: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

High-Output-Drive, Precision, Low-Power, SingleSupply, Rail-to-Rail I/O Op Amps with Shutdown

Abstract

General Description The MAX4165-MAX4169 family of operational amplifiers combines excellent DC accuracy with high output current drive, single-supply operation, and rail-to-rail inputs and outputs. These devices operate from a single +2.7 V to +6.5 V supply, or from dual $\pm 1.35 \mathrm{~V}$ to $\pm 3.25 \mathrm{~V}$ supplies. They typically draw 1.2 mA supply current, and are guaranteed to deliver 80mA output current. The MAX4166/MAX4168 have a shutdown mode that reduces supply current to $38 \mu \mathrm{~A}$ per amplifier and places the outputs into a high-impedance state. The MAX4165-MAX4169's precision performance combined with high output current, wide input/output dynamic range, single-supply operation, and low power consumption makes them ideal for portable audio applications and other low-voltage, battery-powered systems. The MAX4165 is available in the space-saving 5-pin SOT23 package and the MAX4166 is available in a tiny $2 \mathrm{~mm} \times 2 \mathrm{~mm} \times 0.8 \mathrm{~mm} \mu \mathrm{DFN}$ package.

Selector Guide

PART	AMPS PER PACKAGE	SHUTDOWN MODE
MAX4165	Single	-
MAX4166	Single	Yes
MAX4167	Dual	-
MAX4168	Dual	Yes
MAX4169	Quad	-

Applications

Portable/Battery-Powered Audio Applications
Portable Headphone Speaker Drivers
Laptop/Notebook Computers
Sound Ports/Cards
Set-Top Boxes
Cell Phones
Hands-Free Car Phones (kits)
Signal Conditioning
Digital-to-Analog Converter Buffers
Transformer/Line Drivers
Motor Drivers

Typical Operating Circuit appears at end of data sheet.

80mA (min) Output Drive CapabilityRail-to-Rail Input Common-Mode Voltage RangeRail-to-Rail Output Voltage Swing1.2mA Supply Current per Amplifier+2.7V to +6.5V Single-Supply Operation5MHz Gain-Bandwidth Product250 V Offset Voltage120dB Voltage Gain (RL = 100kS)88dB Power-Supply Rejection RatioNo Phase Reversal for Overdriven InputsUnity-Gain Stable for Capacitive Loads to 250pFLow-Power Shutdown Mode:Reduces Supply Current to 38رA PlacesOutputs in High-Impedance StateAvailable in 5-Pin SOT23 Package (MAX4165) or2mm x 2mm x 0.8mm μ DFN (MAX4166)	

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4165EUK-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23-5	AABY
MAX4166EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP	-
MAX4166ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	-
MAX4166EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-
MAX4166ELA +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{DFN}-8$	AAG

+Denotes lead-free package.
Ordering Information continued on last page.
Pin Configurations

High-Output-Drive, Precision, Low-Power, SingleSupply, Rail-to-Rail I/O Op Amps with Shutdown

ABSOLUTE MAXIMUM RATINGS

Sup7V
IN_+, IN_-, STDN_	.. (VEE - 0.3V) $+\left(\mathrm{V}_{C C}+0.3 \mathrm{~V}\right)$
OUT_ (shutdown mode)	.. ($\left.V_{E E}-0.3 V\right)+\left(V_{C C}+0.3 V\right)$
Output Short-Circuit Duration to	or VEE (Note 1)Continuous
Continuous Power Dissipatio	+ $70^{\circ} \mathrm{C}$)
5-Pin SOT23 (derate 7.10m	above $+70^{\circ} \mathrm{C}$)......... 571 mW
8-Pin Plastic DIP (derate 9.09	$/{ }^{\circ} \mathrm{C}$ above $\left.+70^{\circ} \mathrm{C}\right) . . .727 \mathrm{~mW}$
8 -Pin SO (derate 5.88mW	ve $+70^{\circ} \mathrm{C}$).............. 471 mW
8 -Pin μ MAX (derate 4.10mV	above $+70^{\circ} \mathrm{C}$)..........330mW

Note 1: Continuous power dissipation should also be observed.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=+2.7 \mathrm{~V}\right.$ to $+6.5 \mathrm{~V}, \mathrm{~V}_{E E}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=(\mathrm{V} C C / 2), \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \boldsymbol{\Omega}$ to $(\mathrm{V} C C / 2), \mathrm{V}_{\mathrm{SHDN}} \geq 2 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=+\mathbf{2 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted.)

