

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Single/Dual/Quad, Wide-Bandwidth, Low-Power, Single-Supply, Rail-to-Rail I/O Op Amps

General Description

The MAX4130–MAX4134 family of operational amplifiers combines 10MHz gain-bandwidth product and excellent DC accuracy with rail-to-rail operation at the inputs and outputs. These devices require only 900 μ A per amplifier, and operate from either a single supply (+2.7V to +6.5V) or dual supplies (±1.35V to ±3.25V) with a common-mode voltage range that extends 250mV beyond VEE and VCC. They are capable of driving 250 Ω loads and are unity-gain stable. In addition, the MAX4131/MAX4133 feature a shutdown mode in which the outputs are placed in a high-impedance state and the supply current is reduced to only 25 μ A per amplifier.

With their rail-to-rail input common-mode range and output swing, the MAX4130-MAX4134 are ideal for low-voltage, single-supply operation. Although the minimum operating voltage is specified at 2.7V, the devices typically operate down to 1.8V. In addition, low offset voltage and high speed make them the ideal signal-conditioning stages for precision, low-voltage data-acquisition systems. The MAX4130 is offered in the space-saving 5-pin SOT23 package. The MAX4131 is offered in the ultra-small 6-bump, 1mm x 1.5mm chip-scale package (UCSPTM).

Selector Guide

PART	AMPS PER PACKAGE	SHUTDOWN MODE	PIN- PACKAGE
MAX4130	1	_	5 SOT23
MAX4131	1	Yes	6 UCSP, 8 µMAX/SO
MAX4132	2	_	8 μMAX/SO
MAX4133	2	Yes	14 SO
MAX4134	4	_	14 SO

_Applications

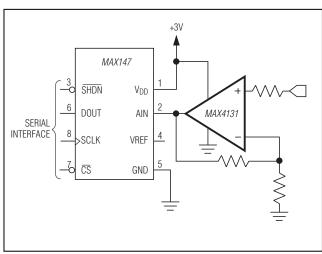
Battery-Powered Instruments
Portable Equipment
Data-Acquisition Systems
Signal Conditioning
Low-Power, Low-Voltage Applications

Pin Configurations appear at end of data sheet.

UCSP is a trademark of Maxim Integrated Products, Inc.

_____Features

- ♦ 6-Bump UCSP (MAX4131)
- ♦ +2.7V to +6.5V Single-Supply Operation
- ♦ Rail-to-Rail Input Common-Mode Voltage Range
- ♦ Rail-to-Rail Output Voltage Swing
- ♦ 10MHz Gain-Bandwidth Product
- ♦ 900µA Quiescent Current per Amplifier
- ♦ 25µA Shutdown Function (MAX4131/MAX4133)
- ♦ 200µV Offset Voltage
- ♦ No Phase Reversal for Overdriven Inputs
- ♦ Drive 250Ω Loads
- ♦ Stable with 160pF Capacitive Loads
- ♦ Unity-Gain Stable


Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4130EUK-T	-40°C to +85°C	5 SOT23	AABB
MAX4131C/D	0°C to +70°C	Dice*	_
MAX4131EBT-T	-40°C to +85°C	6 UCSP	AAX
MAX4131EUA	-40°C to +85°C	8 µMAX	_
MAX4131ESA	-40°C to +85°C	8 SO	_

^{*}Dice are specified at $T_A = +25$ °C. DC parameters only.

Ordering Information continued at end of data sheet.

Typical Operating Circuit

Single/Dual/Quad, Wide-Bandwidth, Low-Power, Single-Supply, Rail-to-Rail I/O Op Amps

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC} - V _{EE})7.5V	/
IN+, IN-, SHDN Voltage(VCC + 0.3V) to (VEE - 0.3V)	
Output Short-Circuit Duration (Note 1)Continuous	3
(short to either supply)
Continuous Power Dissipation (T _A = +70°C)	
5-Pin SOT23 (derate 7.1mW/°C above +70°C)571mW	/
6-Bump UCSP (derate 2.9mW/°C above +70°C)308mW	
8-Pin SO (derate 5.88mW/°C above +70°C)471mW	/

8-Pin µMAX (derate 4.10mW/°C above +70 14-Pin SO (derate 8.00mW/°C above +70°C	
Operating Temperature Range	
MAX413_E	40°C to +85°C
Maximum Junction Temperature	+150°C
Storage Temperature Range	
Lead Temperature (soldering, 10s)	+300°C
Bump Reflow Temperature	+235°C

Note 1: Provided that the maximum package power-dissipation rating is not exceeded.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +2.7V \text{ to } +6.5V, V_{EE} = 0V, V_{CM} = 0V, V_{OUT} = V_{CC}/2, R_L \text{ tied to } V_{CC}/2, \overline{SHDN} \ge 2V \text{ (or open)}, T_A = +25^{\circ}C, \text{ unless otherwise noted.)}$

