## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

# Single/Dual/Quad, 270MHz, 1 mA, SOT23, Current-Feedback Amplifiers with Shutdown 

## General Description

The MAX4180 family of current-feedback amplifiers combines high-speed performance, low distortion, and excellent video specifications with ultra-low-power operation in miniature packages. They operate from $\pm 2.25 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ dual supplies, or from a single +5 V supply. They require only 1 mA of supply current per amplifier while delivering up to $\pm 60 \mathrm{~mA}$ of output current drive. The MAX4180/MAX4182/MAX4183/MAX4186 are compensated for applications with a closed-loop gain of $+2(6 \mathrm{~dB})$ or greater, and provide a -3 dB bandwidth of 240 MHz and a 0.1 dB bandwidth of 70 MHz . The MAX4181/MAX4184/MAX4185/MAX4187 are compensated for applications with a +1 (0dB) or greater gain, and provide a -3 dB bandwidth of 270 MHz and a 0.1 dB bandwidth of 60 MHz .

The MAX4180-MAX4187 feature 0.08\%/0.03 ${ }^{\circ}$ differential gain and phase errors, a 20ns settling time to $0.1 \%$, and a $450 \mathrm{~V} / \mu$ s slew rate, making them ideal for highperformance video applications. The MAX4180/ MAX4181/MAX4183/MAX4185 have a low-power shutdown mode that reduces power-supply current to $135 \mu \mathrm{~A}$ and places the outputs in a high-impedance state. This feature makes them ideal for multiplexing applications.
The single MAX4180/MAX4181 are offered in spacesaving 6-pin SOT23 packages.

## Applications

Portable/Battery-Powered Video/Multimedia Systems

Broadcast and High-Definition TV Systems
High-Speed A/D Buffers CCD Imaging Systems

High-Definition Surveillance Video

Professional Cameras

Video Switching/ Multiplexing

Medical Imaging
Selector Guide

| PART | NO. OF <br> AMPS | SHUTDOWN <br> MODE | OPTIMIZED <br> FOR |
| :---: | :---: | :---: | :---: |
| MAX4180 | 1 | Yes | $A v \geq 2$ |
| MAX4181 | 1 | Yes | $A v \geq 1$ |
| MAX4182 | 2 | No | $A v \geq 2$ |
| MAX4183 | 2 | Yes | $A v \geq 2$ |
| MAX4184 | 2 | No | $A v \geq 1$ |
| MAX4185 | 2 | Yes | $A v \geq 1$ |
| MAX4186 | 4 | No | $A v \geq 2$ |
| MAX4187 | 4 | No | $A v \geq 1$ |

Features
Shutdown Mode
Outputs Placed in High-Z
Supply Current Reduced to 135 AA
Operate from a Single +5V Supply or
Dual $\pm 5 \mathrm{~V}$ Supplies
Wide Bandwidth
270MHz -3dB Small-Signal Bandwidth
(MAX4181/MAX4184/MAX4185/MAX4187)
450V/us Slew Rate
Fast, 20ns Settling Time to 0.1\%
Excellent Video Specifications
Gain Flatness to 70MHz
(MAX4180/MAX4182/MAX4183/MAX4186)
Low Distortion:
-73 dBc SFDR (fc = 5MHz, VOUT = 2Vp-p)

- Available in Tiny Surface-Mount Packages 6-Pin SOT23 (MAX4180/MAX4181) 10-Pin $\mu$ MAX (MAX4183/MAX4185)
16-Pin QSOP (MAX4186/MAX4187)

Ordering Information

| PART | TEMP <br> RANGE | PIN- <br> PACKAGE | TOP <br> MARK |
| :--- | :---: | :--- | :---: |
| MAX4180EUT- $T$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 6 SOT23-6 | AAAB |
| MAX4180ESA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 SO | - |

Ordering Information continued at end of data sheet.

Pin Configurations


Pin Configurations continued at end of data sheet.

# Single/Dual/Quad, 270MHz, 1 mA , SOT23, Current-Feedback Amplifiers with Shutdown 

## ABSOLUTE MAXIMUM RATINGS

|  | Sup |
| :---: | :---: |
|  | Analog Input Voltage .....................(VEE - 0.3V) to (VCC + 0.3V) |
|  | Differential Input Voltage ............................................... $\pm 2 \mathrm{~V}$ |
|  | SHDN Input Voltage ...................... $\left.\mathrm{V}_{\mathrm{EE}}-0.3 \mathrm{~V}\right)$ to ( $\left.\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$ |
|  | Short-Circuit Duration (OUT to GND, $\mathrm{V}_{\text {CC }}$ or $\mathrm{V}_{\mathrm{EE}}$ ).....Continuous |
|  | Continuous Power Dissipation ( $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ ) |
|  | 6 -Pin SOT23 (derate $7.10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ).......... 571 mW |


| 8-Pin SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ )................. 471 mW |  |
| :---: | :---: |
| $\text { 10-Pin } \mu \text { MAX (derate } 5.60 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \text { above }+70^{\circ} \mathrm{C} \text { ) .......... } 444 \mathrm{~mW}$ |  |
| 14-Pin SO (derate $8.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ) |  |
| 16-Pin QSOP (derate $8.30 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ )......... 667 mW |  |
| Operating Temperature Range ........................ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |
| Storage Temperature Range |  |
|  |  |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## DC ELECTRICAL CHARACTERISTICS—Dual Supplies

$\left(\mathrm{V}_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=-5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}+=0, \overline{S H D N} \geq 3 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $T_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 1)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Voltage Range | $V_{\text {CM }}$ | Guaranteed by CMRR test | $\pm 3.6$ | $\pm 3.9$ |  | V |
| Input Offset Voltage | Vos | $\mathrm{V}_{\mathrm{CM}}=0$ |  | $\pm 1.5$ | $\pm 7$ | mV |
| Input Offset-Voltage Drift | TCVos |  |  | $\pm 12$ |  | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| Input Offset-Voltage Matching |  | MAX4182-MAX4187 |  | $\pm 1$ |  | mV |
| Input Bias Current (Positive Input) | ${ }^{1}+$ |  |  | $\pm 1$ | $\pm 7$ | $\mu \mathrm{A}$ |
| Input Bias Current (Negative Input) | IB- |  |  | $\pm 1$ | $\pm 12$ | $\mu \mathrm{A}$ |
| Input Resistance (Positive Input) | RIN+ | $-3.6 \mathrm{~V} \leq \mathrm{V}_{\text {IN }+} \leq 3.6 \mathrm{~V},-1 \mathrm{~V} \leq\left(\mathrm{V}_{\mathbf{N}+}-\mathrm{V}_{\mathbf{I}-}\right) \leq 1 \mathrm{~V}$ | 250 | 800 |  | k $\Omega$ |
| Input Resistance (Negative Input) | RIN- |  |  | 160 |  | $\Omega$ |
| Common-Mode Rejection Ratio | CMRR | $-3.6 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 3.6 \mathrm{~V}$ | -50 | -58 |  | dB |
| Open-Loop Transresistance | TR | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$, V V OUT $= \pm 3.6 \mathrm{~V}$ | 0.8 | 3.0 |  | $\mathrm{M} \Omega$ |
|  |  | $\mathrm{R}_{\mathrm{L}}=150 \Omega$, V V OUT $= \pm 2.5 \mathrm{~V}$ | 0.3 | 0.9 |  |  |
| Output Voltage Swing | VSW | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ | $\pm 3.75$ | $\pm 4.0$ |  | V |
|  |  | $R \mathrm{~L}=150 \Omega$ | $\pm 3.0$ | $\pm 3.3$ |  |  |
|  |  | $\mathrm{R}_{\mathrm{L}}=100 \Omega$ |  | $\pm 3.0$ |  |  |
| Output Current | IOUT | $\mathrm{R}_{\mathrm{L}}=30 \Omega$ | $\pm 32$ | $\pm 60$ |  | mA |
| Output Short-Circuit Current | ISC |  |  | $\pm 80$ |  | mA |
| Output Resistance | Rout |  |  | 0.2 |  | $\Omega$ |
| Disabled Output Leakage Current | Iout(OFF) | $\overline{\mathrm{SHDN}} \leq \mathrm{V}_{\text {IL }}, \mathrm{V}_{\text {OUT }} \leq \pm 3 \mathrm{~V}($ Notes 2,4$)$ |  | $\pm 0.1$ | $\pm 6.0$ | $\mu \mathrm{A}$ |
| $\overline{\text { SHDN }}$ Logic Low Threshold | $\mathrm{V}_{\text {IL }}$ | (Notes 3, 4) |  |  | - 3.0 | V |
| $\overline{\text { SHDN }}$ Logic High Threshold | $\mathrm{V}_{\mathrm{IH}}$ | (Notes 3, 4) | VCC-2.0 |  |  | V |