High-Output-Drive, Precision, Low-Power, SingleSupply, Rail-to-Rail I/O Op Amps with Shutdown

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+2.7 \mathrm{~V}\right.$ to $+6.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=(\mathrm{VCC} / 2), \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ to $\left(\mathrm{V}_{\mathrm{CC}} / 2\right), \mathrm{V} \overline{\mathrm{SHDN}} \geq 2 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Output Voltage Swing	Vout	$V C C=5 V$	$R \mathrm{~L}=100 \mathrm{k} \Omega$	VCC - Voh		15	30	mV
				Vol - VEE		10	25	
			$R L=25 \Omega$	VCC - Voh		340	430	
				Vol - Vee		160	350	
Output Source/Sink Current (Note 2)		VOUT $=0.6 \mathrm{~V}$ to $(\mathrm{VCC}-0.6 \mathrm{~V})$			± 80	± 125		mA
$\overline{\text { SHDN }}$ Logic Threshold (Note 3)	VIL	Shutdown mode					0.8	V
	V_{IH}	Normal mode			2.0			
$\overline{\text { SHDN }}$ Input Bias Current		$V_{\text {EE }}<\mathrm{V}_{\text {SHDN }}<\mathrm{V}_{\text {CC }}$					± 3.0	$\mu \mathrm{A}$
Operating Supply-Voltage Range	Vcc	Inferred from PSRR test			2.7		6.5	V
Quiescent Supply Current (per Amplifier)	ICC	V cc $=5 \mathrm{~V}$				1.3	1.5	mA
		$V_{C C}=3 \mathrm{~V}$				1.2	1.4	
Shutdown Supply Current (per Amplifier)	ICC($\overline{\text { SHDN }})$	$\mathrm{V} \overline{\mathrm{SHDN}}<0.8 \mathrm{~V}$		$\mathrm{VCC}=5 \mathrm{~V}$		58	75	$\mu \mathrm{A}$
				$V_{C C}=3 \mathrm{~V}$		38	49	

DC ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=+2.7 \mathrm{~V}\right.$ to $+6.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=(\mathrm{V} C \mathrm{C} / 2), \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ to $\left(\mathrm{V}_{\mathrm{CC}} / 2\right), \mathrm{V} \overline{\mathrm{SHDN}} \geq 2 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$ to $+\mathbf{8 5} \mathbf{5}^{\circ} \mathbf{C}$, unless otherwise noted.) (Note 4)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP MAX	UNITS
Input Offset Voltage	Vos	$V_{C M}=V_{E E}$ to $V_{C C}$	MAX416_EPA/EPD		1.0	mV
			MAX416_ESA/ESD		1.0	
			MAX416_EUA/EUB/ELA		4.9	
			MAX416_EUK		4.3	
			MAX4169E_D		1.2	
Offset-Voltage Tempco	$\Delta \mathrm{V}$ OS/ $\mathrm{T}^{\text {T }}$				± 3	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	IB	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{EE}}$ to $\mathrm{V}_{\text {CC }}$			± 225	nA
Input Offset Current	Ios	$V_{C M}=V_{E E}$ to $V_{C C}$			± 21	nA
Common-Mode Input Voltage Range	VCM	Inferred from CMRR test		VEE - 0.15	$V C C+0.15$	V
Common-Mode Rejection Ratio	CMRR	$\begin{aligned} & V_{E E}-0.15 V<V_{C M}< \\ & \left(V_{C C}+0.15 V\right) \end{aligned}$	MAX416_EPA/EPD		71	dB
			MAX416_ESA/ESD		71	
			MAX416_EUA/EUB/ELA		56	
			MAX416_EUK		57	
			MAX4169E_D		69	
Power-Supply Rejection Ratio	PSRR	$\mathrm{V}_{C C}=2.7 \mathrm{~V}$ to 6.5 V	MAX416_EPA/EPD		67	dB
			MAX416_ESA/ESD		67	
			MAX416_EUA/EUB/ELA		65	
			MAX416_EUK		65	
			MAX4169E_D		66	

