

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China







#### MAX40200 Evaluation Kit

# Evaluates: MAX40200 "Ideal-Diode" in a 4-Bump WLP

#### **General Description**

The MAX40200 evaluation kit (EV kit) provides a proven design to evaluate the MAX40200 "ideal-diode". This EV kit demonstrates the MAX40200 in a tiny, space-saving 4-bump wafer-level package (WLP). The MAX40200 is also available in a 5-pin SOT23 (MAX40200AUK+), which is not compatible with this EV kit.

The MAX40200 EV kit PCB comes with two MAX40200ANS+ devices installed. The MAX40200 device is a current-switch, which drops so little voltage as to approximate an "ideal diode".

The MAX40200 parts are available in a tiny 0.73 mm x 0.73 mm 4-bump WLP with a 0.35 mm bump pitch and is only 0.5 mm high. It operates over the extended -40°C to +125° C temperature range.

#### **Features**

- Drops Less Than 45mV at 500mA
- Less than 2µA Leakage When Reverse-Biased
- Supply Voltage Range: Between 1.5V and 5.5V
- Low Supply Quiescent Current: 7μA (typ), 18μA (max)
- Thermally Self-Protecting
- Tiny 0.73mm x 0.73mm 4-bump WLP
- -40°C to +125°C Temperature Range
- Evaluates MAX40200ANS+
- Accommodates Easy-to-Use Components
- Proven PCB Layout
- Fully Assembled and Tested

Ordering Information appears at end of data sheet.



#### MAX40200 Evaluation Kit

# Evaluates: MAX40200 "Ideal-Diode" in a 4-Bump WLP

#### **Quick Start**

#### **Required Equipment**

- MAX40200 EV kit
- +6V DC power supply
- Electronic load capable of sinking 1A (e.g., HP6060B)
- · Precision voltmeter

#### **Procedure**

The EV kit is fully assembled and tested. Follow the below instructions to verify board operation. Caution: Do not turn on the power supply or the electronic load until all the connections are complete.

- Connect the positive terminal of the 3.3V supply to the VCC pad. Connect the negative terminal of the 3.3V supply to the GND pad.
- Connect the electronic load's positive terminal to the OUT pad and the negative terminal to the GND pad and set to 500mA sink.

- 3. Connect the voltmeter across the VCC and OUT pads.
- 4. Verify all the shunts are in default positions, as shown in Table 1.
- 5. Do not install J3.
- 6. Turn on the power supplies.
- 7. Turn on the electronic load and verify that the current flowing is equal to the set value of 500mA.
- 8. Verify that the forward voltage or (V<sub>DD</sub> V<sub>OUT</sub>) voltmeter reading is approximately close to 50mV.
- 9. Turn off the electronic load.
- 10. Set the electronic load to sink 100mA.
- 11. Turn on the electronic load.
- 12. Verify that the forward voltage or (V<sub>DD</sub> V<sub>OUT</sub>) voltmeter reading is close to approximately 23mV.

Table 1. Jumper Functions (J1 – J3)

| JUMPER LABEL | DEFAULT POSITION   | FUNCTION                                                                            |  |
|--------------|--------------------|-------------------------------------------------------------------------------------|--|
| J1           | 1-2*               | Enables U1                                                                          |  |
| JI           | 2-3                | Disables U1                                                                         |  |
| 10           | 1-2*               | Enables U2                                                                          |  |
| J2           | 2-3                | Disables U2                                                                         |  |
|              | Not Installed*     | Devices U1 and U2 Enable operates independently                                     |  |
| J3           | Installed (Note 1) | Connects Enable (EN) input of U1 and U2 together. User-supplied enable input signal |  |

<sup>\*</sup>When installing J3, remove J1 and J2 from the EV kit.