# Single/Dual/Quad, 270MHz, 1 mA, SOT23, Current-Feedback Amplifiers with Shutdown 

DC ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)
$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=-5 \mathrm{~V}, \mathrm{~V}_{I N}+=0, \overline{S H D N} \geq 3 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 1$)$

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\text { SHDN }}$ Logic Input Bias Current | IIN | $\mathrm{V}_{\text {EE }} \leq \overline{\text { SHDN }} \leq \mathrm{V}_{\text {CC }}$ (Note 4) |  |  | $\pm 0.1$ | $\pm 2.0$ | $\mu \mathrm{A}$ |
| Positive Power-Supply Rejection Ratio | PSRR+ | $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V |  | 60 | 71 |  | dB |
| Negative Power-Supply Rejection Ratio | PSRR- | $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$ to -5.5 V |  | 53 | 62 |  | dB |
| Operating Supply Voltage | $\mathrm{V}_{\mathrm{Cc} /} \mathrm{V}_{\mathrm{EE}}$ |  |  | $\pm 2.25$ |  | $\pm 5.50$ | V |
| Quiescent Supply Current per Amplifier | Is | $\mathrm{R}_{\mathrm{L}}=\infty$ | MAX418_EUT |  | 1.0 | 1.3 | mA |
|  |  |  | All other packages |  | 1.0 | 1.2 |  |
| Shutdown Supply Current per Amplifier | IS(OFF) | $\overline{\mathrm{SHDN}}=0, \mathrm{RL}=\infty($ Note 4) |  |  | 135 | 180 | $\mu \mathrm{A}$ |

## DC ELECTRICAL CHARACTERISTICS—Single Supply

$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=0, \mathrm{~V}_{I N}+=2.5 \mathrm{~V}, \overline{\mathrm{SHDN}} \geq 3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}\right.$ to $\mathrm{V}_{C C} / 2 ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Voltage Range | $V_{\text {CM }}$ |  | $\begin{gathered} 1.3 \text { to } \\ 3.7 \end{gathered}$ | $\begin{gathered} 1.1 \text { to } \\ 3.9 \end{gathered}$ |  | V |
| Input Offset Voltage | Vos | $\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$ |  | $\pm 1.5$ | $\pm 7$ | mV |
| Input Offset Voltage Drift | TCVos |  |  | $\pm 12$ |  | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| Input Offset Voltage Matching |  | MAX4182-MAX4187 |  | $\pm 1$ |  | mV |
| Input Bias Current (Positive Input) | IB+ |  |  | $\pm 1$ | $\pm 7$ | $\mu \mathrm{A}$ |
| Input Bias Current (Negative Input) | IB- |  |  | $\pm 1$ | $\pm 12$ | $\mu \mathrm{A}$ |
| Input Resistance (Positive Input) | RIN+ | $1.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}+} \leq 3.7 \mathrm{~V},-1 \mathrm{~V} \leq\left(\mathrm{V}_{\mathrm{I}+}-\mathrm{V}_{\mathrm{IN}}-\right) \leq 1 \mathrm{~V}$ | 250 | 800 |  | k $\Omega$ |
| Input Resistance (Negative Input) | RIN- |  |  | 160 |  | $\Omega$ |
| Common-Mode Rejection Ratio | CMRR | $1.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 3.7 \mathrm{~V}$ | -50 | -58 |  | dB |
| Open-Loop Transresistance | TR | $R_{L}=1 \mathrm{k} \Omega$, V ${ }_{\text {OUT }}=1.2 \mathrm{~V}$ to 3.8 V | 0.8 | 2.5 |  | $\mathrm{M} \Omega$ |
|  |  | $\mathrm{R}_{\mathrm{L}}=150 \Omega$, $\mathrm{V}_{\text {OUT }}=1.4 \mathrm{~V}$ to 3.6 V | 0.275 | 0.9 |  |  |
| Output Voltage Swing | VSW | $R \mathrm{~L}=1 \mathrm{k} \Omega$ | $\begin{gathered} \hline 1.15 \text { to } \\ 3.85 \end{gathered}$ | $\begin{gathered} \hline 1.0 \text { to } \\ 4.0 \end{gathered}$ |  | V |
|  |  | $R L=150 \Omega$ | $\begin{gathered} 1.35 \text { to } \\ 3.65 \end{gathered}$ | $\begin{gathered} 1.2 \text { to } \\ 3.8 \end{gathered}$ |  |  |
|  |  | $R L=100 \Omega$ |  | $\begin{gathered} 1.3 \text { to } \\ 3.7 \end{gathered}$ |  |  |

## Single/Dual/Quad, 270MHz, 1 mA , SOT23, Current-Feedback Amplifiers with Shutdown

DC ELECTRICAL CHARACTERISTICS—Single Supply (continued)
$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=0, \mathrm{~V}_{I N}+=2.5 \mathrm{~V}, \overline{\mathrm{SHDN}} \geq 3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2 ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output Current | Iout | $\mathrm{R}_{\mathrm{L}}=30 \Omega$ | $\pm 18$ | $\pm 30$ |  | mA |
| Output Short-Circuit Current | Isc |  |  | $\pm 50$ |  | mA |
| Output Resistance | Rout |  |  | 0.2 |  | $\Omega$ |
| Disabled Output Leakage Current | Iout(off) | $\begin{aligned} & \overline{\mathrm{SHDN}} \leq \mathrm{V}_{\mathrm{IL}}, 1.2 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 3.8 \mathrm{~V} \\ & (\text { Notes 2, 4) } \end{aligned}$ |  | $\pm 0.1$ | $\pm 4.0$ | $\mu \mathrm{A}$ |
| $\overline{\text { SHDN }}$ Logic-Low Threshold | VIL | (Notes 3, 4) |  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 3.0 \end{aligned}$ | V |
| SHDN Logic-High Threshold | $\mathrm{V}_{\mathrm{IH}}$ | (Notes 3, 4) | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 2.0 \end{gathered}$ |  |  | V |
| $\overline{\text { SHDN Logic Input Bias Current }}$ | IIN | $0 \leq \overline{\text { SHDN }} \leq \mathrm{V}_{\text {CC }}$ (Note 4) |  | $\pm 0.1$ | $\pm 2.0$ | $\mu \mathrm{A}$ |
| Power-Supply Rejection Ratio | PSRR | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | 60 | 71 |  | dB |
| Operating Supply Voltage | VCC |  | 4.5 |  | 5.5 | V |
| Quiescent Supply Current per Amplifier | Is | $R \mathrm{~L}=\infty$ |  | 1.0 | 1.25 | mA |
|  |  |  |  | 1.0 | 1.2 |  |
| Shutdown Supply Current per Amplifier | IS(OFF) | $\overline{\mathrm{SHDN}}=0, \mathrm{RL}=\infty($ Note 4) |  | 135 | 180 | $\mu \mathrm{A}$ |