High-Output-Drive, Precision, Low-Power, SingleSupply, Rail-to-Rail I/O Op Amps with Shutdown

DC ELECTRICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{C C}=+2.7 \mathrm{~V}\right.$ to $+6.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=(\mathrm{VCC} / 2), \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ to $(\mathrm{V} \mathrm{CC} / 2), \mathrm{V} \overline{\mathrm{SHDN}} \geq 2 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=-\mathbf{4 0 ^ { \circ }} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP MAX	UNITS
Off-Leakage Current in Shutdown	Iout(SHDN)	$\mathrm{V} \overline{\mathrm{SHDN}}<0.8 \mathrm{~V}$, Vout $=0 \mathrm{~V}$ to VcC				± 5	$\mu \mathrm{A}$
Large-Signal Voltage Gain	Avol	$V_{C C}=5 \mathrm{~V}$	VOUT $=0.2 \mathrm{~V}$ to 4.8V, $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$		90		dB
			VOUT $=0.6 \mathrm{~V}$ to 4.4V, RL $=25 \Omega$		66		
Output Voltage Swing	Vout	$V \mathrm{CC}=5 \mathrm{~V}$	$R \mathrm{~L}=100 \mathrm{k} \Omega$	V CC $-\mathrm{V}_{\text {OH }}$		40	mV
				VOL - VeE		30	
			$R \mathrm{~L}=25 \Omega$	V CC $-\mathrm{V}_{\text {OH }}$		490	
				VOL - VEE		400	
Output Source/Sink Current (Note 2)		VOUT $=0.6 \mathrm{~V}$ to ($\mathrm{VCC}_{\text {C }}-0.6 \mathrm{~V}$)			± 80		mA
SHDN Logic Threshold (Note 3)	VIL	Shutdown mode				0.8	V
	V_{IH}	Normal mode			2.0		
$\overline{\text { SHDN }}$ Input Bias Current		$\mathrm{V}_{\mathrm{EE}}<\mathrm{V}_{\text {SHDN }}<\mathrm{V}_{\text {CC }}$				± 3.5	$\mu \mathrm{A}$
Operating Supply-Voltage Range	VCC	Inferred from PSRR test			2.7	6.5	V
Quiescent Supply Current (per Amplifier)	ICC	$\mathrm{Vcc}=5 \mathrm{~V}$				1.7	mA
		$V_{C C}=3 \mathrm{~V}$				1.6	
Shutdown Supply Current (per Amplifier)	$\mathrm{ICC}(\overline{\mathrm{SHDN}})$	V $\overline{S H D N}<0.8 \mathrm{~V}$		V CC $=5 \mathrm{~V}$		82	$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$		54	

Note 2: Although the minimum output current is guaranteed to be $\pm 80 \mathrm{~mA}$, exercise caution to ensure that the absolute maximum power-dissipation rating of the package is not exceeded.
Note 3: $\overline{\mathrm{SHDN}}$ logic thresholds are referenced to V_{EE}.
Note 4: The MAX4165EUK is 100% tested at $+25^{\circ} \mathrm{C}$. All temperature limits are guaranteed by design.