Evaluates: MAX40200 "Ideal-Diode" in a 4-Bump WLP

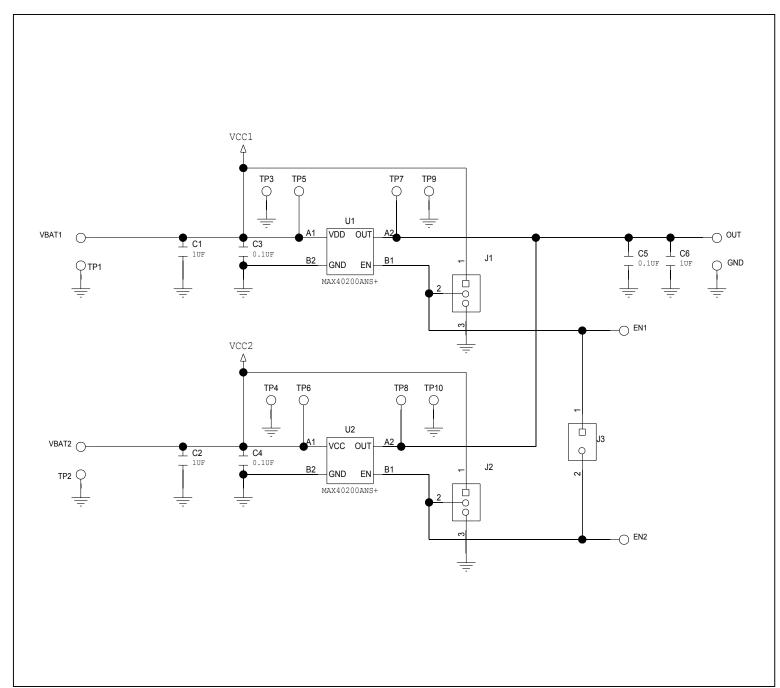
# **Detailed Description of Hardware** (or Software)

The MAX40200 EV kit provides a proven design to evaluate the MAX40200 4-bump, space-saving, "ideal-diode." The device blocks reverse voltages and passes current when forward-biased, just as a normal diode would. The device, when forward-biased and enabled, conducts with as little as 45mV of voltage drop while carrying currents as high as 500mA. At higher currents (up to 1A), the voltage drop increases linearly. The MAX40200 protects itself, and any down-stream circuitry, from overtemperature conditions.

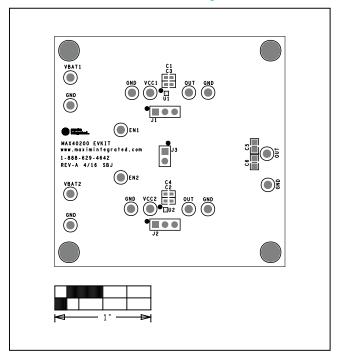
When disabled (EN = low), the MAX40200 can block voltages up to 6V in either direction, making it suitable for most low-voltage portable electronic devices. The low ( $1\mu$ A typ.) supply current is independent of the load current. The MAX40200 operates from supplies within the range of 1.5V and 5.5V.

#### **Theory of Operation**

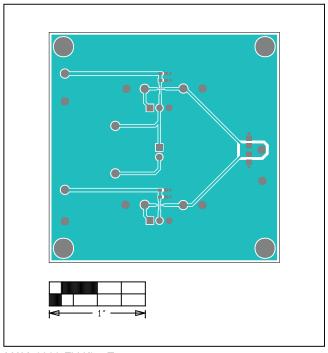
The two "ideal-diode" devices may be used independently or together. The PCB circuit mimics a typical wall adaptor/battery-charging circuit having different  $V_{\text{CC1}}$  and  $V_{\text{CC2}}$ . They are connected to the common output, which is where the load is situated.


When used independently or together, enable inputs EN1 and EN2 turns the device on or off. The device that is turned on conducts current to the load. The device that is turned off does not conduct current to the load from its associated  $V_{CC}$  input.

