: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

740 MHz , Low-Noise, Low-Distortion Op Amps in SOT23-5

General Description

The MAX4104/MAX4105/MAX4304/MAX4305 op amps feature ultra-high speed, low noise, and low distortion in a SOT23 package. The unity-gain-stable MAX4104 requires only 20 mA of supply current while delivering 625 MHz bandwidth and $400 \mathrm{~V} / \mu$ s slew rate. The MAX4304, compensated for gains of $+2 \mathrm{~V} / \mathrm{V}$ or greater, delivers a 730 MHz bandwidth and a $1000 \mathrm{~V} / \mu \mathrm{s}$ slew rate. The MAX4105 is compensated for a minimum gain of $+5 \mathrm{~V} / \mathrm{V}$ and delivers a 410 MHz bandwidth and a $1400 \mathrm{~V} / \mathrm{sec}$ slew rate. The MAX4305 has $+10 \mathrm{~V} / \mathrm{V}$ minimum gain compensation and delivers a 340 MHz bandwidth and a $1400 \mathrm{~V} / \mathrm{\mu s}$ slew rate.

Low voltage noise density of $2.1 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ and -88 dBc spurious-free dynamic range make these devices ideal for low-noise/low-distortion video and telecommunications applications. These op amps also feature a wide output voltage swing of $\pm 3.7 \mathrm{~V}$ and $\pm 70 \mathrm{~mA}$ output currentdrive capability. For space-critical applications, they are available in a miniature 5-pin SOT23 package.

Applications
Video ADC Preamp
Pulse/RF Telecom Applications
Video Buffers and Cable Drivers
Ultrasound
Active Filters
ADC Input Buffers

Typical Application Circuit

Features

- Low 2.1nV $/ \sqrt{\mathrm{Hz}}$ Voltage Noise Density
- Ultra-High 740MHz -3dB Bandwidth (MAX4304, Avcl $=2 \mathrm{~V} / \mathrm{V}$)
- 100MHz 0.1dB Gain Flatness (MAX4104/4105)
- 1400V/ μ s Slew Rate (MAX4105/4305)
- -88dBc SFDR (5MHz, RL = 100 $)$ (MAX4104/4304)
- High Output Current Drive: $\pm 70 \mathrm{~mA}$
- Low Differential Gain/Phase Error: 0.01\%/0.01 (MAX4104/4304)
- Low $\pm 1 m \mathrm{~V}$ Input Offset Voltage
- Available in Space-Saving 5-Pin SOT23 Package

Selector Guide

PART	MINIMUM STABLE GAIN (V/V)	BANDWIDTH (MHz)	PIN-PACKAGE
MAX4104	1	625	5-pin SOT23, 8-pin SO
MAX4304	2	740	5-pin SOT23, 8-pin SO
MAX4105	5	410	5-pin SOT23, 8-pin SO
MAX4305	10	340	5-pin SOT23, 8-pin SO

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	SOT TOP MARK
MAX4104ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	-
MAX4104EUK-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT $23-5$	ACCO

Ordering Information continued at end of data sheet.
Pin Configurations

740 MHz , Low-Noise, Low-Distortion Op Amps in SOT23-5

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V_{CC} to $\mathrm{V}_{E E}$).
Voltage on Any Pin to Ground..........(VEE -0.3 V) to ($\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$)
Short-Circuit Duration (Vout to GND) \qquad Continuous Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)

$$
5 \text {-pin SOT23 (derate } 7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \text { above }+70^{\circ} \mathrm{C} \text {) } 571 \mathrm{~mW}
$$

8 -pin SO (derate $5.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) \qquad .471 mW