## AC ELECTRICAL CHARACTERISTICS—Dual Supplies (MAX4180/4182/4183/4186)

$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0, \overline{S H D N} \geq 3 \mathrm{~V}, \mathrm{AV}=+2 \mathrm{~V} / \mathrm{V}\right.$; see Table 1 for $\mathrm{RF}_{F}$ and $\mathrm{RG}_{\mathrm{G}}$ values; $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. )

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Small-Signal -3dB Bandwidth (Note 5) | BWSS | $<0.5 \mathrm{~dB}$ peaking | $\mathrm{R} \mathrm{L}=1 \mathrm{k} \boldsymbol{\Omega}$ | 180 | 245 |  | MHz |
|  |  |  | $\mathrm{R}_{\mathrm{L}}=150 \Omega$ |  | 190 |  |  |
| Large-Signal -3dB Bandwidth | BWLS | VOUT $=2 \mathrm{Vp}-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ |  |  | 150 |  | MHz |
| Bandwidth for 0.1 dB Flatness (Note 5) | BW0.1dB | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ |  | 30 | 70 |  | MHz |
|  |  | $R_{L}=150 \Omega$ |  |  | 70 |  |  |
| Slew Rate (Note 5) | SR | Vout $=2 \mathrm{~V}$ step, $\mathrm{RL}=1 \mathrm{k} \Omega$ | Rising edge | 340 | 450 |  | V/us |
|  |  |  | Falling edge | 315 | 420 |  |  |
| Settling Time to 0.1\% | ts | Vout $=2 \mathrm{~V}$ step, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ |  |  | 20 |  | ns |
| Rise/Fall Time | $\mathrm{t}_{\mathrm{R}, \mathrm{tF}}$ | VOUT $=2 \mathrm{~V}$ step, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ |  |  | 5 |  | ns |
| Spurious-Free Dynamic Range | SFDR | $\mathrm{fc}_{\mathrm{C}}=5 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{Vp}-\mathrm{p}$ | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ |  | 73 |  | dBc |
|  |  |  | $\mathrm{R}_{\mathrm{L}}=150 \Omega$ |  | 57 |  |  |
| Second Harmonic Distortion |  | $\mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{Vp}-\mathrm{p}$ | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ |  | -83 |  | dBc |
|  |  |  | $\mathrm{R}_{\mathrm{L}}=150 \Omega$ |  | -68 |  |  |
| Third Harmonic Distortion |  | $\mathrm{fc}_{\mathrm{C}}=5 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{Vp}-\mathrm{p}$ | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ |  | -73 |  | dBc |
|  |  |  | $R_{L}=150 \Omega$ |  | -57 |  |  |

# Single/Dual/Quad, 270MHz, 1 mA , SOT23, Current-Feedback Amplifiers with Shutdown 

## AC ELECTRICAL CHARACTERISTICS—Dual Supplies (MAX4180/4182/4183/4186) (cont.)

$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0, \overline{S H D N} \geq 3 \mathrm{~V}, \mathrm{AV}^{2}=+2 \mathrm{~V} / \mathrm{V}\right.$; see Table 1 for $\mathrm{R}_{\mathrm{F}}$ and $\mathrm{R}_{\mathrm{G}}$ values; $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. )

| PARAMETER | SYMBOL | CONDITIONS |  | MIN TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Differential Phase Error | DP | NTSC | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ | 0.03 |  | degrees |
|  |  |  | $\mathrm{R}_{\mathrm{L}}=150 \Omega$ | 0.30 |  |  |
| Differential Gain Error | DG | NTSC | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ | 0.08 |  | \% |
|  |  |  | $R_{L}=150 \Omega$ | 0.01 |  |  |
| Input Noise-Voltage Density | $e_{n}$ | $\mathrm{f}=10 \mathrm{kHz}$ |  | 2 |  | $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ |
| Input Noise-Current Density | $\mathrm{i}_{\mathrm{n}}$ | $\mathrm{f}=10 \mathrm{kHz}$ | IN+ | 4 |  | $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ |
|  |  |  | IN- | 5 |  |  |
| Input Capacitance (Positive Input) | $\mathrm{ClN}_{+}$ |  |  | 1.5 |  | pF |
| Output Impedance | ZOUT | $\mathrm{f}=10 \mathrm{kHz}$ |  | 4.8 |  | $\Omega$ |
| Disabled Output Capacitance | COUT(OFF) | $\overline{\text { SHDN }} \leq \mathrm{V}_{\text {IL }}$, | es 2, 4) | 4 |  | pF |
| Turn-On Time from SHDN | ton | (Note 4) |  | 40 |  | ns |
| Turn-Off Time to SHDN | tofF | (Note 4) |  | 400 |  | ns |
| Power-Up Time |  |  |  | 200 |  | $\mu \mathrm{s}$ |
| Off-Isolation |  | $\overline{\mathrm{SHDN}} \leq 2 \mathrm{~V}$, | 0MHz | -60 |  | dB |
| Crosstalk |  | $f=10 \mathrm{MHz}$, | 186 | -60 |  | dB |
| Gain Matching to 0.1 dB |  | $\mathrm{f}=10 \mathrm{MHz}$, |  | 25 |  | MHz |

## AC ELECTRICAL CHARACTERISTICS—Dual Supplies (MAX4181/4184/4185/4187)

$\left(\mathrm{V}_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}+}=0, \overline{\mathrm{SHDN}} \geq 3 \mathrm{~V}, \mathrm{AV}=+1 \mathrm{~V} / \mathrm{N}\right.$; see Table 1 for RF values; $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Small-Signal -3dB Bandwidth (Note 5) | BWSS | <0.5dB peaking | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ | 195 | 270 |  | MHz |
|  |  |  | $R_{L}=150 \Omega$ |  | 205 |  |  |
| Large-Signal -3dB Bandwidth | BWLS | Vout $=2 \mathrm{Vp}-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ |  |  | 90 |  | MHz |
| Bandwidth for 0.1 dB Flatness (Note 5) | BW0.1dB | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ |  | 20 | 60 |  | MHz |
|  |  | $R_{L}=150 \Omega$ |  |  | 55 |  |  |
| Slew Rate (Note 5) | SR | Vout $=2 \mathrm{~V}$ step, RL $=1 \mathrm{k} \Omega$ | Rising edge | 250 | 320 |  | V/us |
|  |  |  | Falling edge | 200 | 265 |  |  |
| Settling Time to 0.1\% | ts | Vout $=2 \mathrm{~V}$ step, RL $=1 \mathrm{k} \Omega$ |  |  | 21 |  | ns |
| Rise/Fall Time | tr and tF | Vout $=2 \mathrm{~V}$ step, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ |  |  | 5 |  | ns |
| Spurious-Free Dynamic Range | SFDR | $\mathrm{fc}^{\text {c }}=5 \mathrm{MHz}, \mathrm{V}$ OUT $=2 \mathrm{Vp}-\mathrm{p}$ | $\mathrm{RL}=1 \mathrm{k} \Omega$ |  | 57 |  | dB |
|  |  |  | $\mathrm{R}_{\mathrm{L}}=150 \Omega$ |  | 66 |  |  |
| Second Harmonic Distortion |  | $\mathrm{fc}_{\mathrm{C}}=5 \mathrm{MHz}, \mathrm{V}$ OUT $=2 \mathrm{Vp}-\mathrm{p}$ | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ |  | -70 |  | dB |
|  |  |  | $\mathrm{R}_{\mathrm{L}}=150 \Omega$ |  | -73 |  |  |
| Third Harmonic Distortion |  | $\mathrm{fc}_{\mathrm{C}}=5 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{Vp}-\mathrm{p}$ | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ |  | -57 |  | dB |
|  |  |  | $R_{L}=150 \Omega$ |  | -66 |  |  |
| Differential Phase Error | DP | NTSC | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ |  | 0.01 |  | degrees |
|  |  |  | $\mathrm{R}_{\mathrm{L}}=150 \Omega$ |  | 0.48 |  |  |

