: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Single/Dual/Quad, Micropower, Single-Supply, Rail-to-Rail Op Amps

General Description

The single MAX4091, dual MAX4092, and quad MAX4094 operational amplifiers combine excellent DC accuracy with Rail-to-Rail ${ }^{\circledR}$ operation at the input and output. Since the common-mode voltage extends from $V_{C C}$ to $V_{E E}$, the devices can operate from either a single supply (2.7 V to 6 V) or split supplies $(\pm 1.35 \mathrm{~V}$ to $\pm 3 \mathrm{~V}$). Each op amp requires less than $130 \mu \mathrm{~A}$ of supply current. Even with this low current, the op amps are capable of driving a $1 \mathrm{k} \Omega$ load, and the input-referred voltage noise is only $12 \mathrm{nV} / \sqrt{\mathrm{Hz}}$. In addition, these op amps can drive loads in excess of 2000pF.
The precision performance of the MAX4091/MAX4092/ MAX4094 combined with their wide input and output dynamic range, low-voltage, single-supply operation, and very low supply current, make them an ideal choice for battery-operated equipment, industrial, and data acquisition and control applications. In addition, the MAX4091 is available in space-saving 5-pin SOT23, 8 -pin $\mu \mathrm{MAX}$, and 8-pin SO packages. The MAX4092 is available in 8-pin $\mu \mathrm{MAX}$ and SO packages, and the MAX4094 is available in 14-pin TSSOP and 14-pin SO packages.

Applications
Portable Equipment
Battery-Powered Instruments
Data Acquisition and Control
Low-Voltage Signal Conditioning

Features

- Low-Voltage, Single-Supply Operation (2.7V to 6V)
- Beyond-the-Rails ${ }^{\text {TM }}$ Inputs
- No Phase Reversal for Overdriven Inputs
- $30 \mu \mathrm{~V}$ Offset Voltage
- Rail-to-Rail Output Swing with $1 \mathrm{k} \Omega$ Load
- Unity-Gain Stable with 2000pF Load
- $165 \mu \mathrm{~A}$ (max) Quiescent Current Per Op Amp
- 500kHz Gain-Bandwidth Product
- High Voltage Gain (115dB)
- High Common-Mode Rejection Ratio (90dB) and Power-Supply Rejection Ratio (100dB)
- Temperature Range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4091AUK-T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{SOT} 23-5$
MAX4091ASA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO
MAX4091AUA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX4092ASA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO
MAX4092AUA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX4094AUD	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 TSSOP
MAX4094ASD	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 SO

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
Beyond-the-Rails is a trademark of Maxim Integrated Products, Inc.

Single/Dual/Quad, Micropower, Single-Supply, Rail-to-Rail Op Amps

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC to $\mathrm{VEE}^{\text {E }}$)
VEE)..
\qquad
Common-Mode Input Voltage...........(VCC +0.3 V) to (VEE -0.3 V)
Differential Input Voltage
\qquad .$\pm\left(V_{C C}-V_{E E}\right)$
Input Current (IN+, IN-) ... $\pm 10 \mathrm{~mA}$
Output Short-Circuit Duration
OUT shorted to GND or VCC
\qquad ..Continuous
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) 5-Pin SOT23 (derate $7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).
\qquad .571 mW