AC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{VCC}=+2.7 \mathrm{~V}\right.$ to $+6.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V} C M=0 \mathrm{~V}, \mathrm{VOUT}=(\mathrm{VCC} / 2), \mathrm{RL}=2.5 \mathrm{k} \Omega$ to $(\mathrm{VCC} / 2), \mathrm{V} \overline{\mathrm{SHDN}} \geq 2 \mathrm{~V}, \mathrm{CL}=15 \mathrm{pF}, \mathrm{T}_{\mathbf{A}}=\boldsymbol{+ 2 5}{ }^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Gain-Bandwidth Product	GBWP		5		MHz
Full-Power Bandwidth	FPBW	VOUT $=4 \mathrm{Vp}-\mathrm{p}, \mathrm{V}_{\text {CC }}=5 \mathrm{~V}$	260		kHz
Slew Rate	SR		2		V/us
Phase Margin	PM		68		degrees
Gain Margin	GM		21		dB
Total Harmonic Distortion	THD	$\mathrm{f}=10 \mathrm{kHz}, \mathrm{V}$ OUT $=2 \mathrm{Vp}-\mathrm{p}, \mathrm{AVCL}=+1 \mathrm{~V} / \mathrm{V}$	0.005		\%
Settling Time to 0.01\%	ts	AVCL $=+1 \mathrm{~V} / \mathrm{V}$, 2 V step	2.1		$\mu \mathrm{s}$
Input Capacitance	CIN		3		pF
Input Voltage-Noise Density	en_{n}	$f=1 \mathrm{kHz}$	26		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Current-Noise Density	in	$f=1 \mathrm{kHz}$	0.4		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Channel-to-Channel Isolation		$\mathrm{f}=1 \mathrm{kHz}, \mathrm{RL}_{\mathrm{L}}=100 \mathrm{k} \Omega$ (MAX4167-MAX4169)	125		dB
Capacitive Load Stability		AVCL $=+1 \mathrm{~V} / \mathrm{V}$, no sustained oscillations	250		pF
Shutdown Time	tSHDN		1		$\mu \mathrm{s}$
Enable Time from Shutdown	tenable		1		$\mu \mathrm{s}$
Power-Up Time	tON		5		$\mu \mathrm{s}$

High-Output-Drive, Precision, Low-Power, SingleSupply, Rail-to-Rail I/O Op Amps with Shutdown

Typical Operating Characteristics
$\left(\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

GAIN AND PHASE vs. FREQUENCY

SUPPLY CURRENT PER AMPLIFIER vs. TEMPERATURE

INPUT BIAS CURRENT
vs. TEMPERATURE

POWER-SUPPLY REJECTION RATIO vs. FREQUENCY

SHUTDOWN SUPPLY CURRENT PER AMPLIFIER vs. TEMPERATURE

INPUT OFFSET VOLTAGE vs. TEM PERATURE

High-Output-Drive, Precision, Low-Power, SingleSupply, Rail-to-Rail I/O Op Amps with Shutdown

Typical Operating Characteristics (continued)
$\left(\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{RL}=100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

MINIMUM OPERATING VOLTAGE vs. TEM PERATURE

LARGE-SIGNAL GAIN vs. OUTPUT VOLTAGE (SOURCING, $\mathrm{V}_{\mathrm{CC}}=6.5 \mathrm{~V}$)

LARGE-SIGNAL GAIN vs. TEM PERATURE ($R_{L}=100 \Omega$)

COMMON-MODE REJECTION RATIO vs. TEM PERATURE

LARGE-SIGNAL GAIN vs. OUTPUT VOLTAGE (SINKING, VCC $=2.7 \mathrm{~V}$)

LARGE-SIGNAL GAIN vs. TEM PERATURE ($\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$)

LARGE-SIGNAL GAIN vs. OUTPUT VOLTAGE
(SINKING, VCC $=6.5 \mathrm{~V}$)

LARGE-SIGNAL GAIN vs. OUTPUT VOLTAGE
(SOURCING, $\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$)

OUTPUT VOLTAGE LOW
vs. TEMPERATURE

High-Output-Drive, Precision, Low-Power, SingleSupply, Rail-to-Rail I/O Op Amps with Shutdown

Typical Operating Characteristics (continued)
$\left(\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