## Single/Dual/Quad, 270MHz, 1 mA , SOT23, Current-Feedback Amplifiers with Shutdown

AC ELECTRICAL CHARACTERISTICS—Dual Supplies (MAX4181/4184/4185/4187) (cont.)
$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}+=0, \overline{\mathrm{SHDN}} \geq 3 \mathrm{~V}, \mathrm{AV}=+1 \mathrm{~V} / \mathrm{V}\right.$; see Table 1 for RF values; $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Differential Gain Error | DG | NTSC | $\mathrm{RL}=1 \mathrm{k} \Omega$ |  | 0.09 |  | \% |
|  |  |  | $R_{L}=150 \Omega$ |  | 0.16 |  |  |
| Input Noise-Voltage Density | $e_{n}$ | $\mathrm{f}=10 \mathrm{kHz}$ |  |  | 2 |  | $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ |
| Input Noise-Current Density | $\mathrm{in}_{n}$ | $\mathrm{f}=10 \mathrm{kHz}$ | $\mathrm{IN}+$ |  | 4 |  | $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ |
|  |  |  | IN- |  | 5 |  |  |
| Input Capacitance (Positive Input) | $\mathrm{ClN}+^{+}$ |  |  |  | 1.5 |  | pF |
| Output Impedance | Zout | $\mathrm{f}=10 \mathrm{kHz}$ |  |  | 4.8 |  | $\Omega$ |
| Disabled Output Capacitance | Cout(OFF) | $\overline{\text { SHDN }} \leq \mathrm{V}_{\text {IL }}, \mathrm{V}_{\text {OUT }} \leq \pm 3 \mathrm{~V}($ Notes 2,4$)$ |  |  | 4 |  | pF |
| Turn-On Time from SHDN | ton | (Note 4) |  |  | 50 |  | ns |
| Turn-Off Time to SHDN | toff | (Note 4) |  |  | 400 |  | ns |
| Power-Up Time |  |  |  |  | 200 |  | $\mu \mathrm{s}$ |
| Off-Isolation |  | $\overline{\mathrm{SHDN}} \leq 2 \mathrm{~V}, \mathrm{RL}=150 \Omega, \mathrm{f}=10 \mathrm{MHz}$ |  |  | -54 |  | dB |
| Crosstalk |  | $f=10 \mathrm{MHz}$, MAX4184/MAX4185/MAX4187 |  |  | -60 |  | dB |
| Gain Matching to 0.1 dB |  | $\mathrm{f}=10 \mathrm{MHz}, \mathrm{MAX4184/MAX4185/MAX4187}$ |  |  | 25 |  | MHz |

## AC ELECTRICAL CHARACTERISTICS—Single Supply (MAX4180/4182/4183/4186)

$\left(V_{C C}=+5 V, V_{E E}=0, V_{I N}+=2.5 V, \overline{S H D N} \geq 3 V, A V=+2 V / V\right.$; see Table 1 for $R_{F}$ and $R_{G}$ values; $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Small-Signal -3dB Bandwidth (Note 5) | BWSs | <0.5dB peaking | $R \mathrm{~L}=1 \mathrm{k} \Omega$ | 155 | 210 |  | MHz |
|  |  |  | $R \mathrm{~L}=150 \Omega$ |  | 165 |  |  |
| Large-Signal -3dB Bandwidth | BWLS | VOUT $=2 \mathrm{Vp}-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ |  |  | 110 |  | MHz |
| Bandwidth for 0.1dB Flatness (Note 5) | $B W_{0.1 d B}$ | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ |  | 20 | 50 |  | MHz |
|  |  | $R \mathrm{~L}=150 \Omega$ |  |  | 40 |  |  |
| Slew Rate (Note 5) | SR | Vout $=2 \mathrm{~V}$ step, $\mathrm{RL}=1 \mathrm{k} \Omega$ | Rising edge | 260 | 340 |  | V/us |
|  |  |  | Falling edge | 220 | 300 |  |  |
| Settling Time to 0.1\% | ts | Vout $=2 \mathrm{~V}$ step, $\mathrm{RL}=1 \mathrm{k} \Omega$ |  |  | 20 |  | ns |
| Rise/Fall Time | $\mathrm{t}_{\mathrm{R}}$ and $\mathrm{tF}^{\text {F }}$ | Vout $=2 \mathrm{~V}$ step, RL $=1 \mathrm{k} \Omega$ |  |  | 6 |  | ns |
| Spurious-Free Dynamic Range | SFDR | $\mathrm{fc}^{\text {c }}=5 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{Vp}-\mathrm{p}$ | $\mathrm{RL}=1 \mathrm{k} \Omega$ |  | 72 |  | dB |
|  |  |  | $\mathrm{R}_{\mathrm{L}}=150 \Omega$ |  | 57 |  |  |
| Second Harmonic Distortion |  | $\mathrm{fc}_{\mathrm{C}}=5 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{Vp}-\mathrm{p}$ | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ |  | -80 |  | dBc |
|  |  |  | $\mathrm{R}_{\mathrm{L}}=150 \Omega$ |  | -76 |  |  |
| Third Harmonic Distortion |  | $\mathrm{fc}^{\text {c }}=5 \mathrm{MHz}, \mathrm{V}_{\text {OUt }}=2 \mathrm{Vp}-\mathrm{p}$ | $\mathrm{RL}=1 \mathrm{k} \Omega$ |  | -72 |  | dBc |
|  |  |  | $\mathrm{R}_{\mathrm{L}}=150 \Omega$ |  | -57 |  |  |
| Differential Phase Error | DP | NTSC | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ |  | 0.01 |  | degrees |
|  |  |  | $R \mathrm{~L}=150 \Omega$ |  | 0.35 |  |  |

# Single/Dual/Quad, 270MHz, 1 mA, SOT23, Current-Feedback Amplifiers with Shutdown 

AC ELECTRICAL CHARACTERISTICS—Single Supply (MAX4180/4182/4183/4186) (cont.)
$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{IN}}+=2.5 \mathrm{~V}, \overline{\mathrm{SHDN}} \geq 3 \mathrm{~V}, \mathrm{AV}=+2 \mathrm{~V} / \mathrm{V}\right.$; see Table 1 for $\mathrm{R}_{\mathrm{F}}$ and $\mathrm{R}_{\mathrm{G}}$ values; $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Differential Gain Error | DG | NTSC | $\mathrm{RL}=1 \mathrm{k} \Omega$ |  | 0.10 |  | \% |
|  |  |  | $\mathrm{R}_{\mathrm{L}}=150 \Omega$ |  | 0.03 |  |  |
| Input Noise-Voltage Density | $e_{n}$ | $\mathrm{f}=10 \mathrm{kHz}$ |  |  | 2 |  | $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ |
| Input Noise-Current Density | $\mathrm{in}^{\text {n }}$ | $\mathrm{f}=10 \mathrm{kHz}$ | IN+ |  | 4 |  | $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ |
|  |  |  | IN- |  | 5 |  |  |
| Input Capacitance (Positive Input) | $\mathrm{ClN}+^{+}$ |  |  |  | 1.5 |  | pF |
| Output Impedance | ZOUT | $\mathrm{f}=10 \mathrm{kHz}$ |  |  | 4.8 |  | $\Omega$ |
| Disabled Output Capacitance | Cout(OFF) | $\overline{\text { SHDN }} \leq \mathrm{V}_{\text {IL }}, 1.2 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 3.8 \mathrm{~V}$ (Notes 2,4$)$ |  |  | 4 |  | pF |
| Turn-On Time from $\overline{\text { SHDN }}$ | ton | (Note 4) |  |  | 40 |  | ns |
| Turn-Off Time to $\overline{\text { SHDN }}$ | toff | (Note 4) |  |  | 400 |  | ns |
| Power-Up Time |  | $\overline{\text { SHDN }}<2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega \mathrm{f}=10 \mathrm{MHz}$ |  |  | 200 |  | $\mu \mathrm{s}$ |
| Off-Isolation |  |  |  |  | -60 |  | dB |
| Crosstalk |  | $\mathrm{f}=10 \mathrm{MHz}$, MAX4182/MAX4183/MAX4186 |  |  | -60 |  | dB |
| Gain Matching to 0.1 dB |  | $\mathrm{f}=10 \mathrm{MHz}$, MAX4182/MAX4183/MAX4186 |  |  | 25 |  | MHz |