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, R_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Operating Supply Voltage Range	$\mathrm{V}_{\mathrm{Cc}} / \mathrm{V}_{\text {EE }}$	Guaranteed by PSRR test		± 3.5	± 5	± 5.5	V
Input Offset Voltage	Vos	VOUT $=0$	MAX4_0_ESA		1	6	mV
			MAX4_0_EUK		1	8	
Input Offset-Voltage Drift	TCVos				2.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	IB				32	70	$\mu \mathrm{A}$
Input Offset Current	los				0.5	5.0	$\mu \mathrm{A}$
Differential Input Resistance	RiN	$-0.8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 0.8 \mathrm{~V}$			6		$\mathrm{k} \Omega$
Common-Mode Input Resistance	RIN	Either input			1.5		$\mathrm{M} \Omega$
Input Common-Mode Voltage Range	VCM	Guaranteed by CMRR test		-2.8		+4.1	V
Common-Mode Rejection Ratio	CMRR	$-2.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 4.1 \mathrm{~V}$		80	95		dB
Positive Power-Supply Rejection Ratio	PSSR+	$\mathrm{V}_{\mathrm{CC}}=3.5 \mathrm{~V}$ to 5.5 V		75	85		dB
Negative Power-Supply Rejection Ratio	PSRR-	$\mathrm{V}_{\mathrm{EE}}=-3.5 \mathrm{~V}$ to -5.5V		55	65		dB
Quiescent Supply Current	Is	VOUT $=0$			20	27	mA
Open-Loop Gain	Avol	$-2.8 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 2.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$		55	65		dB
Output Voltage Swing	Vout	$\mathrm{RL}=100 \mathrm{k} \Omega$		± 3.5	to +		V
		$\mathrm{R}_{\mathrm{L}}=100 \Omega$		± 3.0	to +		
Output Current Drive	Iout	$\mathrm{RL}=30 \Omega$		± 53	± 70		mA
Short-Circuit Output Current	Isc	RL = short to ground			80		mA
Open-Loop Output Impedance	ZOUT				9		Ω

740MHz, Low-Noise, Low-Distortion Op Amps in SOT23-5

AC ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{R}_{\mathrm{L}}=100 \Omega\right.$; $\mathrm{A} \mathrm{V}=+1 \mathrm{~V} / \mathrm{V}$ for MAX4104, $+2 \mathrm{~V} / \mathrm{V}$ for MAX4304, $+5 \mathrm{~V} / \mathrm{V}$ for MAX4105, $+10 \mathrm{~V} / \mathrm{V}$ for MAX4305; $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$; unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS				MIN TYP	MAX	UNITS
-3dB Bandwidth	$\mathrm{BW}_{(-3 \mathrm{~dB})}$	VOUT $=100 \mathrm{mVp}-\mathrm{p}$			MAX4104	625		MHz
					MAX4304	740		
					MAX4105	410		
					MAX4305	340		
0.1dB Bandwidth	$\mathrm{BW}_{(0.1)}$	VOUT $=100 \mathrm{mVp}-\mathrm{p}$			MAX4104	100		MHz
					MAX4304	60		
					MAX4105	80		
					MAX4305	70		
Full-Power Bandwidth	FPBW	$\mathrm{V}_{\text {OUT }}=2 \mathrm{Vp}-\mathrm{p}$			MAX4104	115		MHz
					MAX4304	285		
					MAX4105	370		
					MAX4305	320		
Slew Rate	SR	VOUT $=2 \mathrm{Vp}-\mathrm{p}$			MAX4104	400		V/ $/ \mathrm{s}$
					MAX4304	1000		
					MAX4105	1400		
					MAX4305	1400		
Settling Time to 0.1\%	ts	VOUT $=2 \mathrm{Vp}-\mathrm{p}$			to 0.1\%	20		ns
					to 0.01\%	25		
Spurious-Free Dynamic Range	SFDR	VOUT $=2 \mathrm{Vp}$-p	MAX4104/ MAX4304		$\mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}$	-88		dBc
					$\mathrm{f}_{\mathrm{C}}=20 \mathrm{MHz}$	-67		
			MAX4105/ MAX4305		$\mathrm{fC}_{\mathrm{C}}=5 \mathrm{MHz}$	-74		
					$\mathrm{fC}=20 \mathrm{MHz}$	-61		
Differential Gain Error	DG	NTSC, RL = 150Ω		MAX	04/MAX4304	0.01		\%
				MAX	05/MAX4305	0.02		
Differential Phase Error	DP	NTSC, RL = 150Ω		MAX	04/MAX4304	0.01		degrees
				MAX	05/MAX4305	0.02		
Input Voltage Noise Density	e_{n}	$\mathrm{f}=1 \mathrm{MHz}$				2.1		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Current Noise Density	in	$\mathrm{f}=1 \mathrm{MHz}$				3.1		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Output Impedance	ZOUT	$\mathrm{f}=10 \mathrm{MHz}$				1		Ω

740 MHz , Low-Noise, Low-Distortion Op Amps in SOT23-5

Typical Operating Characteristics

$\left(\mathrm{V}_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=330 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

740 MHz , Low-Noise, Low-Distortion Op Amps in SOT23-5

Typical Operating Characteristics (continued)
$\left(V_{C C}=+5 V, V_{E E}=-5 V, R_{F}=330 \Omega, R_{L}=100 \Omega, T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