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}\right.$ to $6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{GND}, \mathrm{V}_{\mathrm{CM}}=0, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
DC CHARACTERISTICS								
Supply Voltage Range	VCC	Inferred from PSRR test			2.7		6.0	V
Supply Current	Icc	$V_{C M}=V_{C C} / 2$	$V_{C C}=2.7 \mathrm{~V}$			115	165	$\mu \mathrm{A}$
			$V_{C C}=5 \mathrm{~V}$			130	185	
Input Offset Voltage	VOS	$V_{C M}=V_{E E}$ to $V_{C C}$				0.03	1.4	mV
Input Bias Current	IB	$V_{C M}=V_{\text {EE }}$ to $V_{C C}$				20	180	nA
Input Offset Current	los	$\mathrm{V}_{C M}=\mathrm{V}_{\text {EE }}$ to $\mathrm{V}_{C C}$				0.2	7	nA
Input Common-Mode Range	V_{CM}	Inferred from CMRR test			VEE-0.05		$\mathrm{V}_{C C}+0.05$	V
Common-Mode Rejection Ratio	CMRR	$\left(\mathrm{V}_{\text {EE }}-0.05 \mathrm{~V}\right) \leq \mathrm{V}_{\text {CM }} \leq\left(\mathrm{V}_{C C}+0.05 \mathrm{~V}\right)$			71	90		dB
Power-Supply Rejection Ratio	PSRR	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{cc}} \leq 6 \mathrm{~V}$			86	100		dB
Large-Signal Voltage Gain (Note 1)	Avol	$\begin{aligned} & V_{C C}=2.7 \mathrm{~V}, R_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & 0.25 \mathrm{~V} \leq \mathrm{VOUT} \leq 2.45 \mathrm{~V} \end{aligned}$		Sourcing	83	105		dB
				Sinking	81	105		
		$\begin{aligned} & V_{C C}=2.7 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & 0.5 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 2.2 \mathrm{~V} \end{aligned}$		Sourcing	91	105		
				Sinking	78	90		
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & 0.25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{OUT}} \leq 4.75 \mathrm{~V} \end{aligned}$		Sourcing	87	115		
				Sinking	83	115		
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & 0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{OUT}} \leq 4.5 \mathrm{~V} \end{aligned}$		Sourcing	97	110		
				Sinking	84	100		
Output Voltage Swing High (Note 1)	VOH	IVCC - Vout		$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$		15	69	mV
				$R \mathrm{~L}=1 \mathrm{k} \Omega$		130	210	
Output Voltage Swing Low (Note 1)	VoL	IVout - Veel		$\mathrm{RL}_{\mathrm{L}}=100 \mathrm{k} \Omega$		15	70	mV
				$R \mathrm{~L}=1 \mathrm{k} \Omega$		80	220	
AC CHARACTERISTICS								
Gain-Bandwidth Product	GBWP	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$				500		kHz
Phase Margin	фM	$R \mathrm{~L}=100 \mathrm{k} \Omega, \mathrm{CL}=100 \mathrm{pF}$				60		degrees
Gain Margin		$R \mathrm{~L}=100 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$				10		dB
Slew Rate	SR	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$				0.20		V/us

Single/Dual/Quad, Micropower, Single-Supply, Rail-to-Rail Op Amps

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}\right.$ to $6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{GND}, \mathrm{V}_{\mathrm{CM}}=0$, $\mathrm{VOUT}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Input-Noise Voltage Density	eN	$\mathrm{f}=10 \mathrm{kHz}$	12		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input-Noise Current Density		$\mathrm{f}=10 \mathrm{kHz}$	1.5		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Noise Voltage (0.1 Hz to 10 Hz)			16		$\mu \mathrm{V}_{\text {RMS }}$
Total Harmonic Distortion Plus Noise	THD + N	$\begin{aligned} & f=1 \mathrm{kHz}, R_{L}=10 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}, \\ & A V=1, V_{\text {OUT }}=2 V_{P-P} \end{aligned}$	0.003		\%
Capacitive-Load Stability	CLOAD	$\mathrm{AV}=1$	2000		pF
Settling Time	ts	To 0.1\%, 2V step	12		$\mu \mathrm{s}$
Power-On Time	ton	$\begin{aligned} & V_{C C}=0 \text { to } 3 V \text { step, } \mathrm{V} I \mathrm{~N}=\mathrm{V} C \mathrm{C} / 2, \\ & \mathrm{~A}_{\mathrm{V}}=1 \end{aligned}$	2		$\mu \mathrm{s}$
Op-Amp Isolation		$\mathrm{f}=1 \mathrm{kHz}$ (MAX4092/MAX4094)	125		dB

ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=2.7 \mathrm{~V}\right.$ to $6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{GND}, \mathrm{V}_{\mathrm{CM}}=0, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values specified at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP MAX	UNITS
DC CHARACTERISTICS						
Supply Voltage Range	VCC	Inferred from PSRR test		2.7	6.0	V
Supply Current	IcC	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} / 2$	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		200	$\mu \mathrm{A}$
			$V_{C C}=5 \mathrm{~V}$		225	
Input Offset Voltage	Vos	$V_{C M}=V_{E E}$ to $V_{C C}$			± 3.5	mV
Input Offset Voltage Tempco	$\Delta \mathrm{V}$ OS/ $/ \mathrm{T}$				± 2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	IB	$V_{C M}=V_{\text {EE }}$ to $V_{C C}$			± 200	nA
Input Offset Current	los	$\mathrm{V}_{C M}=\mathrm{V}_{\text {EE }}$ to $\mathrm{V}_{\text {CC }}$			± 20	nA
Input Common-Mode Range	$\mathrm{V}_{\text {CM }}$	Inferred from CMRR test		$V_{\text {EE }}-0.05$	$\mathrm{V}_{\text {CC }}+0.05$	V
Common-Mode Rejection Ratio	CMRR	$\left(V_{E E}-0.05 \mathrm{~V}\right) \leq \mathrm{V}_{\mathrm{CM}} \leq(\mathrm{VCC}+0.05 \mathrm{~V})$		62		dB
Power-Supply Rejection Ratio	PSRR	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V}$		80		dB
Large-Signal Voltage Gain (Note 1)	Avol	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & 0.25 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 2.45 \mathrm{~V} \end{aligned}$	Sourcing	82		dB
			Sinking	80		
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & 0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{OUT}} \leq 2.2 \mathrm{~V} \end{aligned}$	Sourcing	90		
			Sinking	76		
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & 0.25 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 4.75 \mathrm{~V} \end{aligned}$	Sourcing	86		
			Sinking	82		
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & 0.5 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 4.5 \mathrm{~V} \end{aligned}$	Sourcing	94		
			Sinking	80		
Output Voltage Swing High (Note 1)	VOH	$\mid \mathrm{V}_{\text {cc }}$-Vout \mid	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$		75	mV
			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		250	
Output Voltage Swing Low (Note 1)	VoL	$\left\|V_{\text {Out }} \mathrm{V}_{\text {EE }}\right\|$	$R \mathrm{~L}=100 \mathrm{k} \Omega$		75	mV
			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		250	

Note 1: RL is connected to $V_{E E}$ for Avol sourcing and $V_{O H}$ tests. RL is connected to $V_{C C}$ for Avol sinking and Vol tests.
Note 2: All specifications are 100% tested at $T_{A}=+25^{\circ} \mathrm{C}$. Specification limits over temperature ($T_{A}=T_{\text {MIN }}$ to $T_{M A X}$) are guaranteed by design, not production tested.

Single/Dual/Quad, Micropower, Single-Supply, Rail-to-Rail Op Amps

CHANNEL ISOLATION vs. FREQUENCY

COMMON-MODE REJECTION RATIO
vs. TEMPERATURE

GAIN AND PHASE
vs. FREQUENCY

OFFSET VOLTAGE
vs. TEMPERATURE

INPUT BIAS CURRENT vs. COMMON-MODE VOLTAGE

POWER-SUPPLY REJECTION RATIO vs. FREQUENCY

OFFSET VOLTAGE vs. COMMON-MODE VOLTAGE

INPUT BIAS CURRENT vs. TEMPERATURE

Single/Dual/Quad, Micropower, Single-Supply, Rail-to-Rail Op Amps

Typical Operating Characteristics (continued)
($\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Single/Dual/Quad, Micropower, Single-Supply, Rail-to-Rail Op Amps

Typical Operating Characteristics (continued)