PARAMETER	SYMBOL	CONE	DITIONS	MIN	TYP	MAX	UNITS	
			MAX4130EUK		±0.35	±1.50		
			MAX4131ESA		±0.20	±0.60		
land to Office to Voltage	\/	Marria Marria Marria	MAX4131EUA/ MAX4131EBT		±0.35	±1.20	mV	
Input Offset Voltage	Vos	V _{CM} = V _{EE} to V _{CC}	MAX4132ESA/ MAX4133ESD		±0.25	±0.75	TTIV	
			MAX4132EUA		±0.40	±1.50		
			MAX4134ESD		±0.35	±1.50		
Input Bias Current	ΙΒ	V _{CM} = V _{EE} to V _{CC}			±50	±150	nA	
Input Offset Current	loo	V _{CM} = V _{EE} to V _{CC}	MAX4131EBT			±15	nA	
input Onset Current	los	ACW = AFF 10 ACC	All other packages			±12	ΠA	
Differential Input Voltage	R _{IN}	-1.5V < V _{DIFF} < 1.5V	,		500		kΩ	
Common-Mode Input Voltage Range	CMVR			V _{EE} - 0.25		V _{CC} + 0.25	V	
			MAX4130EUK	67	90			
			MAX4131ESA	78	98		1	
	01400	V _{EE} - 0.25V < V _{CM}	MAX4131EUA/ MAX4131EBT	68	88			
Common-Mode Rejection Ratio	CMRR	< V _{CC} + 0.25V	MAX4132ESA/ MAX4133ESD	74	94		dB	
			MAX4132EUA	66	86			
			MAX4134ESD	64	84		1	
Power-Supply Rejection Ratio	PSRR	$V_{CC} = 2.7V \text{ to } 6.5V$		78	100		dB	
Output Resistance	Rout	A _V = 1			0.1		Ω	
Off-Leakage Current	l _{LKG}	SHDN < 0.8V, V _{OUT}	= 0V to V _{CC}		±0.1	±1	μΑ	

Single/Dual/Quad, Wide-Bandwidth, Low-Power, Single-Supply, Rail-to-Rail I/O Op Amps

DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +2.7V \text{ to } +6.5V, V_{EE} = 0V, V_{CM} = 0V, V_{OUT} = V_{CC}/2, R_L \text{ tied to } V_{CC}/2, \overline{SHDN} \ge 2V \text{ (or open)}, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL		CONDITIONS		MIN	TYP	MAX	UNITS	
		\/ 2.7\/	$V_{OUT} = 0.25 $ $R_L = 100 $ k Ω	/ to 2.45V,	92	108			
Lorgo Signal Voltago Coin	Δ.,	V _{CC} = 2.7V	$V_{OUT} = 0.4V$ $R_L = 250\Omega$	to 2.3V,	72	82		dB	
Large-Signal Voltage Gain	Av	Vac EV	$V_{OUT} = 0.25 $ $R_L = 100 $ k Ω	/ to 4.75V,	94	108		uБ	
		V _{CC} = 5V	$V_{OUT} = 0.4V$ $R_L = 250\Omega$	to 4.6V,	75	86			
			$R_{l} = 100k\Omega$	Vcc - Voh		12	20		
		MAX4130/	H_ = 100K22	V _{OL} - V _{EE}		20	35		
	Vo	MAX4131	MAX4131 $R_{L} = 250\Omega$	Vcc - Voh		240	290	mV	
Output Voltage Swing			11[- 20032	V _{OL} - V _{EE}		125	170		
Output voltage Swing		MAX4132/ MAX4133/ MAX4134	$R_L = 100k\Omega$	V _{CC} - V _{OH}		15	30		
			1017 014 1027		V _{OL} - V _{EE}		25	40	
			$R_1 = 250\Omega$	VCC - VOH		280	330		
		HL = 250 12		V _{OL} - V _{EE}		180	230		
Output Short-Circuit Current	Isc					50		mA	
SHDN Logic Threshold	VIL	MAX4131–MA	V/12/	Low			0.8	V	
Silbiv Logic Tillesilola	VIH	IVIAX4131-IVIA	174 194	High	2.0			V	
SHDN Input Current	I _I L	MAX4131-MA	X4134			±1	±3	μΑ	
Operating Supply Voltage Range	Vcc				2.7		6.5	V	
Supply Current per Amplifier	lcc	VOM - VOUT	- 1/00/2	$V_{CC} = 2.7V$		900	1050	μA	
Supply Current per Ampliner	ICC	VCIVI — VOUT	$V_{CM} = V_{OUT} = V_{CC}/2$ $V_{CC} = 5$			1000	1150	μΛ	
Shutdown Supply Current per	ISHDN	SHDN > 0.8V	, MAX4131–	$V_{CC} = 2.7V$		25	40	μA	
Amplifier	IOHDIN	MAX4134		V _{CC} = 5V		40	60	μΑ	