## AC ELECTRICAL CHARACTERISTICS—Single Supply (MAX4181/4184/4185/4187)

$\left(V_{C C}=+5 V, V_{E E}=0, V_{I N}+=2.5 \mathrm{~V}, \overline{S H D N} \geq 3 V, A_{V}=+1 V / V\right.$; see Table 1 for $R_{F}$ values; $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Small-Signal -3dB Bandwidth (Note 5) | BWSS | <0.5dB peaking | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ | 175 | 220 |  | MHz |
|  |  |  | $\mathrm{R}_{\mathrm{L}}=150 \Omega$ |  | 170 |  |  |
| Large-Signal -3dB Bandwidth | BWLS | VOUT $=2 \mathrm{Vp}-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ |  |  | 110 |  | MHz |
| Bandwidth for 0.1 dB Flatness (Note 5) | BW0.1dB | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ |  | 16 | 40 |  | MHz |
|  |  | $R_{L}=150 \Omega$ |  |  | 30 |  |  |
| Slew Rate (Note 5) | SR | Vout $=2 \mathrm{~V}$ step, RL $=1 \mathrm{k} \Omega$ | Rising edge | 210 | 275 |  | V/us |
|  |  |  | Falling edge | 170 | 215 |  |  |
| Settling Time to 0.1\% | ts | Vout $=2 \mathrm{~V}$ step, $\mathrm{RL}=1 \mathrm{k} \Omega$ |  |  | 22 |  | ns |
| Rise/Fall Time | tr and tF | Vout $=2 \mathrm{~V}$ step, RL $=1 \mathrm{k} \Omega$ |  |  | 7 |  | ns |
| Spurious-Free Dynamic Range | SFDR | $\mathrm{fc}_{\mathrm{C}}=5 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{Vp}-\mathrm{p}$ | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ |  | 55 |  | dB |
|  |  |  | $\mathrm{R}_{\mathrm{L}}=150 \Omega$ |  | 59 |  |  |
| Second Harmonic Distortion |  | $\mathrm{fc}_{\mathrm{C}}=5 \mathrm{MHz}, \mathrm{V}$ OUT $=2 \mathrm{Vp}-\mathrm{p}$ | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ |  | -61 |  | dBc |
|  |  |  | $R_{L}=150 \Omega$ |  | -72 |  |  |
| Third Harmonic Distortion |  | $\mathrm{fc}^{\text {c }}=5 \mathrm{MHz}, \mathrm{V}$ OUT $=2 \mathrm{Vp}-\mathrm{p}$ | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ |  | -55 |  | dBc |
|  |  |  | $\mathrm{R}_{\mathrm{L}}=150 \Omega$ |  | -59 |  |  |
| Differential Phase Error | DP | NTSC | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ |  | 0.01 |  | degrees |
|  |  |  | $R_{L}=150 \Omega$ |  | 0.35 |  |  |

## Single/Dual/Quad, 270MHz, 1 mA , SOT23, Current-Feedback Amplifiers with Shutdown

AC ELECTRICAL CHARACTERISTICS—Single Supply (MAX4181/4184/4185/4187) (cont.)
$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{IN}}+=2.5 \mathrm{~V}, \overline{\mathrm{SHDN}} \geq 3 \mathrm{~V}, \mathrm{AV}=+1 \mathrm{~V} / \mathrm{V}\right.$; see Table 1 for $\mathrm{RF}_{\mathrm{F}}$ values; $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. )


Note 1: The MAX418_EUT is $100 \%$ production tested at $T_{A}=+25^{\circ} \mathrm{C}$. Specifications over temperature limits are guaranteed by design.
Note 2: Does not include current into the external-feedback network.
Note 3: Over operating supply-voltage range.
Note 4: Specification applies to MAX4180/MAX4181/MAX4183 and MAX4185.
Note 5: The AC specifications shown are not measured in a production test environment. The minimum AC specifications given are based on the combination of worst-case design simulations along with a sample characterization of units. These minimum specifications are for design guidance only and are not intended to guarantee AC performance (see AC Testing/Performance). For $100 \%$ testing of those parameters, contact the factory.

## Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$


# Single/Dual/Quad, 270MHz, 1 mA, SOT23, Current-Feedback Amplifiers with Shutdown 

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$


## Single/Dual/Quad, 270MHz, 1 mA, SOT23, Current-Feedback Amplifiers with Shutdown


$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$


# Single/Dual/Quad, 270MHz, 1 mA, SOT23, Current-Feedback Amplifiers with Shutdown 

## Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$


## Single/Dual/Quad, 270MHz, 1 mA, SOT23, Current-Feedback Amplifiers with Shutdown

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$


$100 \mu \mathrm{~s} / \mathrm{div}$
$R_{F}=1 k \Omega, V_{I N}=V_{C C} / 2, R_{L}=\infty$

MAX4180
LARGE-SIGNAL PULSE RESPONSE


INPUT OFFSET VOLTAGE vs. TEMPERATURE


SHUTDOWN RESPONSE TIME

$R_{L}=150 \Omega, R_{F}=R_{G}=820 \Omega$

MAX4180
LARGE-SIGNAL PULSE RESPONSE


MAX4181
SMALL-SIGNAL PULSE RESPONSE


MAX4180 LARGE-SIGNAL PULSE RESPONSE

$R_{L}=1 \mathrm{k} \Omega, R_{F}=R_{G}=1.2 \mathrm{k} \Omega$

MAX4180
SMALL-SIGNAL PULSE RESPONSE


# Single/Dual/Quad, 270MHz, 1 mA , SOT23, Current-Feedback Amplifiers with Shutdown 

## Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

MAX4180
SMALL-SIGNAL PULSE RESPONSE

$R_{L}=150 \Omega, R_{F}=R_{G}=820 \Omega$
MAX4181
SMALL-SIGNAL PULSE RESPONSE

$R_{L}=1 k \Omega, R_{F}=2.4 k \Omega$

MAX4180
SMALL-SIGNAL PULSE RESPONSE

$R_{L}=100 \Omega, R_{F}=R_{G}=680 \Omega$
MAX4181
LARGE-SIGNAL PULSE RESPONSE

$V_{S}= \pm 5 V, R_{L}=1 \mathrm{k} \Omega, R_{F}=2.4 \mathrm{k} \Omega$
Pin Description

MAX4180/MAX4181

| PIN |  | NAME | FUNCTION |
| :---: | :---: | :---: | :---: |
| MAX4180/MAX4181 |  |  |  |
| SO | SOT23-6 |  |  |
| 1,5 | - | N.C. | No Connection. Not internally connected. |
| 2 | 4 | IN- | Inverting Input |
| 3 | 3 | IN+ | Noninverting Input |
| 4 | 2 | $V_{\text {EE }}$ | Negative Power Supply. Connect $\mathrm{V}_{\mathrm{EE}}$ to -5 V or ground for single-supply operation. |
| 6 | 1 | OUT | Amplifier Output |
| 7 | 6 | VCC | Positive Power Supply. Connect $\mathrm{V}_{\mathrm{Cc}}$ to +5 V . |
| 8 | 5 | $\overline{\text { SHDN }}$ | Shutdown Input. Device is enabled when $\overline{\mathrm{SHDN}} \geq\left(\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}\right)$ and disabled when $\overline{\mathrm{SHDN}} \leq\left(\mathrm{V}_{\mathrm{CC}}-3 \mathrm{~V}\right)$. |