CHANNEL-TO-CHANNEL ISOLATION vs. FREQUENCY

TIME ($5 \mu \mathrm{~s} / \mathrm{div}$)

SM ALL-SIGNAL TRANSIENT RESPONSE (NONINVERTING)

TIME (500ns/div)

SM ALL-SIGNAL TRANSIENT RESPONSE

TIME (500ns/div)

LARGE-SIGNAL TRANSIENT RESPONSE

TIME ($5 \mu \mathrm{~s} / \mathrm{div}$)

High-Output-Drive, Precision, Low-Power, SingleSupply, Rail-to-Rail I/O Op Amps with Shutdown

PIN							NAME	FUNCTION
MAX4165	MAX4166		MAX4167	MAX4168		MAX4169		
	DIP/SO $\mu \mathrm{MAX}$	$\mu \mathrm{DFN}$		DIP/SO	$\mu \mathrm{MAX}$			
1	6	4	-	-	-	-	OUT	Output
-	1,5	2, 6	-	$\begin{gathered} 5,7,8 \\ 10 \end{gathered}$	-	-	N.C.	No Connection. Not internally connected.
-	-	-	1, 7	1,13	1,9	1,7	OUT1, OUT2	Outputs for Amplifiers 1 and 2
2	4	3	4	4	4	11	VEE	Negative Supply. Ground for singlesupply operation.
3	3	1	-	-	-	-	$\mathrm{N}+$	Noninverting Input
-	-	-	2, 6	2, 12	2, 8	2, 6	IN1-, IN2-	Inverting Inputs for Amplifiers 1 and 2
4	2	7	-	-	-	-	IN-	Inverting Input
-	-	-	3, 5	3, 11	3, 7	3, 5	IN1+, IN2+	Noninverting Inputs for Amplifiers 1 and 2
5	7	5	8	14	10	4	$V_{C C}$	Positive Supply
-	-	-	-	6, 9	5,6	-	$\frac{\overline{\mathrm{SHDN1}}}{\overline{\mathrm{SHDN}}}$	Active-Low Shutdown Inputs for Amplifiers 1 and 2. Drive low for shutdown mode. Drive high or connect to VCc for normal operation.
-	8	8	-	-	-	-	$\overline{\text { SHDN }}$	Active-Low Shutdown Input. Drive low for shutdown mode. Drive high or connect to VCC for normal operation.
-	-	-	-	-	-	8, 14	OUT3, OUT4	Outputs for Amplifiers 3 and 4
-	-	-	-	-	-	9, 13	IN3-, IN4-	Inverting Inputs for Amplifiers 3 and 4
-	-	-	-	-	-	10, 12	IN3+, IN4+	Noninverting Inputs for Amplifiers 3 and 4

High-Output-Drive, Precision, Low-Power, SingleSupply, Rail-to-Rail I/O Op Amps with Shutdown

Applications Information

Package Power Dissipation Warning: Due to the high output current drive, this op amp can exceed the absolute maximum power-dissipation rating. As a general rule, as long as the peak current is less than or equal to 80 mA , the maximum package power dissipation will not be exceeded for any of the package types offered. There are some exceptions to this rule, however. The absolute maximum power-dissipation rating of each package should always be verified using the following equations. The following equation gives an approximation of the package power dissipation:

$$
\operatorname{PIC}(\mathrm{DISS}) \cong \mathrm{V}_{\text {RMS }} \mathrm{I}_{\mathrm{RMS}} \cos \theta
$$

where: $\mathrm{V}_{\text {RMS }}=$ the RMS voltage from VCC to VOUT when sourcing current
= the RMS voltage from VOUT to VEE when sinking current
IRMS = the RMS current flowing out of or into the op amp and the load
$\theta=$ the phase difference between the voltage and the current. For resistive loads, $\operatorname{COS} \theta=1$.
For example, the circuit in Figure 1 has a package power dissipation of 157 mW .