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +2.7V \text{ to } +6.5V, V_{EE} = 0V, V_{CM} = 0V, V_{OUT} = V_{CC}/2, R_L \text{ tied to } V_{CC}/2, \overline{SHDN} \ge 2V \text{ (or open)}, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.)}$

PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
			MAX4130EUK			±3.50	
			MAX4131ESA			±0.75	
		VCC VLL to	MAX4131EUA/MAX4131EBT			±4.40	\/
Input Offset Voltage	Vos		MAX4132ESA/MAX4133ESD			±0.95	mV
			MAX4132EUA			±4.70	
			MAX4134ESD			±4.00	
Input Offset Voltage Tempco	TCVOS				±2		μV/°C
Input Bias Current	lΒ	V _{CM} = V _{EE} to	Vcc			±160	nA

Single/Dual/Quad, Wide-Bandwidth, Low-Power, Single-Supply, Rail-to-Rail I/O Op Amps

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +2.7V \text{ to } +6.5V, V_{EE} = 0V, V_{CM} = 0V, V_{OUT} = V_{CC}/2, R_L \text{ tied to } V_{CC}/2, \overline{SHDN} \ge 2V \text{ (or open)}, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.)}$

PARAMETER	SYMBOL		CON	IDITIONS		MIN	TYP	MAX	UNITS
land to Offer at Outmand	1	M - M - +- M		MAX4131	EBT			±24	A
Input Offset Current	los	V _{CM} = V _{EE} to V	All other packages				±18	nA	
Common-Mode Input Voltage Range	CMVR					V _{EE} - 0.20		V _{CC} + 0.20	V
			MA	X4130EUK		62			
			MA	X4131ESA		76			
Common Mode Poisetien Patie	CMRR	V _{EE} - 0.2V	MA	X4131EUA/	MAX4131EBT	60			dB
Common-Mode Rejection Ratio	CIVINN	< V _{CM} < V _{CC} + 0.2V	MA	X4132ESA/	MAX4133ESD	74			иь
			MA	X4132EUA		58			
			MA	X4134ESD		60			
Power-Supply Rejection Ratio	PSRR	$V_{CC} = 2.7V \text{ to } 6$	6.5V			74			dB
Off-Leakage Current	ILKG	SHDN < 0.8V, V	√out	= 0V to V _C	С			±12	μΑ
	Av	V _{CC} = 2.7V V _{CC} = 5V		$V_{OUT} = 0.25V$ to 2.45V, $R_L = 100k\Omega$		84			
			_	$\begin{split} &V_{OUT} = 0.4 \text{V to } 2.3 \text{V}, \\ &R_L = 250 \Omega \end{split}$		66			
Large-Signal Voltage Gain			_	$V_{OUT} = 0.25V$ to 4.75V, $R_L = 100k\Omega$		86			dB
			_	$_{\text{UT}} = 0.4 \text{V to}$ $= 250 \Omega$	o 4.6V,	68			
				1001.0	Vcc - Voh			25	
		MAX4130/	11/1 (714 100)	IRI = IUUKU =	Vol - Vee			40	
		MAX4131ESA/ MAX4131EUA	D.	0500	V _C C - V _O H			300	
		10,000	ηL	= 250Ω	V _{OL} - V _{EE}			190	
			D.	= 100kΩ	V _{CC} - V _{OH}			25	
Output Voltage Swing	Vo	MAX4131EBT		- 100K22	V _{OL} - V _{EE}			40	mV
Output voltage Swing	VO	WAX4131LB1	D.	= 250 Ω	V _C C - V _O H			350	IIIV
			I IL	- 23052	V _{OL} - V _{EE}			190	
		NANY 4400'	Ri	= 100kΩ	VCC - VOH			35	
		MAX4132/ MAX4133/	01102	- 100//22	V _{OL} - V _{EE}			50	
		MAX4134	Rı	= 250Ω	V _{CC} - V _{OH}			350	
					V _{OL} - V _{EE}			250	

Single/Dual/Quad, Wide-Bandwidth, Low-Power, Single-Supply, Rail-to-Rail I/O Op Amps

