= \pm 4.5 \mathrm{~V}, \\ & \mathrm{~V}+=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}= \\ & +25^{\circ} \mathrm{C} \end{aligned}$	C, E	-0.4	-0.04	+0.4	nA
				M	-0.2	-0.04	+0.2	
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to TMAX	C, E	-5.0		+5.0	
				M	-20		+20	

Low-Voltage, Quad, SPDT, CMOS Analog Switch

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

$\left(\mathrm{V}+=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}-=-5 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}, \mathrm{~V} \operatorname{INH}=2.4 \mathrm{~V}, \mathrm{~V} \operatorname{INL}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS		MIN	$\begin{gathered} \text { TYP } \\ \text { (Note 2) } \end{gathered}$	MAX	UNITS
DIGITAL LOGIC INPUT							
Input Current with Input Voltage High	IINH	$\mathrm{V} \mathrm{IN}=2.4 \mathrm{~V}$, all others $=0.8 \mathrm{~V}$		-1.0	+0.005	+1.0	$\mu \mathrm{A}$
Input Current with Input Voltage Low	IINL	$\mathrm{VIN}=0.8 \mathrm{~V}$, all others $=2.4 \mathrm{~V}$		-1.0	+0.005	+1.0	$\mu \mathrm{A}$
Logic High Input Voltage	VA_H		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	2.4			V
Logic Low Input Voltage	$\mathrm{V}_{\text {A_L }}$		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.8	V
DYNAMIC							
Turn-On Time	ton	VCOM $=3 \mathrm{~V}$, Figure 2	$\mathrm{T}_{\text {A }}=+25^{\circ} \mathrm{C}$		82	130	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			175	
Turn-Off Time	toFF	$\mathrm{VCOM}=3 \mathrm{~V}$, Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		57	75	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			100	
Break-Before-Make Time Delay (Note 3)	tD	Figure 5	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	2	10		ns
Charge Injection (Note 3)	VCte	$\begin{aligned} & C_{L}=1.0 n F, V_{G E N}=0 V, \\ & \text { RGEN }=0 \Omega \text {, Figure } 6 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		5	10	pC
Off-Isolation (Note 6)	VISO	$\begin{aligned} & \mathrm{RL}=50 \Omega, C_{L}=5 \mathrm{pF}, \\ & \mathrm{f}=1 \mathrm{MHz}, \text { Figure } 3 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		66		dBm
Crosstalk (Note 7)	VCT	$\begin{aligned} & \text { RL = } 50 \Omega, C_{L}=5 \mathrm{pF}, \\ & \mathrm{f}=1 \mathrm{MHz}, \text { Figure } 8 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		88		dBm
Off-Capacitance	CofF	$f=1 \mathrm{MHz}$, Figure 3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		12		pF
COM Off-Capacitance	CCOM(OFF)	$f=1 \mathrm{MHz}$, Figure 3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		12		pF
Channel On-Capacitance	CCOM(ON)	$f=1 \mathrm{MHz}$, Figure 4	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		39		pF
SUPPLY							
Power-Supply Range				± 2.4		± 8	V
Positive Supply Current	I+	All channels on or off,$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } \mathrm{V}+$		-1.0	+0.06	+1.0	$\mu \mathrm{A}$
Negative Supply Current	I-	All channels on or off,$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \text { or } \mathrm{V}_{+}$		-1.0	-0.01	+1.0	$\mu \mathrm{A}$