$$
\begin{aligned}
V_{R M S} & \cong\left(V_{C C}-V_{D C}\right)-\frac{V_{P E A K}}{\sqrt{2}} \\
& =6.5 \mathrm{~V}-3.25 \mathrm{~V}-\frac{1.5 \mathrm{~V}}{\sqrt{2}}=2.189 \mathrm{~V}_{\mathrm{RMS}} \\
\mathrm{I}_{\mathrm{RMS}} & \cong \mathrm{I}_{\mathrm{DC}}+\frac{\mathrm{I}_{\mathrm{PEAK}}}{\sqrt{2}}=\frac{3.25 \mathrm{~V}}{60 \Omega}+\frac{1.5 \mathrm{~V} / 60 \Omega}{\sqrt{2}} \\
& =71.84 \mathrm{~mA} A_{R M S}
\end{aligned}
$$

Therefore, $\operatorname{PIC}(\mathrm{DISS})=\mathrm{V}_{\mathrm{RMS}} \mathrm{I}_{\mathrm{RMS}} \operatorname{COS} \theta$

$$
=157 \mathrm{~mW}
$$

Adding a coupling capacitor improves the package power dissipation because there is no DC current to the load, as shown in Figure 2.

$$
\begin{aligned}
V_{R M S} & \cong\left(V_{C C}-V_{D C}\right)-\frac{V_{P E A K}}{\sqrt{2}} \\
& =6.5 \mathrm{~V}-3.25 \mathrm{~V}-\frac{1.5 \mathrm{~V}}{\sqrt{2}}=2.189 \mathrm{~V}_{\mathrm{RMS}} \\
\mathrm{I}_{\mathrm{RMS}} & \cong \mathrm{I}_{\mathrm{DC}}+\frac{\mathrm{I}_{\mathrm{PEAK}}}{\sqrt{2}}=0 \mathrm{~A}+\frac{1.5 \mathrm{~V} / 60 \Omega}{\sqrt{2}} \\
& =17.67 \mathrm{~mA}_{\mathrm{RMS}}
\end{aligned}
$$

Figure 1. A Circuit Example where the MAX4165/MAX4166 is Being Used in Single-Supply Operation

Figure 2. A Circuit Example where Adding a Coupling Capacitor Greatly Reduces the Power Dissipation of Its Package

$$
\text { Therefore, } \begin{aligned}
\text { PIC(DISS) } & =V_{R M S} \text { IRMS COS } \theta \\
& =38.6 \mathrm{~mW}
\end{aligned}
$$

The absolute maximum power-dissipation rating of this package would be exceeded if the configuration in Figure 1 were used with all four of the MAX4169ESD's amplifiers at a high ambient temperature of $+75^{\circ} \mathrm{C}$ $(157 \mathrm{~mW} \times 4$ amplifiers $=628 \mathrm{~mW}+$ a derating of $8.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \times 5^{\circ} \mathrm{C}=669 \mathrm{~mW}$). Note that 669 mW just exceeds the absolute maximum power dissipation of 667 mW for the 14-pin SO package (see the Absolute Maximum Ratings section).

High-Output-Drive, Precision, Low-Power, SingleSupply, Rail-to-Rail I/O Op Amps with Shutdown

Figure 3. Dual MAX4167/MAX4168 Bridge Amplifier for 200 mW at 3 V

Single-Supply Speaker Driver

The MAX4165/MAX4166 can be used as a single-supply speaker driver, as shown in the Typical Operating Circuit. Capacitor C1 is used for blocking DC (a $0.1 \mu \mathrm{~F}$ ceramic capacitor can be used). When choosing resistors R3 and R4, take into consideration the input bias current as well as how much supply current can be tolerated. Choose resistors R1 and R2 according to the amount of gain and current desired. Capacitor C3 ensures unity gain for DC. A $10 \mu \mathrm{~F}$ electrolytic capacitor is suitable for most applications. The coupling capacitor C2 sets a low-frequency pole and is fairly large in value. For a 32Ω load, a 100μ F coupling capacitor gives a low-frequency pole at 50 Hz . The low-frequency pole can be set according to the following equation:

$$
f=1 / 2 \pi\left(\mathrm{R}_{\mathrm{LC}} 2\right)
$$

Bridge Amplifier
The circuit shown in Figure 3 uses a dual MAX4167/ MAX4168 to implement a 3 V , 200mW amplifier suitable for use in size-constrained applications. This configuration eliminates the need for the large coupling capacitor required by the single op-amp speaker driver when single-supply operation is a must. Voltage gain is set to $+10 \mathrm{~V} / \mathrm{V}$; however, it can be changed by adjusting the $900 \mathrm{k} \Omega$ resistor value. DC voltage at the speaker is limited to 10 mV . The 47Ω and $0.1 \mu \mathrm{~F}$ capacitors across the speaker maintain a low impedance at the load as frequency increases.

Figure 4. Reducing Offset Error Due to Bias Current (Noninverting)

Figure 5. Reducing Offset Error Due to Bias Current (Inverting)

Rail-to-Rail Input Stage

Devices in the MAX4165-MAX4169 family of high-out-put-current amplifiers have rail-to-rail input and output stages designed for low-voltage, single-supply operation. The input stage consists of separate NPN and PNP differential stages that combine to provide an input common-mode range that extends 0.25 V beyond the supply rails. The PNP stage is active for input voltages close to the negative rail, and the NPN stage is active for input voltages near the positive rail. The switchover transition region, which occurs near VCC / 2, has been extended to minimize the slight degradation in common-mode rejection ratio caused by mismatch of the input pairs.

High-Output-Drive, Precision, Low-Power, SingleSupply, Rail-to-Rail I/O Op Amps with Shutdown

Figure 6. Input Protection Circuit

Since the input stage switches between the NPN and PNP pairs, the input bias current changes polarity as the input voltage passes through the transition region. Match the effective impedance seen by each input to reduce the offset error caused by input bias currents flowing through external source impedances (Figures 4 and 5).
High source impedances, together with input capacitance, can create a parasitic pole that produces an underdamped signal response. Reducing the input impedance or placing a small (2 pF to 10 pF) capacitor across the feedback resistor improves response.
The MAX4165-MAX4169's inputs are protected from large differential input voltages by $1 \mathrm{k} \Omega$ series resistors and back-to-back triple diodes across the inputs (Figure 6).
For differential voltages less than 1.8 V , input resistance is typically $500 \mathrm{k} \Omega$. For differential input voltages greater than 1.8 V , input resistance is approximately $2 \mathrm{k} \Omega$. The input bias current is given by the following equation:

$$
\text { IBIAS }=(\mathrm{V} \text { DIFF }-1.8 \mathrm{~V}) / 2 \mathrm{k} \Omega
$$

Rail-to-Rail Output Stage The minimum output is within millivolts of ground for single-supply operation, where the load is referenced to ground (VEE). Figure 7 shows the input voltage range and the output voltage swing of a MAX4165 connected as a voltage follower. The maximum output voltage swing is load dependent; however, it is guaranteed to be within 430 mV of the positive rail $\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\right)$ even with maximum load (25Ω to ground).

Figure 7. Rail-to-Rail Input/Output Range

Driving Capacitive Loads

The MAX4165-MAX4169 have a high tolerance for capacitive loads. They are stable with capacitive loads up to 250 pF . Figure 8 is a graph of the stable operating region for various capacitive loads vs. resistive loads. Figures 9 and 10 show the transient response with excessive capacitive loads (1500pF), with and without the addition of an isolation resistor in series with the output. Figure 11 shows a typical noninverting capaci-tive-load-driving circuit in the unity-gain configuration. The resistor improves the circuit's phase margin by isolating the load capacitor from the op amp's output.