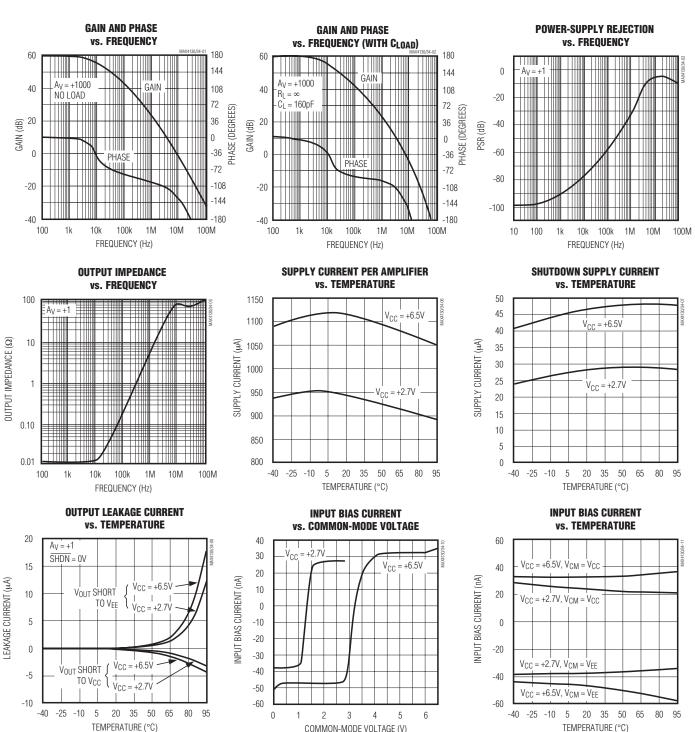
DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +2.7V \text{ to } +6.5V, V_{EE} = 0V, V_{CM} = 0V, V_{OUT} = V_{CC}/2, R_L \text{ tied to } V_{CC}/2, \overline{SHDN} \ge 2V \text{ (or open)}, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.)}$

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS	
SHDN Logic Threshold	VIL	MAX4131–MAX	4124	Low			0.8	V	
SHDN Logic Tilreshold	VIH	IVIAA4 13 I-IVIAA	4134	High	2.0			V	
SHDN Input Current	IIL	MAX4131-MAX	4134				±3	μΑ	
Operating Supply Voltage Range	Vcc			2.7		6.5	V		
	L	V _{CM} = V _{OUT} = V _{CC} /2	MAX4131EBT All other	$V_{CC} = 2.7V$			1200	μΑ	
Supply Current per Amplifier				V _C C = 5V			1350		
Supply Current per Amplifier	ICC			$V_{CC} = 2.7V$			1100		
			devices	$V_{CC} = 5V$			1200		
Shutdown Supply Current per		SHDN > 0.8V,		$V_{CC} = 2.7V$		·	50		
Amplifier	ISHDN	MAX4131-MAX	4134	$V_{CC} = 5V$			70	μΑ	

Note 2: All devices are 100% tested at TA = +25°C. MAX4130EUK/MAX4131EBT temperature limits are guaranteed by design.

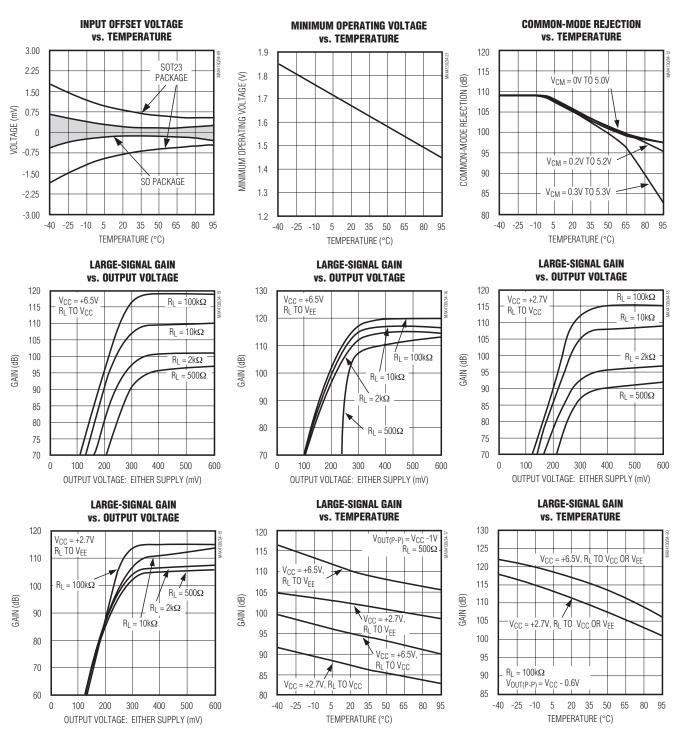
AC ELECTRICAL CHARACTERISTICS


 $(V_{CC} = +2.7V \text{ to } +6.5V, V_{EE} = 0V, \overline{SHDN} \ge 2V \text{ (or open)}, T_A = +25^{\circ}C, \text{ unless otherwise noted.)}$