Low-Voltage, Quad, SPDT,
 CMOS Analog Switch

ELECTRICAL CHARACTERISTICS—Single +5V Supply
$\left(\mathrm{V}+=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V} \operatorname{INH}=2.4 \mathrm{~V}, \mathrm{~V} \operatorname{INL}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS		TEMP. RANGE	MIN	$\begin{gathered} \text { TYP } \\ \text { (Note 2) } \end{gathered}$	MAX	UNITS
SWITCH								
Analog Signal Range	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}, \\ & \mathrm{~V}_{\mathrm{NO}}, \\ & \mathrm{~V}_{\mathrm{NC}} \end{aligned}$	(Note 3)			OV		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=5.0 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=3.5 \mathrm{~V} \text {, } \\ & \mathrm{ICOM}_{\mathrm{COM}} 1.0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \\ & \mathrm{~V} \text { INL }=0.8 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	C, E		25	65	Ω
				M			60	
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to TMAX	C, E, M			75	
On-Resistance Match Between Channels (Note 4)	$\Delta \mathrm{RoN}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=3 \mathrm{~V} \text {, } \\ & \mathrm{ICOM}=1.0 \mathrm{~mA}, \\ & \mathrm{~V}+=5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	C, E, M		0.5	2	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ $\text { to } \mathrm{T}_{\mathrm{MAX}}$	C, E, M			4	
On-Resistance Flatness (Note 4)	RFLAT(ON)	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=3 \mathrm{~V}, 2 \mathrm{~V}, \\ & 1 \mathrm{~V} \text {; } \mathrm{IcOM}=1.0 \mathrm{~mA} ; \\ & \mathrm{V}+=5 \mathrm{~V} ; \mathrm{V}-=0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	C, E, M			6	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to TMAX	C, E, M			8	
NC or NO Off-Leakage Current (Note 8)	$\begin{aligned} & \text { INC(OFF) } \\ & \text { or } \\ & \text { INO(OFF) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=4.5 \mathrm{~V}, \\ & \mathrm{~V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	C, E	-0.2	-0.01	+0.2	nA
				M	-0.1	-0.01	+0.1	
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to TMAX	C, E	-2.5		+2.5	
				M	-20		+20	
COM Leakage Current (Note 8)	ICOM(ON)	V com $=4.5 \mathrm{~V}$, V_{NC} or $\mathrm{V}_{\mathrm{NO}}=4.5 \mathrm{~V}$, $\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	C, E	-0.4	-0.04	+0.4	nA
				M	-0.2	-0.04	+0.2	
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$$\text { to } \mathrm{T}_{\mathrm{MAX}}$	C, E	-5.0		+5.0	
				M	-20		+20	
DIGITAL LOGIC INPUT								
Input Current with Input Voltage High	IINH	$\mathrm{V} \mathrm{IN}=2.4 \mathrm{~V}$, all others $=0.8 \mathrm{~V}$			-1.0	+0.005	+1.0	$\mu \mathrm{A}$
Input Current with Input Voltage Low	IINL	$\mathrm{V} \mathrm{IN}=0.8 \mathrm{~V}$, all others $=2.4 \mathrm{~V}$			-1.0	+0.005	+1.0	$\mu \mathrm{A}$

Low-Voltage, Quad, SPDT,
 CMOS Analog Switch

ELECTRICAL CHARACTERISTICS-Single +5 V Supply (continued)

$\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V} \operatorname{VINH}=2.4 \mathrm{~V}, \mathrm{~V} \operatorname{INL}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS
DYNAMIC							
Turn-On Time (Note 3)	ton	$V_{\text {COM }}=3 \mathrm{~V}$, Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		160	250	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			300	
Turn-Off Time (Note 3)	toff	$V_{\text {COM }}=3 V$, Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		60	125	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to TMAX			175	
Break-Before-Make Time Delay (Note 3)	tD		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	5	20		ns
Charge Injection (Note 3)	$V_{\text {cte }}$	$\begin{aligned} & \mathrm{CL}=1.0 \mathrm{nF}, \mathrm{VGEN}=0 \mathrm{~V}, \\ & \text { RGEN }=0 \Omega \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		3	5	pC
SUPPLY							
Power-Supply Range	V+			2.4		16	V
Positive Supply Current	I+	All channels on or off, V $\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$	$=0 \mathrm{~V} \text { or } \mathrm{V}+\text {, }$	-1.0	+0.01	+1.0	$\mu \mathrm{A}$
Negative Supply Current	I-	All channels on or off, VIN $\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$	$\mathrm{V}=0 \mathrm{~V} \text { or } \mathrm{V}+\text {, }$	-1.0	-0.01	+1.0	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS—Single +3.3V Supply