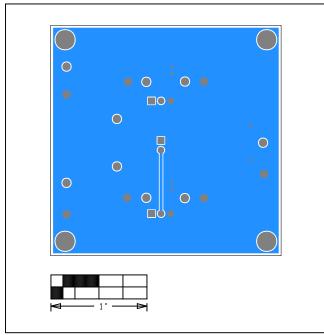
#### MAX40200 EV Kit Bill of Materials


| ITEM | REF_DES                                    | DNI/DNP | QTY | MFG PART #                             | MANUFACTURER              | VALUE        | DESCRIPTION                                                                                                                     | COMMENTS |
|------|--------------------------------------------|---------|-----|----------------------------------------|---------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------|----------|
| 1    | C1, C2                                     | -       | 2   | GRM188R71E105KA12D;<br>CGA3E1X7R1E105K | MURATA                    | 1UF          | CAPACITOR; SMT (0603);<br>CERAMIC CHIP; 1UF; 25V;<br>TOL=10%; MODEL=GRM SERIES;<br>TG=-55 DEGC TO +125 DEGC; TC=X7R             |          |
| 2    | C3, C4                                     | -       | 2   | C1608X7R1E104K080AA                    | TDK                       | 0.1UF        | CAPACITOR; SMT (0603);<br>CERAMIC CHIP; 0.1UF; 25V;<br>TOL=10%; MODEL=C SERIES;<br>TG=-55 DEGC TO +125 DEGC; TC=X7R             |          |
| 3    | C5                                         | -       | 1   | C0805C104K5RAC;<br>GRM21BR71H104K      | KEMET                     | 0.1UF        | CAPACITOR; SMT (0805);<br>CERAMIC CHIP; 0.1UF; 50V;<br>TOL=10%; MODEL=;<br>TG=-55 DEGC TO +125 DEGC; TC=X7R                     |          |
| 4    | C6                                         | -       | 1   | 08053C105JAT2A                         | AVX                       | 1UF          | CAPACITOR; SMT (0805);<br>CERAMIC CHIP; 1UF; 25V;<br>TOL=5%; MODEL=X7R;<br>TG=-55 DEGC TO +85 DEGC; TC=+/-                      |          |
|      | EN1, EN2, OUT,<br>TP5-TP8, VBAT1,<br>VBAT2 | -       | 9   | 5005                                   | KEYSTONE                  | N/A          | TEST POINT; PIN DIA=0.125IN;<br>TOTAL LENGTH=0.35IN;<br>BOARD HOLE=0.063IN; RED;<br>PHOSPHOR BRONZE WIRE SILVER PLATE FINISH;   |          |
| 6    | GND, TP1-TP4,<br>TP9, TP10                 | -       | 7   | 5006                                   | KEYSTONE                  | N/A          | TEST POINT; PIN DIA=0.125IN;<br>TOTAL LENGTH=0.35IN;<br>BOARD HOLE=0.063IN; BLACK;<br>PHOSPHOR BRONZE WIRE SILVER PLATE FINISH; |          |
| 7    | J1, J2                                     | -       | 2   | PBC03SAAN                              | SULLINS                   | PBC03SAAN    | CONNECTOR; MALE; THROUGH HOLE;<br>BREAKAWAY; STRAIGHT; 3PINS;<br>-65 DEGC TO +125 DEGC                                          |          |
| 8    | J3                                         | -       | 1   |                                        | SULLINS ELECTRONICS CORP. | PBC02SAAN    | CONNECTOR; MALE; THROUGH HOLE;<br>BREAKAWAY; STRAIGHT; 2PINS;<br>-65 DEGC TO +125 DEGC                                          |          |
|      | U1,U2                                      | -       |     |                                        | MAXIM                     | MAX40200ANS+ | EVKIT PART-IC; SWTC; IDEAL DIODE;<br>OZ34; PACKAGE OUTLINE: 21-0744;<br>PACKAGE CODE: N40C0-1; WLP4                             |          |
| 10   | PCB                                        | -       | 1   | MAX                                    | MAXIM                     | PCB          | PCB Board:MAX40200 EVALUATION KIT                                                                                               |          |

www.maximintegrated.com Maxim Integrated | 3


# **MAX40200 EV Kit Schematic**




## **MAX40200 EV Kit PCB Layout**



MAX40200 EV Kit-Top Silkscreen



MAX40200 EV Kit—Top



MAX40200 EV Kit—Bottom

## **Ordering Information**

| PART           | TYPE   |
|----------------|--------|
| MAX40200EVKIT# | EV Kit |

#Denotes RoHS compliant.

www.maximintegrated.com Maxim Integrated | 5

## MAX40200 Evaluation Kit

Evaluates: MAX40200 "Ideal-Diode"

in a 4-Bump WLP

## **Revision History**

| REVISION<br>NUMBER | REVISION DATE | DESCRIPTION     | PAGES<br>CHANGED |
|--------------------|---------------|-----------------|------------------|
| 0                  | 11/16         | Initial release |                  |

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time.