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS	
Gain-Bandwidth Product	GBWP			10		MHz
Phase Margin	θ_{M}			62		Degrees
Gain Margin	GM			12		dB
Total Harmonic Distortion	THD	$f = 10kHz$, $V_{OUT} = 2V_{P-P}$ (A)	/ = 1)	0.003		%
Slew Rate	SR			4		V/µs
Settling Time to 0.01%	ts	A _V = 1, V _{OUT} = 2V step		2.0		μs
Turn-On Time	ton	V _C C = 0V to 3V step, V _{OUT} =	= V _{CC} /2	1		μs
CUDN Dalay		MAX4131-MAX4134,	Enable	1		
SHDN Delay		$V_{CC} = 3V$, $V_{OUT} = V_{CC}/2$	Disable	0.2		μs
Input Capacitance	CIN			3		рF
Input Noise-Voltage Density	en	f = 1kHz	22		nV/√Hz	
Input Noise-Current Density	in	f = 1kHz	0.4		pA/√Hz	
Capacitive-Load Stability	CL	A _V = 1		160		pF

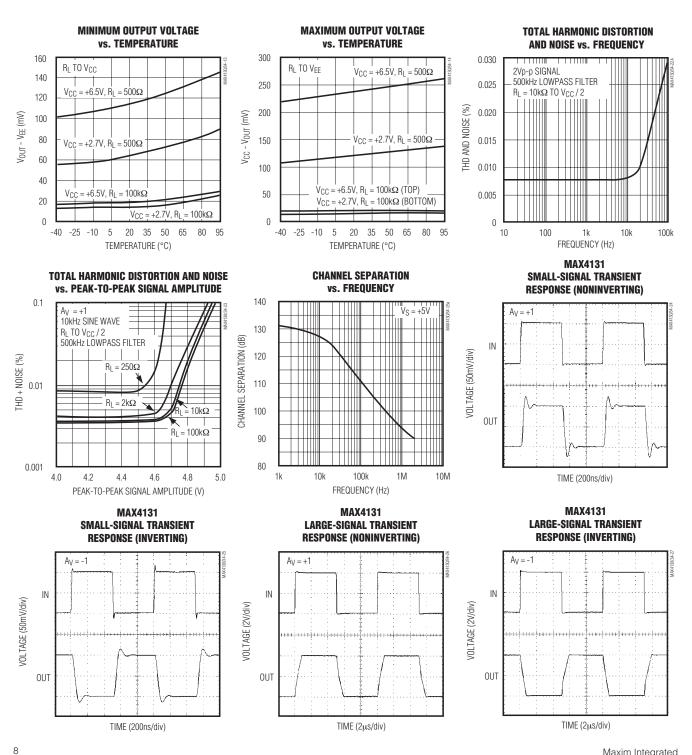
Single/Dual/Quad, Wide-Bandwidth, Low-Power, Single-Supply, Rail-to-Rail I/O Op Amps

Typical Operating Characteristics


(VCC = +5V, VEE = 0V, VCM = VCC / 2, TA = +25°C, unless otherwise noted.)

Single/Dual/Quad, Wide-Bandwidth, Low-Power, Single-Supply, Rail-to-Rail I/O Op Amps

Typical Operating Characteristics (continued)


 $(V_{CC} = +5V, V_{EE} = 0V, V_{CM} = V_{CC} / 2, T_A = +25^{\circ}C, unless otherwise noted.)$

Single/Dual/Quad, Wide-Bandwidth, Low-Power, Single-Supply, Rail-to-Rail I/O Op Amps

Typical Operating Characteristics (continued)

 $(V_{CC} = +5V, V_{EE} = 0V, V_{CM} = V_{CC} / 2, T_A = +25$ °C, unless otherwise noted.)

Single/Dual/Quad, Wide-Bandwidth, Low-Power, Single-Supply, Rail-to-Rail I/O Op Amps

Pin Description

		PII					
MAX4130	MAX SO/µMAX	(4131 UCSP	MAX4132	MAX4133	MAX4134	NAME	FUNCTION
1	6	A2	_	_	_	OUT	Output
2	4	A1	4	4	11	V _{EE}	Negative Supply. Connect to GND for single-supply operation.
3	3	B1	_	_	_	IN+	Noninverting Input
4	2	B2	_	_	_	IN-	Inverting Input
5	7	А3	8	14	4	Vcc	Positive Supply
_	1, 5	_	_	5, 7, 8, 10	_	N.C.	No Connection. Not internally connected.
_	8	В3	_		_	SHDN	Shutdown Control. Connect to V _{CC} or leave floating to enable amplifier.
_	_	_	1, 7	1, 13	1, 7	OUT1, OUT2	Outputs for Amps 1 and 2
_	_	_	2, 6	2, 12	2, 6	IN1-, IN2-	Inverting Inputs for Amps 1 and 2
_		_	3, 5	3, 11	3, 5	IN1+, IN2+	Noninverting Inputs for Amps 1 and 2
_	_	_	_	6, 9	_	SHDN1, SHDN2	Shutdown Control. Provides independent shutdown control for amps 1 and 2. Connect to V _{CC} or leave floating to enable amplifiers.
_	_	_	_	_	8, 14	OUT3, OUT4	Outputs for Amps 3 and 4
	_	_	_	_	9, 13	IN3-, IN4-	Inverting Inputs for Amps 3 and 4
_	_	_	_	_	10, 12	IN3+, IN4+	Noninverting Inputs for Amps 3 and 4