$\left(\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

CURRENT-NOISE DENSITY
vs. FREQUENCY

TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY

SMALL-SIGNAL TRANSIENT RESPONSE

TOTAL HARMONIC DISTORTION PLUS NOISE vs. PEAK-TO-PEAK SIGNAL AMPLITUDE

LARGE-SIGNAL TRANSIENT RESPONSE

Single/Dual/Quad, Micropower, Single-Supply, Rail-to-Rail Op Amps

Typical Operating Characteristics (continued)
$\left(\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Pin Description

PIN				NAME	FUNCTION
MAX4091	MAX4091	MAX4092	MAX4094		
SOT23	SO/uMAX				
1	6	-	-	OUT	Amplifier Output
2	4	4	11	VEE	Negative Supply
3	3	-	-	$1 \mathrm{~N}+$	Noninverting Input
4	2	-	-	IN-	Inverting Input
5	7	8	4	VCC	Positive Supply
-	1, 5, 8	-	-	N.C.	No Connection. Not internally connected.
-	-	1	1	OUT1	Amplifier 1 Output
-	-	2	2	IN1-	Amplifier 1 Inverting Input
-	-	3	3	IN1+	Amplifier 1 Noninverting Input
-	-	5	5	IN2+	Amplifier 2 Noninverting Input
-	-	6	6	IN2-	Amplifier 2 Inverting Input
-	-	7	7	OUT2	Amplifier 2 Output
-	-	-	8	OUT3	Amplifier 3 Output
-	-	-	9	IN3-	Amplifier 3 Inverting Input
-	-	-	10	IN3+	Amplifier 3 Noninverting Input
-	-	-	12	IN4+	Amplifier 4 Noninverting Input
-	-	-	13	IN4-	Amplifier 4 Inverting Input
-	-	-	14	OUT4	Amplifier 4 Output

Single/Dual/Quad, Micropower, Single-Supply, Rail-to-Rail Op Amps

Abstract

Detailed Description The single MAX4091, dual MAX4092 and quad MAX4094 op amps combine excellent DC accuracy with rail-to-rail operation at both input and output. With their precision performance, wide dynamic range at low supply voltages, and very low supply current, these op amps are ideal for battery-operated equipment, industrial, and data acquisition and control applications.

Applications Information

Rail-to-Rail Inputs and Outputs

The MAX4091/MAX4092/MAX4094's input commonmode range extends 50 mV beyond the positive and negative supply rails, with excellent common-mode rejection. Beyond the specified common-mode range, the outputs are guaranteed not to undergo phase reversal or latchup. Therefore, the MAX4091/MAX4092/ MAX4094 can be used in applications with commonmode signals, at or even beyond the supplies, without the problems associated with typical op amps.
The MAX4091/MAX4092/MAX4094's output voltage swings to within 15 mV of the supplies with a $100 \mathrm{k} \Omega$ load. This rail-to-rail swing at the input and the output substantially increases the dynamic range, especially in low-supply-voltage applications. Figure 1 shows the input and output waveforms for the MAX4092, configured as a unity-gain noninverting buffer operating from a single 3 V supply. The input signal is $3.0 \mathrm{Vp}-\mathrm{P}$, a 1 kHz sinusoid centered at 1.5 V . The output amplitude is approximately 2.98 V P-p.