($\mathrm{V}+=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		TEMP. RANGE	MIN	TYP (Note 2)	MAX	UNITS
SWITCH								
Analog Signal Range	$V_{\text {COM, }}$ V_{NO}, V_{NC}	(Note 3)			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=1.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=1.0 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {INH }}=2.4 \mathrm{~V}, \\ & \mathrm{~V}_{\text {INL }}=0.8 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	C, E		75	185	Ω
				M			175	
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $T_{\text {max }}$	C, E, M			250	
NC or NO Off-Leakage Current (Note 8)	$\begin{aligned} & \text { INC(OFF) } \\ & \text { or } \\ & \text { I }^{\prime} \mathrm{O}(\mathrm{OFF}) \end{aligned}$	$V_{C O M}=0 V$, V_{NC} or $\mathrm{V}_{\mathrm{NO}}=3 \mathrm{~V}$, $\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	C, E	-0.2	-0.01	+0.2	nA
				M	-0.1	-0.01	+0.1	
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to TMAX	C, E	-2.5		+2.5	
				M	-5.0		+5.0	
COM Leakage Current (Note 8)	ICOM(ON)	$\mathrm{VCOM}=3 \mathrm{~V}$, V_{NC} or $\mathrm{V}_{\mathrm{NO}}=3 \mathrm{~V}$, $\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	C, E	-0.4	-0.04	+0.4	nA
				M	-0.2	-0.04	+0.2	
			$T_{A}=T_{M I N}$ to TMAX	C, E	-5.0		+5.0	
				M	-20.0		+20.0	

Low-Voltage, Quad, SPDT,
 CMOS Analog Switch

ELECTRICAL CHARACTERISTICS-Single +3.3V Supply (continued)
($\mathrm{V}+=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS
DIGITAL LOGIC INPUT							
Input Current with Input Voltage High	IINH	V IN $=2.4 \mathrm{~V}$, all others $=0.8 \mathrm{~V}$		-1.0	+0.005	+1.0	$\mu \mathrm{A}$
Input Current with Input Voltage Low	IINL	V IN $=0.8 \mathrm{~V}$, all others $=2.4 \mathrm{~V}$		-1.0	+0.005	+1.0	$\mu \mathrm{A}$
DYNAMIC							
Turn-On Time (Note 3)	ton	$\mathrm{VCOM}=1.5 \mathrm{~V}$, Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			400	ns
Turn-Off Time (Note 3)	toff	$V_{\text {COM }}=1.5 \mathrm{~V}$, Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			150	ns
Break-Before-Make Delay (Note 3)	tD	Figure 5	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	5	20		ns
Charge Injection (Note 3)	$V_{\text {cte }}$	$\begin{aligned} & C L=1.0 n F, \mathrm{VGEN}=0 \mathrm{~V}, \\ & \text { RGEN }=0 \Omega \text {, Figure } 6 \end{aligned}$	$T_{A}=+25^{\circ} \mathrm{C}$		1	5	pC
SUPPLY							
Power-Supply Range	V+			2.7		16	V
Positive Supply Current	I+	All channels on or off, $\mathrm{VIN}=0 \mathrm{~V}$ or $\mathrm{V}+$,$\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$		-1.0	+0.01	+1.0	$\mu \mathrm{A}$
Negative Supply Current	I-	All channels on or off, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or $\mathrm{V}+$,$\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$		-1.0	-0.01	+1.0	$\mu \mathrm{A}$

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
Note 3: Guaranteed by design.
Note 4: $\quad \Delta R O N=\Delta R O N(\max)-\Delta R O N(\min)$. On-resistance match between channels and flatness are guaranteed only with specified voltages. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.
Note 5: Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at room temperature.
Note 6: See Figure 6. Off-isolation $=20 \log _{10} V_{C O M} / V_{N C}$ or $V_{N O}, V_{C O M}=o u t p u t, V_{N C}$ or $N O=$ input to off switch.
Note 7: Between any two switches. See Figure 3.
Note 8: Leakage testing at single supply is guaranteed by testing with dual supplies.