## Single/Dual/Quad, 270MHz, 1 mA , SOT23, Current-Feedback Amplifiers with Shutdown

Pin Description (continued)
MAX4182/MAX4183/MAX4184/MAX4185

| PIN |  |  | NAME | FUNCTION |
| :---: | :---: | :---: | :---: | :---: |
| MAX4182 MAX4184 | MAX4183 MAX4185 | $\begin{aligned} & \text { MAX4183 } \\ & \text { MAX4185 } \end{aligned}$ |  |  |
| SO | SO | $\mu \mathrm{MAX}$ |  |  |
| 1 | 1 | 1 | OUTA | Amplifier A Output |
| 2 | 2 | 2 | INA- | Amplifier A Inverting Input |
| 3 | 3 | 3 | INA+ | Amplifier A Noninverting Input |
| 4 | 4 | 4 | VEE | Negative Power Supply. Connect $\mathrm{V}_{\mathrm{EE}}$ to -5 V or ground for single-supply operation. |
| - | 5, 7, 8, 10 | - | N.C. | No Connection. Not internally connected. |
| - | 6 | 5 | $\overline{\text { SHDNA }}$ | Shutdown Control Input for Amplifier A. Amplifier A is enabled when $\overline{S H D N A} \geq\left(V_{C C}-2 V\right)$ and disabled when $\overline{\text { SHDNA }} \leq(\mathrm{VCC}-3 \mathrm{~V})$. |
| - | 9 | 6 | $\overline{\text { SHDNB }}$ | Shutdown Control Input for Amplifier B. Amplifier B is enabled when $\overline{\mathrm{SHDNB}} \geq(\mathrm{VCC}-2 \mathrm{~V})$ and disabled when $\overline{S H D N B} \leq(V C C-3 V)$. |
| 5 | 11 | 7 | INB+ | Amplifier B Noninverting Input |
| 6 | 12 | 8 | INB- | Amplifier B Inverting Input |
| 7 | 13 | 9 | OUTB | Amplifier B Output |
| 8 | 14 | 10 | VCC | Positive Power Supply. Connect $\mathrm{V}_{\mathrm{Cc}}$ to +5 V . |

MAX4186/MAX4187

| PIN |  | NAME | FUNCTION |
| :---: | :---: | :---: | :---: |
| MAX4186 MAX4187 | MAX4186 <br> MAX4187 |  |  |
| SO | QSOP |  |  |
| 1 | 1 | OUTA | Amplifier A Output |
| 2 | 2 | INA- | Amplifier A Inverting Input |
| 3 | 3 | INA+ | Amplifier A Noninverting Input |
| 4 | 4 | VCC | Positive Power Supply. Connect V cc to +5 V . |
| 5 | 5 | INB+ | Amplifier B Noninverting Input |
| 6 | 6 | INB- | Amplifier B Inverting Input |
| 7 | 7 | OUTB | Amplifier B Output |
| - | 8, 9 | N.C. | No Connection. Not internally connected. |
| 8 | 10 | OUTC | Amplifier C Output |
| 9 | 11 | INC- | Amplifier C Inverting Input |
| 10 | 12 | INC+ | Amplifier C Noninverting Input |
| 11 | 13 | $V_{\text {EE }}$ | Negative Power Supply. Connect $\mathrm{V}_{\mathrm{EE}}$ to -5 V or ground for single-supply operation. |
| 12 | 14 | IND+ | Amplifier D Noninverting Input |
| 13 | 15 | IND- | Amplifier D Inverting Input |
| 14 | 16 | OUTD | Amplifier D Output |

# Single/Dual/Quad, 270MHz, 1 mA , SOT23, Current-Feedback Amplifiers with Shutdown 

Detailed Description

The MAX4180-MAX4187 are ultra-low-power currentfeedback amplifiers featuring bandwidths up to $270 \mathrm{MHz}, 0.1 \mathrm{~dB}$ gain flatness to 90 MHz , and low differential gain ( $0.08 \%$ ) and phase ( $0.03^{\circ}$ ) errors. These amplifiers achieve ultra-high bandwidth-to-power ratios with low distortion, wide signal swing, and excellent load-driving capabilities. They are optimized for $\pm 5 \mathrm{~V}$ supplies but also operate from a single +5 V supply while consuming only 1 mA per amplifier. With $\pm 60 \mathrm{~mA}$ output current drive capability, the devices achieve low distortion even while driving $150 \Omega$ loads.
Wide bandwidth, low power, low differential phase and gain error, and excellent gain flatness make the MAX4180-MAX4187 ideal for use in portable video equipment such as cameras, video switchers, and other battery-powered applications. Their two-stage design provides higher gain and lower distortion than conventional single-stage, current-feedback topologies. This feature, combined with fast settling time, makes these devices suitable for buffering high-speed analog-to-digital converters (ADCs).
The MAX4180/MAX4181/MAX4183/MAX4185 have a low-power shutdown mode that is activated by driving the amplifiers' SHDN input low. Placing them in shutdown reduces quiescent supply current to $135 \mu \mathrm{~A}$ (typ) and places amplifier outputs in a high-impedance state. These amplifiers can be used to implement a high-speed multiplexer by connecting together the outputs of multiple amplifiers and controlling the SHDN inputs to enable one amplifier and disable all the others. The disabled amplifiers present very little load ( $0.1 \mu \mathrm{~A}$ leakage current and 4 pF capacitance) to the active amplifiers' output. Note that the feedback network impedance of all the disabled amplifiers must be considered when calculating the total load on the active amplifier output.

## Application Information

## Theory of Operation

The MAX4180-MAX4187 are current-feedback amplifiers, and their open-loop transfer function is expressed as a transimpedance, $\Delta \mathrm{V}$ OUT $/ \Delta \mathrm{I} \mathrm{I}$, or Tz . The frequency behavior of the open-loop transimpedance is similar to the open-loop gain of a voltage-mode feedback amplifier. That is, it has a large DC value and decreases at approximately 6 dB per octave.
Analyzing the follower with gain, as shown in Figure 1, yields the following transfer function:

$$
V_{\text {OUT }} / V_{I N}=G \times\left[\left(T_{Z}(S) / T_{Z}(s)+G \times\left(R_{I N}+R_{F}\right)\right]\right.
$$

where $G=A v C L=1+\left(R_{F} / R_{G}\right)$, and $R_{I N}=1 / g_{M} \cong 160 \Omega$. At low gains, $G \times \operatorname{RIN}<$ RF. Therefore, the closed-loop bandwidth is essentially independent of closed-loop gain. Similarly, $T_{z}>R_{F}$ at low frequencies, so that:

$$
\frac{V_{\text {OUT }}}{V_{\mathrm{IN}}}=G=1+\left(R_{F} / R_{G}\right)
$$

## Layout and Power-Supply Bypassing

 The MAX4180-MAX4187 have an RF bandwidth and, consequently, require careful board layout, including the possible use of constant-impedance microstrip or stripline techniques.To realize the full AC performance of these high-speed amplifiers, pay careful attention to power-supply bypassing and board layout. The PC board should have at least two layers: a signal and power layer on one side, and a large, low-impedance ground plane on the other side. The ground plane should be as free of voids as possible. With multilayer boards, locate the ground plane on a layer that incorporates no signal or power traces.
Regardless of whether a constant-impedance board is used, observe the following guidelines when designing the board:

- Do not use wire-wrap boards. They are too inductive.
- Do not use breadboards. They are too capacitive.
- Do not use IC sockets. They increase parasitic capacitance and inductance.
- Use surface-mount components rather than throughhole components. They give better high-frequency performance, have shorter leads, and have lower parasitic reactances.