Input Offset Voltage

Rail-to-rail common-mode swing at the input is obtained by two complementary input stages in parallel, which feed a folded cascaded stage. The PNP stage is active for input voltages close to the negative rail, and the NPN stage is active for input voltages close to the positive rail.
The offsets of the two pairs are trimmed. However, there is some residual mismatch between them. This mismatch results in a two-level input offset characteristic, with a transition region between the levels occurring at a common-mode voltage of approximately 1.3 V above VEE. Unlike other rail-to-rail op amps, the transition region has been widened to approximately 600 mV in order to minimize the slight degradation in CMRR caused by this mismatch.
The input bias currents of the MAX4091/MAX4092/ MAX4094 are typically less than 20nA. The bias current flows into the device when the NPN input stage is active, and it flows out when the PNP input stage is active. To reduce the offset error caused by input bias current flowing through external source resistances,
match the effective resistance seen at each input. Connect resistor R3 between the noninverting input and ground when using the op amp in an inverting configuration (Figure 2a); connect resistor R3 between the noninverting input and the input signal when using the op amp in a noninverting configuration (Figure 2b). Select R3 to equal the parallel combination of R1 and R2. High source resistances will degrade noise performance, due to the the input current noise (which is multiplied by the source resistance).

Input Stage Protection Circuitry

The MAX4091/MAX4092/MAX4094 include internal protection circuitry that prevents damage to the precision input stage from large differential input voltages. This protection circuitry consists of back-to-back diodes between $\mathrm{IN}+$ and IN - with two $1.7 \mathrm{k} \Omega$ resistors in series (Figure 3). The diodes limit the differential voltage applied to the amplifiers' internal circuitry to no more than V_{F}, where V_{F} is the diodes' forward-voltage drop (about 0.7 V at $+25^{\circ} \mathrm{C}$).
Input bias current for the ICs $(\pm 20 n A)$ is specified for small differential input voltages. For large differential input voltages (exceeding V_{F}), this protection circuitry increases the input current at $\mathrm{IN}+$ and IN -:

$$
\text { INPUTCURRENT }=\frac{\left[\left(\mathrm{V}_{\mathbb{I}+}\right)-\left(\mathrm{V}_{\text {IN- }}\right)\right]-\mathrm{V}_{\mathrm{F}}}{2 \times 1.7 \mathrm{k} \Omega}
$$

Output Loading and Stability
Even with their low quiescent current of less than 130 1 A per op amp, the MAX4091/MAX4092/MAX4094 are well suited for driving loads up to $1 \mathrm{k} \Omega$ while maintaining DC accuracy. Stability while driving heavy capacitive loads is another key advantage over comparable CMOS rail-to-rail op amps.
In op amp circuits, driving large capacitive loads increases the likelihood of oscillation. This is especially true for circuits with high-loop gains, such as a unitygain voltage follower. The output impedance and a capacitive load form an RC network that adds a pole to the loop response and induces phase lag. If the pole frequency is low enough-as when driving a large capacitive load-the circuit phase margin is degraded, leading to either an under-damped pulse response or oscillation.
The MAX4091/MAX4092/MAX4094 can drive capacitive loads in excess of 2000pF under certain conditions (Figure 4). When driving capacitive loads, the greatest potential for instability occurs when the op amp is sourcing approximately $200 \mu \mathrm{~A}$. Even in this case, stability is maintained with up to 400pF of output capaci-

Single/Dual/Quad, Micropower, Single-Supply, Rail-to-Rail Op Amps

tance. If the output sources either more or less current, stability is increased. These devices perform well with a 1000pF pure capacitive load (Figure 5). Figures 6a, 6b, and 6c show the performance with a 500pF load in parallel with various load resistors.
To increase stability while driving large-capacitive loads, connect a pullup resistor to VCC at the output to decrease the current the amplifier must source. If the amplifier is made to sink current rather than source, stability is further increased.
Frequency stability can be improved by adding an output isolation resistor (Rs) to the voltage-follower circuit (Figure 7). This resistor improves the phase margin of the circuit by isolating the load capacitor from the op amp's output. Figure 8a shows the MAX4092 driving $5000 \mathrm{pF}\left(R_{L} \geq 100 \mathrm{k} \Omega\right.$), while Figure 8 b adds a 47Ω isolation resistor.
Because the MAX4091/MAX4092/MAX4094 have excellent stability, no isolation resistor is required, except in the most demanding applications. This is beneficial because an isolation resistor would degrade the lowfrequency performance of the circuit.