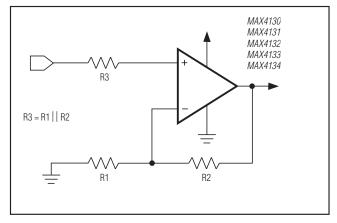


Figure 1a. Reducing Offset Error Due to Bias Current (Noninverting)

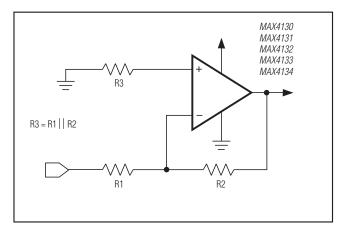


Figure 1b. Reducing Offset Error Due to Bias Current (Inverting)

Single/Dual/Quad, Wide-Bandwidth, Low-Power, Single-Supply, Rail-to-Rail I/O Op Amps

Applications Information

Rail-to-Rail Input Stage

Devices in the MAX4130-MAX4134 family of highspeed amplifiers have rail-to-rail input and output stages designed for low-voltage, single-supply operation. The input stage consists of separate NPN and PNP differential stages that combine to provide an input common-mode range that extends 0.2V beyond the supply rails. The PNP stage is active for input voltages close to the negative rail, and the NPN stage is active for input voltages near the positive rail. The input offset voltage is typically below 200µV. The switchover transition region, which occurs near VCC / 2, has been extended to minimize the slight degradation in common-mode rejection ratio caused by the mismatch of the input pairs. Their low offset voltage, high bandwidth, and rail-to-rail common-mode range make these op amps excellent choices for precision, low-voltage data-acquisition systems.

Since the input stage switches between the NPN and PNP pairs, the input bias current changes polarity as the input voltage passes through the transition region.

Reduce the offset error caused by input bias currents flowing through external source impedances by matching the effective impedance seen by each input (Figures 1a, 1b). High source impedances, together with input capacitance, can create a parasitic pole that produces an underdamped signal response. Reducing the input impedance or placing a small (2pF to 10pF) capacitor across the feedback resistor improves response.

The MAX4130–MAX4134s' inputs are protected from large differential input voltages by $1k\Omega$ series resistors and back-to-back triple diodes across the inputs (Figure 2). For differential input voltages less than 1.8V, input resistance is typically $500k\Omega.$ For differential input voltages greater than 1.8V, input resistance is approximately $2k\Omega.$ The input bias current is given by the following equation:

$$I_{BIAS} = \frac{V_{DIFF} - 1.8V}{2k\Omega}$$

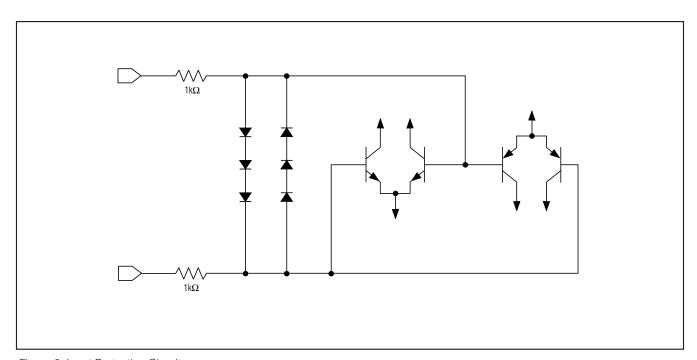


Figure 2. Input Protection Circuit

Single/Dual/Quad, Wide-Bandwidth, Low-Power, Single-Supply, Rail-to-Rail I/O Op Amps

Rail-to-Rail Output Stage

The minimum output voltage is within millivolts of ground for single-supply operation where the load is referenced to ground (VEE). Figure 3 shows the input voltage range and output voltage swing of a MAX4131 connected as a voltage follower. With a +3V supply and the load tied to ground, the output swings from 0.00V to 2.90V. The maximum output voltage swing depends on the load, but will be within 150mV of a +3V supply, even with the maximum load (500 Ω to ground).