POSITIVE POWER-SUPPLY REJECTION vs. FREQUENCY

VOLTAGE NOISE DENSITY vs. FREQUENCY (INPUT REFERRED)

M AX4105
LARGE-SIGNAL GAIN
vs. FREQUENCY (AvCL $=+5$)

NEGATIVE POWER-SUPPLY REJECTION
vs. FREQUENCY

CURRENT NOISE DENSITY vs. FREQUENCY (INPUT REFERRED)
clan

MAX4305
LARGE-SIGNAL GAIN vs. FREQUENCY (AvCL = +10)

COMMON-M ODE REJECTION
vs. FREQUENCY

CLOSED-LOOP OUTPUT IMPEDANCE
vs. FREQUENCY

740 MHz , Low-Noise, Low-Distortion Op Amps in SOT23-5

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=330 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

MAX4104/MAX4304 DIFFERENTIAL GAIN AND PHASE

IRE
M AX4105/M AX4305 HARM ONIC DISTORTION vs. FREQUENCY

MAX4104/M AX4304 HARM ONIC DISTORTION vs. OUTPUT SWING

MAX4105/MAX4305 DIFFERENTIAL GAIN AND PHASE

M AX4104/M AX4304 HARM ONIC DISTORTION vs. LOAD

MAX4105/MAX4305 HARM ONIC DISTORTION
vs. OUTPUT SWING

MAX4104/M AX4304 HARM ONIC DISTORTION vs. FREQUENCY

M AX4105/M AX4305 HARM ONIC DISTORTION vs. LOAD

740MHz, Low-Noise, Low-Distortion Op Amps in SOT23-5

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=330 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

740 MHz , Low-Noise, Low-Distortion Op Amps in SOT23-5

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=330 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

MAX4305
SMALL-SIGNAL PULSE RESPONSE
($A_{V}=+10$)

MAX4305 LARGE-SIGNAL PULSE RESPONSE

MAX4104 LARGE-SIGNAL PULSE RESPONSE
($A_{V}=+1$)

MAX4105 LARGE-SIGNAL PULSE RESPONSE

MAX4305
LARGE-SIGNAL PULSE RESPONSE

740MHz，Low－Noise，Low－Distortion Op Amps in SOT23－5

Pin Description

PIN		NAME	FUNCTION	
SOT23－5	SO			
-	$1,5,8$	N．C．	Not internally connected．	
4	2	IN－	Amplifier Inverting Input	
3	3	IN＋	Amplifier Noninverting Input	
2	4	VEE	Negative Power Supply	
1	6	OUT	Amplifier Output	
5	7	VCC	Positive Power Supply	

Detailed Description

The MAX4104／MAX4105／MAX4304／MAX4305 are ultra－ high－speed，low－noise amplifiers featuring－3dB band－ widths up to $880 \mathrm{MHz}, 0.1 \mathrm{~dB}$ gain flatness up to 100 MHz ，and low differential gain and phase errors of 0.01% and 0.01° ，respectively．These devices operate on dual power supplies ranging from $\pm 3.5 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ and require only 20 mA of supply current．
The MAX4104／MAX4304／MAX4105／MAX4305 are opti－ mized for minimum closed－loop gains of $+1 \mathrm{~V} / \mathrm{V},+2 \mathrm{~V} / \mathrm{V}$ ， $+5 \mathrm{~V} / \mathrm{V}$ and $+10 \mathrm{~V} / \mathrm{V}$（respectively）with corresponding -3 dB bandwidths of $880 \mathrm{MHz}, 730 \mathrm{MHz}, 430 \mathrm{MHz}$ ，and 350 MHz ．Each device in this family features a low input voltage noise density of only $2.1 \mathrm{nV} / \sqrt{\mathrm{Hz}}$（at 1 MHz ），an output current drive of $\pm 70 \mathrm{~mA}$ ，and spurious－free dynamic range as low as $-88 \mathrm{dBc}\left(5 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=100 \Omega\right)$ ．

Applications Information

Layout and Power－Supply Bypassing

The MAX4104／MAX4105／MAX4304／MAX4305 have an extremely high bandwidth，and consequently require careful board layout，including the possible use of constant－impedance microstrip or stripline techniques．
To realize the full AC performance of these high－speed amplifiers，pay careful attention to power－supply bypassing and board layout．The PC board should have at least two layers：a signal and power layer on one side，and a large，low－impedance ground plane on the other side．The ground plane should be as free of voids as possible．With multilayer boards，locate the ground plane on a layer that incorporates no signal or power traces．