Figure 1. Current-Feedback Amplifier

## Single/Dual/Quad, 270MHz, 1 mA , SOT23, Current-Feedback Amplifiers with Shutdown

- Keep lines as short and as straight as possible.
- Do not make $90^{\circ}$ turns; round all corners.
- Observe high-frequency bypassing techniques to maintain the amplifiers' accuracy. The bypass capacitors should include a $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic capacitor between each supply pin and the ground plane, located as close to the package as possible.
- Place a $1 \mu \mathrm{~F}$ ceramic capacitor in parallel with each $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ capacitor as close to them as possible.
- Place a $10 \mu \mathrm{~F}$ to $15 \mu \mathrm{~F}$ low-ESR tantalum at the point of entry to the power-supply pins' PC board. The power-supply trace should lead directly from the tantalum capacitor to the $\mathrm{V}_{C C}$ and $\mathrm{V}_{\mathrm{EE}}$ pins.
- Keep PC traces short and use surface-mount components to minimize parasitic inductance.

Maxim's High-Speed Evaluation Board
Figures 2 and 3 show layouts of Maxim's high-speed single SOT23 and SO evaluation boards. These boards were developed using the techniques described above. The smallest available surface-mount resistors were used for feedback and back-termination to minimize their distance from the part, reducing the capacitance associated with longer lead lengths.
SMA connectors were used for best high-frequency performance. Because distances are extremely short, performance is unaffected by the fact that inputs and outputs do not match a $50 \Omega$ line. However, in applications that require lead lengths greater than one-quarter of the wavelength of the highest frequency of interest, use constant-impedance traces.

Fully assembled evaluation boards are available for the MAX4180ESA.


Figure 2a. SOT23 High-Speed EV Board Component Placement Guide-
Component Side


Figure 3a. SO-8 High-Speed EV Board Component Placement GuideComponent Side


Figure 2b. SOT23 High-Speed EV Board Layout-Component Side


Figure 3b. SO-8 High-Speed EV Board Layout-Component Side


Figure 2c. High-Speed EV Board LayoutSolder Side


Figure 3c. SO-8 High-Speed EV Board Layout-Solder Side

## Single/Dual/Quad, 270MHz, 1 mA, SOT23, Current-Feedback Amplifiers with Shutdown

Table 1. Recommended Component Values

| COMPONENT/BW | MAX4180 |  |  |  |  | MAX4181 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{Av}=+2 \mathrm{~V} / \mathrm{V}$ |  |  | $\mathrm{A}_{\mathrm{V}}=+5 \mathrm{~V} / \mathrm{V}$ | $\mathrm{A} v=+10 \mathrm{~V} / \mathrm{V}$ | $A v=+1 \mathrm{~V} / \mathrm{V}$ |  |  |
|  | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ | $R \mathrm{~L}=150 \Omega$ | $\begin{aligned} & R_{\mathrm{L}}= \\ & 100 \Omega \end{aligned}$ | $\begin{gathered} R_{L}= \\ 1 \mathrm{k} \Omega / 150 \Omega \end{gathered}$ | $\begin{gathered} R_{\mathrm{L}}= \\ 1 \mathrm{k} \Omega / 150 \Omega \end{gathered}$ | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}= \\ & 150 \Omega \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}= \\ & 100 \Omega \end{aligned}$ |
| $\mathrm{RF}(\Omega)$ | 1.2k | 820 | 680 | 520 | 560 | 2.4 k | 1k | 560 |
| $\mathrm{R}_{\mathrm{G}}(\Omega)$ | 1.2k | 820 | 680 | 130 | 56 | - | - | - |
| -3dB BW (MHz) | 245 | 190 | 190 | 120 | 76 | 270 | 205 | 200 |


| COMPONENT/BW | MAX4182/MAX4183 |  |  | MAX4184/MAX4185 |  |  | MAX4186 |  |  | MAX4187 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Av $=+2 \mathrm{~V} / \mathrm{V}$ |  |  | Av $=+1 \mathrm{~V} / \mathrm{V}$ |  |  | $\mathrm{A}_{\mathrm{V}}=+2 \mathrm{~V} / \mathrm{V}$ |  |  | Av $=+1 \mathrm{~V} / \mathrm{V}$ |  |  |
|  | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}= \\ & \mathbf{1 k} \Omega \end{aligned}$ | $\begin{aligned} & R_{L}= \\ & 150 \Omega \end{aligned}$ | $\begin{gathered} R_{L}= \\ 100 \Omega \end{gathered}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}= \\ & \mathbf{1 k} \Omega \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}= \\ & 150 \Omega \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}= \\ & 100 \Omega \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}= \\ & 1 \mathrm{k} \Omega \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}= \\ & 150 \Omega \end{aligned}$ | $\begin{aligned} & R_{\mathrm{L}}= \\ & 100 \Omega \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}= \\ & 1 \mathrm{k} \Omega \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}= \\ & 150 \Omega \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}= \\ & 100 \Omega \end{aligned}$ |
| $\mathrm{R}_{\mathrm{F}}(\Omega)$ | 1k | 680 | 620 | 1.5k | 750 | 620 | 1.1k | 750 | 680 | 1.6k | 910 | 680 |
| $\mathrm{RGG}^{(\Omega)}$ | 1k | 680 | 620 | - | - | - | 1.1k | 750 | 680 | - | - | - |
| $\begin{aligned} & -3 \mathrm{~dB} \mathrm{BW} \\ & (\mathrm{MHz}) \end{aligned}$ | 245 | 190 | 160 | 270 | 205 | 180 | 245 | 190 | 175 | 270 | 205 | 200 |

Choosing Feedback and Gain Resistors
The optimum value of the external-feedback ( $\mathrm{RF}_{\mathrm{F}}$ ) and gain-setting ( RG ) resistors used with the MAX4180MAX4187 depends on the closed-loop gain and the application circuit's load. Table 1 lists the optimum resistor values for some specific gain configurations. One-percent resistor values are preferred to maintain consistency over a wide range of production lots. Figures 4 a and 4 b show the standard inverting and noninverting configurations. Note: The noninverting circuit gain (Figure 4) is 1 plus the magnitude of the inverting closed-loop gain. Otherwise, the two circuits are identical.

## DC and Noise Errors

Several major error sources must be considered in any op amp. These apply equally to the MAX4180MAX4187. Offset-error terms are given by the equation below. Voltage and current-noise errors are root-square summed and are therefore computed separately. In Figure 5, the total output offset voltage is determined by the following factors:

- The input offset voltage (VOS) times the closed-loop gain ( $1=R_{F} / R_{G}$ ).
- The positive input bias current ( $\mathrm{I}_{\mathrm{B}}$ ) times the source resistor (RS) (usually $50 \Omega$ or $75 \Omega$ ), plus the negative input bias current (IB-) times the parallel combination of $R_{G}$ and $R_{F}$. In current-feedback amplifiers, the input bias currents at the $\mathrm{IN}+$ and IN - terminals do not track each other and may have opposite polarity, so there is no benefit to matching the resistance at both inputs.
The equation for the total DC error at the output is:

$$
V_{\text {OUT }}=\left[\left(l_{B+}\right) R_{S}+\left(l_{B-}\right)\left(R_{F} \| R_{G}\right)+V_{\text {OSS }}\right]\left(1+\frac{R_{F}}{R_{G}}\right)
$$

The total output-referred noise voltage is:

$$
e_{n(\text { OUT })}=\left(1+\frac{R_{F}}{R_{G}}\right) \sqrt{\left[\left(i_{n+}\right) R_{S}\right]^{2}+\left[\left(i_{n-}\right) R_{F} \| R_{G}\right]^{2}+\left(e_{n}\right)^{2}}
$$