Driving a capacitive load can cause instability in most high-speed op amps, especially those with low quiescent current. The MAX4130–MAX4134 have a high tolerance for capacitive loads. They are stable with capacitive loads up to 160pF. Figure 4 gives the stable operating region for capacitive loads. Figures 5 and 6 show the response with capacitive loads and the results of adding an isolation resistor in series with the output (Figure 7). The resistor improves the circuit's phase margin by isolating the load capacitor from the op amp's output.

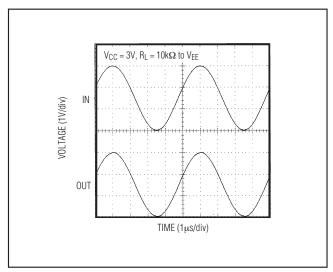


Figure 3. Rail-to-Rail Input/Output Voltage Range

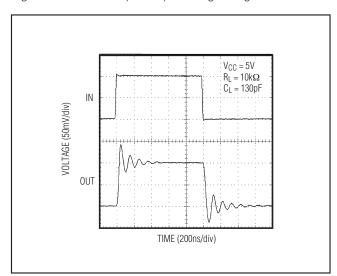


Figure 5. MAX4131 Small-Signal Transient Response with Capacitive Load

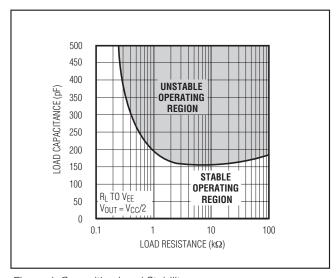


Figure 4. Capacitive-Load Stability

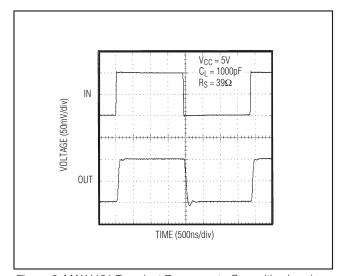


Figure 6. MAX4131 Transient Response to Capacitive Load with Isolation Resistor

Single/Dual/Quad, Wide-Bandwidth, Low-Power, Single-Supply, Rail-to-Rail I/O Op Amps

Power-Up and Shutdown Mode

The MAX4130–MAX4134 amplifiers typically settle within 1µs after power-up. Figures 9 and 10 show the output voltage and supply current on power-up, using the test circuit of Figure 8.

The MAX4131 and MAX4133 have a shutdown option. When the shutdown pin $\overline{(SHDN)}$ is pulled low, the supply current drops below 25µA per amplifier and the

amplifiers are disabled with the outputs in a high-impedance state. Pulling SHDN high or leaving it floating enables the amplifier. In the dual-amplifier MAX4133, the shutdown functions operate independently. Figures 11 and 12 show the output voltage and supply current responses of the MAX4131 to a shutdown pulse, using the test circuit of Figure 8.

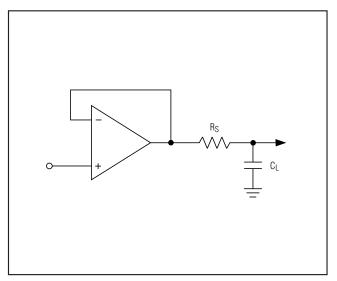


Figure 7. Capacitive-Load Driving Circuit

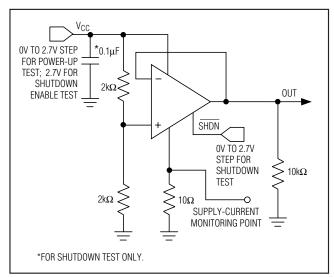


Figure 8. Power-Up/Shutdown Test Circuit

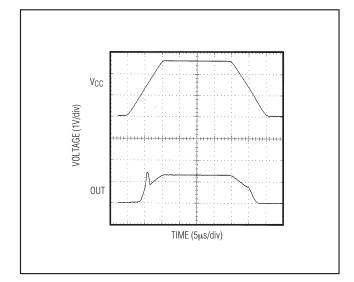


Figure 9. Power-Up Output Voltage

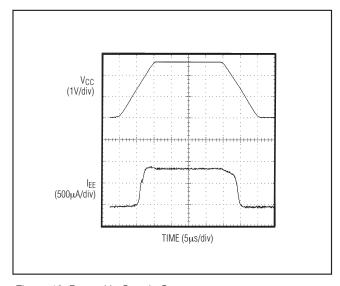


Figure 10. Power-Up Supply Current

Single/Dual/Quad, Wide-Bandwidth, Low-Power, Single-Supply, Rail-to-Rail I/O Op Amps