High-Output-Drive, Precision, Low-Power, SingleSupply, Rail-to-Rail I/O Op Amps with Shutdown

Figure 8. Capacitive Łoad Stability

Figure 10. Small-Signal Transient Response with Excessive Capacitive Load with Isolation Resistor

Power-Up and Shutdown Modes

The MAX4166/MAX4168 have a shutdown option. When the shutdown pin (SHDN) is pulled low, supply current drops to $58 \mu \mathrm{~A}$ per amplifier ($\mathrm{Vcc}=+5 \mathrm{~V}$), the amplifiers are disabled, and their outputs are placed in a high-impedance state. Pulling SHDN high or leaving it floating enables the amplifier. In the dual MAX4168, the two amplifiers shut down independently. Figures 12 and 13 show the MAX4166's output voltage and sup-ply-current responses to a shutdown pulse. The MAX4166-MAX4169 typically settle within 5μ s after power-up (Figure 14)

Figure 9. Small-Signal Transient Response with Excessive Capacitive Load

Figure 11. Capacitive-Load-Driving Circuit

Power Supplies and Layout
The MAX4165-MAX4169 can operate from a single +2.7 V to +6.5 V supply, or from dual $\pm 1.35 \mathrm{~V}$ to $\pm 3.25 \mathrm{~V}$ supplies. For single-supply operation, bypass the power supply with a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with at least $1 \mu \mathrm{~F}$. For dual-supply operation, bypass each supply to ground. Good layout improves performance by decreasing the amount of stray capacitance at the op amps' inputs and outputs. Decrease stray capacitance by placing external components close to the op amps' pins, minimizing trace and lead lengths.

High-Output-Drive, Precision, Low-Power, SingleSupply, Rail-to-Rail I/O Op Amps with Shutdown

Figure 12. Shutdown Output Voltage Enable/Disable

Figure 13. Shutdown Enable/Disable Supply Current

Figure 14. Power-Up/Down Output Voltage

Figure 15. Power-Up/Down Supply Current

High-Output-Drive, Precision, Low-Power, SingleSupply, Rail-to-Rail I/O Op Amps with Shutdown

\qquad Pin Configurations (continued)

TOP VIEW

High-Output-Drive, Precision, Low-Power, SingleSupply, Rail-to-Rail I/O Op Amps with Shutdown

__Ordering Information (continued)

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4167EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP	-
MAX4167ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	-
MAX4168EPD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Plastic DIP	-
MAX4168ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO	-
MAX4168EUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$	-
MAX4169EPD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Plastic DIP	-
MAX4169ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO	-

Chip Information
MAX4165 TRANSISTOR COUNT: 230
MAX4166 TRANSISTOR COUNT: 230
MAX4167 TRANSISTOR COUNT: 462
MAX4168 TRANSISTOR COUNT: 462
MAX4169 TRANSISTOR COUNT: 924
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

High-Output-Drive, Precision, Low-Power, SingleSupply, Rail-to-Rail I/O Op Amps with Shutdown

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

High-Output-Drive, Precision, Low-Power, SingleSupply, Rail-to-Rail I/O Op Amps with Shutdown

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

COMMON DIMENSIONS				
SYMBOL	MIN.	NOM.	MAX.	
A	0.70	0.75	0.80	
A1	0.15	0.20	0.25	
A2	0.020	0.025	0.035	
D	1.95	2.00	2.05	
E	1.95	2.00	2.05	
L	0.30	0.40	0.50	
L1	0.10 REF.			

PACKAGE VARIATIONS				
PKG. CODE	N	e	b	(N/2 -1) xe
L622-1	6	0.65 BSC	0.30 ± 0.05	1.30 REF.
L822-1	8	0.50 BSC	0.25 ± 0.05	1.50 REF.
L1022-1	10	0.40 BSC	0.20 ± 0.03	1.60 REF.

NOTES:

ALL DIMENSIONS ARE IN mm. ANGLES IN DEGREES. COPLANARITY SHALL NOT EXCEED 0.08 mm
4. PACKAGE LENGTH/PACKAGE WIDTH ARE CONSIDERED AS SPECIAL CHARACTERISTIC(S).
" N " IS THE TOTAL NUMBER OF LEADS.
6. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY. M MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.
-dRAWINg not to scale-

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