Power-Up Settling Time
The MAX4091/MAX4092/MAX4094 have a typical supply current of $130 \mu \mathrm{~A}$ per op amp. Although supply current is already low, it is sometimes desirable to reduce it further by powering down the op amp and associated ICs for periods of time. For example, when using a MAX4092 to buffer the inputs of a multi-channel analog-to-digital converter (ADC), much of the circuitry could be powered down between data samples to increase battery life. If samples are taken infrequently, the op amps, along with the ADC, may be powered down most of the time.
When power is reapplied to the MAX4091/MAX4092/

MAX4094, it takes some time for the voltages on the supply pin and the output pin of the op amp to settle. Supply settling time depends on the supply voltage, the value of the bypass capacitor, the output impedance of the incoming supply, and any lead resistance or inductance between components. Op amp settling time depends primarily on the output voltage and is slewrate limited. With the noninverting input to a voltage follower held at midsupply (Figure 9), when the supply steps from 0 to V_{CC}, the output settles in approximately $2 \mu \mathrm{~s}$ for $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ (Figure 10a) and $8 \mu \mathrm{~s}$ for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ (Figure 10b).

Power Supplies and Layout The MAX4091/MAX4092/MAX4094 operate from a single 2.7 V to 6 V power supply, or from dual supplies of $\pm 1.35 \mathrm{~V}$ to $\pm 3 \mathrm{~V}$. For single-supply operation, bypass the power supply with a $0.1 \mu \mathrm{~F}$ capacitor. If operating from dual supplies, bypass each supply to ground.
Good layout improves performance by decreasing the amount of stray capacitance at the op amp's inputs and output. To decrease stray capacitance, minimize both trace lengths and resistor leads and place external components close to the op amp's pins.

Chip Information
MAX4091 TRANSISTOR COUNT: 168 MAX4092 TRANSISTOR COUNT: 336 MAX4094 TRANSISTOR COUNT: 670 PROCESS: Bipolar

Single/Dual/Quad, Micropower, Single-Supply, Rail-to-Rail Op Amps

Figure 1. Rail-to-Rail Input and Output Operation

Figure 2b. Reducing Offset Error Due to Bias Current: Noninverting Configuration

Figure 2a. Reducing Offset Error Due to Bias Current: Inverting Configuration

Figure 3. Input Stage Protection Circuitry

Single/Dual/Quad, Micropower, Single-Supply, Rail-to-Rail Op Amps

Test Circuits/Timing Diagrams (continued)

Figure 4. Capacitive-Load Stable Region Sourcing Current

Figure 6a. MAX4092 Voltage Follower with 500pF Load ($R_{L}=5 k \Omega$)

10us/div

Figure 5. MAX4092 Voltage Follower with 1000pF Load

Figure 6b. MAX4092 Voltage Follower with 500pF Load ($R_{L}=20 k \Omega$)

Single/Dual/Quad, Micropower, Single-Supply, Rail-to-Rail Op Amps

Figure 6c. MAX4092 Voltage Follower with 500pF Load ($R L=\infty$)

Figure 8a. Driving a 5000pF Capacitive Load

Figure 7. Capacitive-Load Driving Circuit

Figure 8b. Driving a 5000pF Capacitive Load with a 47Ω Isolation Resistor

Single/Dual/Quad, Micropower, Single-Supply, Rail-to-Rail Op Amps

Test Circuits/Timing Diagrams (continued)

Figure 9. Power-Up Test Configuration

Figure 10a. Power-Up Settling Time (VCC $=+3 \mathrm{~V}$)

Figure 10b. Power-Up Settling Time $\left(V_{C C}=+5 \mathrm{~V}\right)$

Single/Dual/Quad, Micropower, Single-Supply, Rail-to-Rail Op Amps

Single/Dual/Quad, Micropower, Single-Supply, Rail-to-Rail Op Amps

Package Information (continued)

Single／Dual／Quad，Micropower，Single－Supply， Rail－to－Rail Op Amps