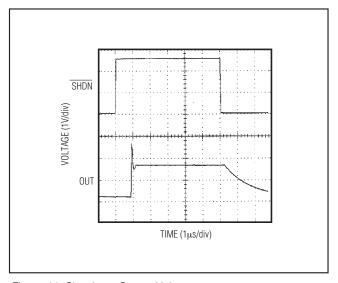


Figure 11. Shutdown Output Voltage

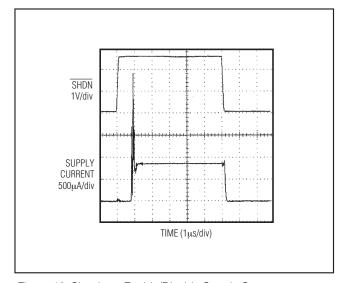
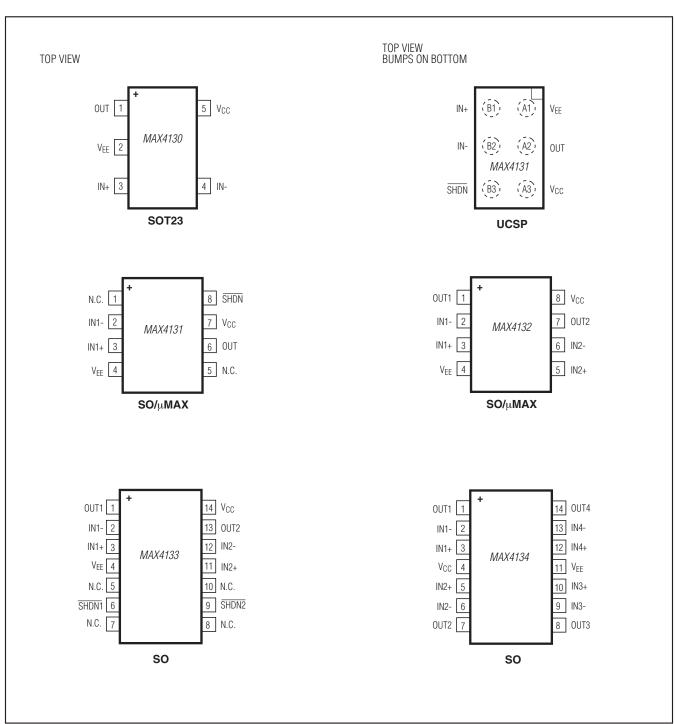


Figure 12. Shutdown Enable/Disable Supply Current

Power Supplies and Layout

The MAX4130–MAX4134 operate from a single $\pm 2.7V$ to $\pm 6.5V$ power supply, or from dual supplies of $\pm 1.35V$ to $\pm 3.25V$. For single-supply operation, bypass the power supply with a $0.1\mu F$ ceramic capacitor in parallel with at least $1\mu F$. For dual supplies, bypass each supply to ground.


Good layout improves performance by decreasing the amount of stray capacitance at the op amp's inputs and outputs. Decrease stray capacitance by placing external components close to the op amp's pins, minimizing trace lengths and resistor leads.

_UCSP Applications Information

For the latest application details on UCSP construction, dimensions, tape carrier information, PC board techniques, bump-pad layout, and the recommended reflow temperature profile, as well as the latest information on reliability testing results, go to Maxim's website at www.maxim-ic.com/ucsp and search for the Application Note: UCSP-A Wafer-Level Chip-Scale Package.

Single/Dual/Quad, Wide-Bandwidth, Low-Power, Single-Supply, Rail-to-Rail I/O Op Amps

_____Pin Configurations

_____Chip Information

Single/Dual/Quad, Wide-Bandwidth, Low-Power, Single-Supply, Rail-to-Rail I/O Op Amps

_Ordering Information (continued)

MAX4130 TRANSISTOR COUNT:	170
MAX4131 TRANSISTOR COUNT:	170
MAX4132 TRANSISTOR COUNT:	340
MAX4134 TRANSISTOR COUNT:	680

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4132ESA	-40°C to +85°C	8 SO	_
MAX4132EUA	-40°C to +85°C	8 µMAX	_
MAX4133C/D	0°C to +70°C	Dice*	_
MAX4133ESD	-40°C to +85°C	14 SO	_
MAX4134ESD	-40°C to +85°C	14 SO	_

^{*}Dice are specified at $T_A = +25$ °C, DC parameters only.

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
5 SOT23	U5-1	<u>21-0057</u>	<u>90-0174</u>
6 UCSP	B6-3	21-0097	Refer to Application Note 1891
8 μMAX	U8-1	<u>21-0036</u>	90-0092
8 S0	S8-2	21-0041	<u>90-0096</u>
14 SO	S14-1	<u>21-0041</u>	90-0012
14 SO	S14M-6	<u>21-0041</u>	90-0012

Single/Dual/Quad, Wide-Bandwidth, Low-Power, Single-Supply, Rail-to-Rail I/O Op Amps

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	6/96	Initial release	_
1	1/14	Updated Electrical Characteristics	2, 4

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.