Regardless of whether or not a constant－impedance board is used，it is best to observe the following guide－ lines when designing the board：
1）Do not use wire－wrapped boards（they are much too inductive）or breadboards（they are much too capacitive）．
2）Do not use IC sockets．IC sockets increase reac－ tances．
3）Keep signal lines as short and straight as possible． Do not make 90° turns；round all corners．
4）Observe high－frequency bypassing techniques to maintain the amplifier＇s accuracy and stability．
5）Bear in mind that，in general，surface－mount compo－ nents have shorter bodies and lower parasitic reac－ tance，resulting in greatly improved high－frequency performance over through－hole components．
The bypass capacitors should include 1 nF and $0.1 \mu \mathrm{~F}$ ceramic surface－mount capacitors between each sup－ ply pin and the ground plane，located as close to the package as possible．Optionally，place a $10 \mu \mathrm{~F}$ tantalum capacitor at the power supply pins＇point of entry to the PC board to ensure the integrity of incoming supplies． The power－supply trace should lead directly from the tantalum capacitor to the VCC and VEE pins．To mini－ mize parasitic inductance，keep PC traces short and use surface－mount components．
Input termination resistors and output back－termination resistors，if used，should be surface－mount types，and should be placed as close to the IC pins as possible．

DC and Noise Errors

The MAX4104／MAX4105／MAX4304／MAX4305 output offset voltage，VOUT（Figure 1），can be calculated with the following equation：
VOUT $=\left[V_{O S}+\left(I_{B}+x R_{S}\right)+\left(\operatorname{lB}-x\left(R_{F} \| R_{G}\right)\right]\left[1+R_{F} / R_{G}\right]\right.$ where：
VOS＝input offset voltage（in volts）
$1+R_{F} / R_{G}=$ amplifier closed－loop gain（dimensionless）
$\mathrm{I}_{\mathrm{B}+}=$ noninverting input bias current（in amps）
$\mathrm{I}_{\mathrm{B}}-=$ inverting input bias current（in amps）
$\mathrm{R}_{\mathrm{G}}=$ gain－setting resistor（in ohms）
$\mathrm{RF}_{\mathrm{F}}=$ feedback resistor（in ohms）
RS＝source resistor at noninverting input（in ohms）
The following equation represents output noise density：
$e_{n(\text { OUT })}=\left[1+\frac{R_{F}}{R_{G}}\right] \sqrt{\left(i_{n} \times R_{S}\right)^{2}+\left[i_{n} \times\left(R_{F} \| R_{G}\right)\right]^{2}+e_{n}{ }^{2}}$

740 MHz , Low-Noise, Low-Distortion Op Amps in SOT23-5

Figure 1. Output Offset Voltage
where:
$\mathrm{i}_{\mathrm{n}}=$ input current noise density (in $\mathrm{pA} / \sqrt{\mathrm{Hz}}$)
$\mathrm{e}_{\mathrm{n}}=$ input voltage noise density (in $\mathrm{nV} / \sqrt{\mathrm{Hz}}$)
The MAX4104/MAX4105/MAX4304/MAX4305 have a very low, $2.1 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ input voltage noise density and $3.1 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ input current noise density.
An example of DC-error calculations, using the MAX4304 typical data and the typical operating circuit with $R_{F}=R_{G}=330 \Omega\left(R_{F} \| R_{G}=165 \Omega\right)$ and $R_{S}=50 \Omega$ gives:

$$
\begin{aligned}
& V_{\text {OUT }}=\left[\left(32 \times 10^{-6}\right)(50)+\left(32 \times 10^{-6}\right)(165 \Omega)+1 \times 10^{-3}\right][1+1] \\
& V_{\text {OUT }}=15.8 \mathrm{mV}
\end{aligned}
$$

Calculating total output noise in a similar manner yields the following:

$$
\begin{aligned}
& \mathrm{e}_{\mathrm{n}(\text { OUT })}= \\
& {[1+1] \sqrt{\left(3.1 \times 10^{-12} \times 50\right)^{2}+\left(3.1 \times 10^{-12} \times 165\right)^{2}+\left(2.1 \times 10^{-9}\right)^{2}}} \\
& \mathrm{e}_{\mathrm{n}(\text { OUT })}=4.3 \mathrm{nV} \sqrt{\mathrm{~Hz}}
\end{aligned}
$$

With a 200 MHz system bandwidth, this calculates to $60.8 \mu \mathrm{~V}$ RMS (approximately $365 \mu \mathrm{Vp}-\mathrm{p}$, using the sixsigma calculation).