## Single/Dual/Quad, 270MHz, 1 mA , SOT23, Current-Feedback Amplifiers with Shutdown

The MAX4180-MAX4187 have a very low, $2 n \mathrm{~V} / \sqrt{\mathrm{Hz}}$ noise voltage. The current noise at the positive input ( $\mathrm{in}_{\mathrm{n}}$ ) is $4 \mathrm{pA} / \sqrt{\mathrm{Hz}}$, and the current noise at the inverting input is $5 \mathrm{pA} / \sqrt{\mathrm{Hz}}$.
An example of the DC error calculations, using the MAX4180 typical data and typical operating circuit where $R_{F}=R_{G}=1.2 k \Omega\left(R_{F} \| R_{G}=600 \Omega\right)$ and $\mathrm{R}_{\mathrm{S}}=37.5 \Omega$, gives the following:

$$
V_{\text {OUT }}=\left[\left(1 \times 10^{-6}\right) \times 37.5+\left(2 \times 10^{-6}\right) \times(600)+1.5 \times 10^{-3}\right] \times(1+1)
$$

$$
\mathrm{V}_{\text {OUT }}=4.1 \mathrm{mV}
$$

Calculating the total output noise in a similar manner yields:

$$
\begin{aligned}
& \mathrm{e}_{\mathrm{n}(\text { OUT })}=(1+1) \sqrt{\begin{array}{l}
\left.4 \times 10^{-12} \times 37.5\right)^{2}+\left(5 \times 10^{-12} \times 255\right)^{2} \\
+\left(2 \times 10^{-9}\right)^{2}
\end{array}} \\
& \mathrm{e}_{\mathrm{n}(\text { OUT })}=4.8 \mathrm{nV} / \sqrt{\mathrm{Hz}}
\end{aligned}
$$

With a 200 MHz system bandwidth, this calculates to $102 \mu \mathrm{~V}_{\mathrm{RMS}}$ (approximately $612 \mu \mathrm{Vp}-\mathrm{p}$, choosing the sixsigma value).


Figure 4a. Inverting Gain Configuration


Figure 4b. Noninverting Gain Configuration

Video Line Driver
The MAX4180-MAX4187 are well suited to drive coaxial transmission lines when the cable is terminated at both ends, as shown in Figure 6. Cable-frequency response can cause variations in the signal's flatness. See Table 1 for optimum RF and $R_{G}$ values.

## Driving Capacitive Loads

The MAX4180-MAX4187 are optimized for AC performance. They are not designed to drive highly capacitive loads. Reactive loads decrease phase margin and may produce excessive ringing and oscillation. Figure 7a shows a circuit that eliminates this problem. Placing the small (usually $5 \Omega$ to $22 \Omega$ ) isolation resistor, Rs, before the reactive load prevents ringing and oscillation. At higher capacitive loads, the interaction of the load capacitance and isolation resistor controls AC performance. Figures 7b and 7c show the MAX4180 and MAX4181 frequency response with a 47pF capaci-


Figure 5. Output Offset Voltage


Figure 6. Video Line Driver

## Single／Dual／Quad，270MHz，1mA，SOT23， Current－Feedback Amplifiers with Shutdown



Figure 7a．Using an Isolation Resistor（RS）for High－Capacitive Loads


Figure 7b．Frequency Response with Capacitive Load（With and Without Isolation Resistor）


Figure 7c．Frequency Response with Capacitive Load（With and Without Isolation Resistor）
tive load．Note that in each case，gain peaking is substantially reduced when the $20 \Omega$ resistor is used to isolate the capacitive load from the amplifier output．

AC Testing／Performance
AC specifications on high－speed amplifiers are usually guaranteed without 100\％production testing．Since these high－speed devices are sensitive to external para－ sitics introduced when automatic handling equipment is used，it is impractical to guarantee AC parameters through volume production testing．These parasitics are greatly reduced when using the recommended PC board layout（like the Maxim EV kit）．Characterizing the part in this way more accurately represents the amplifi－ er＇s true AC performance．Some manufacturers guaran－ tee AC specifications without clearly stating how this guarantee is made．The AC specifications of the MAX4180－MAX4187 are derived through worst－case design simulations combined with a sample characteri－ zation of 100 units．The AC performance distributions along with the worst－case simulation results for MAX4180 and MAX4181 are shown in Figures 8－11． These distributions are repeatable provided that the proper board layout and power－supply bypassing are used（see Layout and Power－Supply Bypassing sec－ tion）．

## Single/Dual/Quad, 270MHz, 1 mA, SOT23, Current-Feedback Amplifiers with Shutdown



Figure 8a. MAX4180-3dB Bandwidth Distribution (Dual Supplies)


Figure 8c. MAX4180 Rising-Edge Slew-Rate Distribution (Dual Supplies)


Figure 9a. MAX4180-3dB Bandwidth Distribution (Single Supply)


Figure 8b. MAX4180 $\pm 0.1$ dB Bandwidth Distribution (Dual Supplies)


Figure 8d. MAX4180 Falling-Edge Slew-Rate Distribution (Dual Supplies)


Figure 9b. MAX4180 $\pm 0.1 \mathrm{~dB}$ Bandwidth Distribution (Single Supply)

## Single/Dual/Quad, 270MHz, 1mA, SOT23, Current-Feedback Amplifiers with Shutdown



Figure 9c. MAX4180 Rising-Edge Slew-Rate Distribution (Single Supply)


Figure 10a. MAX4181-3dB Bandwidth Distribution (Dual Supplies)


Figure 10c. MAX4181 Rising-Edge Slew-Rate Distribution (Dual Supplies)


Figure 9d. MAX4180 Falling-Edge Slew-Rate Distribution (Single Supply)


Figure 10b. MAX4181 $\pm 0.1 \mathrm{~dB}$ Bandwidth Distribution (Dual Supplies)


[^0]
## Single/Dual/Quad, 270MHz, 1 mA, SOT23, Current-Feedback Amplifiers with Shutdown



Figure 11a. MAX4181-3dB Bandwidth Distribution (Single Supply)


Figure 11c. MAX4181 Rising-Edge Slew-Rate Distribution (Single Supply)


Figure 11b. MAX4181 $\pm 0.1 d B$ Bandwidth Distribution (Single Supply)


Figure 11d. MAX4181 Falling-Edge Slew-Rate Distribution (Single Supply)

## Single/Dual/Quad, 270MHz, 1 mA, SOT23, Current-Feedback Amplifiers with Shutdown

## Pin Configurations (continued)

TOP VIEW



# Single/Dual/Quad, 270MHz, 1 mA, SOT23, Current-Feedback Amplifiers with Shutdown 

_Ordering Information (continued)

| PART | TEMP <br> RANGE | PIN- <br> PACKAGE | TOP <br> MARK |
| :--- | :--- | :--- | :---: |
| MAX4181EUT-T | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 6 SOT23-6 | AAAC |
| MAX4181ESA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 SO | - |
| MAX4182ESA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 SO | - |
| MAX4183EUB | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $10 \mu \mathrm{MAX}$ | - |
| MAX4183ESD | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 14 SO | - |
| MAX4184ESA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 SO | - |
| MAX4185EUB | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $10 \mu \mathrm{MAX}$ | - |
| MAX4185ESD | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 14 SO | - |
| MAX4186ESD | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 14 SO | - |
| MAX4186EEE | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 QSOP | - |
| MAX4187ESD | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 14 SO | - |
| MAX4187EEE | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 QSOP | - |

*Contact factory for availability.

Chip Information
MAX4180/MAX4181 TRANSISTOR COUNT: 83 SUBSTRATE CONNECTED TO VEE
MAX4182-MAX4185 TRANSISTOR COUNT: 166 SUBSTRATE CONNECTED TO VEE
MAX4186/MAX4187 TRANSISTOR COUNT: 235 SUBSTRATE CONNECTED TO VEE

Package Information


Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.


[^0]:    Figure 10d. MAX4181 Falling-Edge Slew-Rate Distribution (Dual Supplies)