Low-Voltage, Quad, SPDT, CMOS Analog Switch

Typical Operating Characteristics

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Low-Voltage, Quad, SPDT,
 CMOS Analog Switch

Typical Operating Characteristics (continued)
$\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted).

Low-Voltage, Quad, SPDT, CMOS Analog Switch

		Pin Description
PIN	NAME	FUNCTION
$1,10,11,20$	IN1-IN4	Logic-Level Inputs
$2,9,12,19$	NO1-NO4	Normally Open Switches
$3,8,13,18$	COM1-COM4	Common Switch Poles
$4,7,14,17$	NC1-NC4	Normally Closed Switches
5	V-	Negative Power Supply
6	GND	Ground
15	N.C.	Not Internally Connected
16	V+	Positive Power Supply

Applications Information

Operation with Supply Voltages Other than $\pm 5 \mathrm{~V}$
The MAX394 switch operates with $\pm 2.7 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$ bipolar supplies and $\mathrm{a}+2.7 \mathrm{~V}$ to +15 V single supply. In either case, analog signals ranging from $\mathrm{V}+$ to V - can be switched. The Typical Operating Characteristics graphs show the typical on-resistance variation with analog signal and supply voltage. The usual on-resistance temperature coefficient is $0.5 \% /{ }^{\circ} \mathrm{C}$ (typ).

Power-Supply Sequencing and Overvoltage Protection
Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings may cause permanent damage to the device. Proper power-supply sequencing is recommended for all CMOS devices. Always apply $\mathrm{V}+$, followed by V - (when using split supplies) before applying analog signals or logic inputs, especially if the analog or logic signals are not currentlimited. If this sequencing is not possible and if the analog or logic inputs are not current-limited to less than

Figure 1. Overvoltage Protection Using Blocking Diodes

30mA, add a single diode (D1) for single-supply operation (Figure 1). If using dual supplies or if the analog signal can dip below ground in single-supply operation, add two small signal diodes (D1, D2), as shown in Figure 1. Adding protection diodes reduces the analog signal range to a diode drop above V- for D2. Leakage is not affected by adding the diodes. On-resistance increases by a small amount at low supply voltages. Maximum supply voltage (V - to $\mathrm{V}+$) must not exceed 17V.
Adding diodes D1 and D2 also protects against some overvoltage situations. With the circuit of Figure 1, if the supply voltage is below the absolute maximum rating and if a fault voltage up to the absolute maximum rating is applied to an analog signal pin, no damage will result. For example, with $\pm 5 \mathrm{~V}$ supplies, analog signals up to $\pm 8.5 \mathrm{~V}$ will not damage the circuit of Figure 1. If only a single fault signal is present, the fault voltage can go to +12 V or -12 V without damage.

Low-Voltage, Quad, SPDT,
 CMOS Analog Switch

Figure 2. Switching-Time Test Circuit

Figure 3. Channel Off-Capacitance

Figure 4. Channel On-Capacitance

CLINCLUDES FIXTURE AND STRAY CAPACITANCE. LOGIC 0 INPUT.

Figure 5. Break-Before-Make Delay

Low-Voltage, Quad, SPDT, CMOS Analog Switch

Test Circuits/Timing Diagrams (continued)

Figure 6. Charge Injection

Figure 7. Off Isolation

Figure 8. Crosstalk Test Circuit

Low-Voltage, Quad, SPDT, CMOS Analog Switch

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
20 Plastic DIP	P20-4	$\underline{\mathbf{2 1 - 0 0 4 3}}$
20 Wide SO	W26-1	$\underline{\mathbf{2 1 - 0 0 4 2}}$
20 TSSOP	U20-2	$\underline{\mathbf{2 1 - 0 0 6 6}}$
20 CERDIP	J20-2	$\underline{\mathbf{2 1 - 0 3 3 5}}$

Low-Voltage, Quad, SPDT, CMOS Analog Switch

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
2	$9 / 08$	Added information for rugged plastic product	1

[^0]
[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