ADC Input Buffers Input buffer amplifiers can be a source of significant error in high-speed ADC applications. The input buffer is usually required to rapidly charge and discharge the ADC's input, which is often capacitive. In addition, the input impedance of a high-speed ADC often changes

Figure 2. Video Line Driver
very rapidly during the conversion cycle-a condition that demands an amplifier with very low output impedance at high frequencies to maintain measurement accuracy. The combination of high-speed, fast slew rate, low noise, and low-distortion available in the MAX4104/MAX4105/MAX4304/MAX4305 makes them ideally suited for use as buffer amplifiers in high-speed ADC applications.

Video Line Driver The MAX4104/MAX4105/MAX4304/MAX4305 are optimized to drive coaxial transmission lines when the cable is terminated at both ends, as shown in Figure 2. To minimize reflections and maximize power transfer, select the termination resistors to match the characteristic impedance of the transmission line. Cable frequency response can cause variations in the flatness of the signal.

Driving Capacitive Loads The MAX4104/MAX4105/MAX4304/MAX4305 provide maximum AC performance when driving no output load capacitance. This is the case when driving a correctly terminated transmission line (i.e., a back-terminated cable).
In most amplifier circuits, driving a large load capacitance increases the chance of oscillations occurring. The amplifier's output impedance and the load capacitor combine to add a pole and excess phase to the loop response. If the pole's frequency is low enough and phase margin is degraded sufficiently, oscillations may result.
A second concern when driving capacitive loads originates from the amplifier's output impedance, which

740MHz, Low-Noise, Low-Distortion Op Amps in SOT23-5

Figure 3a. MAX4104 Frequency Response with Capacitive Load and No Isolation Resistor

Figure 3c. MAX4105 Frequency Response with Capacitive Load and No Isolation Resistor
appears inductive at high frequencies. This inductance forms an L-C resonant circuit with the capacitive load, which causes peaking in the frequency response and degrades the amplifier's phase margin.
The MAX4104/MAX4105/MAX4304/MAX4305 drive capacitive loads up to 10 pF without oscillation. However, some peaking may occur in the frequency domain (Figure 3). To drive larger capacitance loads or to reduce ringing, add an isolation resistor between the amplifier's output and the load (Figure 4).
The value of RISO depends on the circuit's gain and the capacitive load (Figure 5). Figure 6 shows the MAX4104/MAX4105/MAX4304/MAX4305 frequency response with the isolation resistor and a capacitive

Figure 3b. MAX4304 Frequency Response with Capacitive Load and No Isolation Resistor

Figure 3d. MAX4305 Frequency Response with Capacitive Load and No Isolation Resistor
load. With higher capacitive values, bandwidth is dominated by the RC network formed by RISO and CL; the bandwidth of the amplifier itself is much higher. Also note that the isolation resistor forms a divider that decreases the voltage delivered to the load.

Maxim's High-Speed Evaluation Boards

 The MAX4104 evaluation kit manual shows a suggested layout for Maxim's high-speed, single-amplifier evaluation boards. This board was developed using the techniques described previously (see Layout and Power-Supply Bypassing section). The smallest available surface-mount resistors were used for the feedback and back-termination resistors to minimize the
740 MHz , Low-Noise, Low-Distortion Op Amps in SOT23-5

Figure 4. Using an Isolation Resistor ($R_{I S O}$) for High Capacitive Loads

Figure 5. Optimal Isolation Resistor (RISO) vs. Capacitive Load

Pin Configurations (continued)

Figure 6. Frequency Responses vs. Capacitive Load with 15Ω Isolation Resistor
distance from the IC to these resistors, thus reducing the capacitance associated with longer lead lengths.
SMA connectors were used for best high-frequency performance. Because distances are extremely short, performance is unaffected by the fact that inputs and outputs do not match a 50Ω line. However, in applications that require lead lengths greater than $1 / 4$ of the wavelength of the highest frequency of interest, constant-impedance traces should be used.
Fully assembled evaluation boards are available for the MAX4104 in an 8-pin SO package.

Ordering Information (continued)

PART	TEMP. RANGE	PIN- PACKAGE	SOT TOP MARK
MAX4105ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	-
MAX4105EUK-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23-5	ACCP
MAX4304ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	-
MAX4304EUK-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23-5	ACCQ
MAX4305ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	-
MAX4305EUK-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23-5	ACCR

*Future product-contact factory for availability.
Chip Information
TRANSISTOR COUNT: 44
SUBSTRATE CONNECTED TO VEE

