

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

The MAX4194 is a variable-gain precision instrumentation amplifier that combines Rail-to-Rail® single-supply operation, outstanding precision specifications, and a high gain bandwidth. This amplifier is also offered in three fixed-gain versions: the MAX4195 (G = +1V/V), the MAX4196 (G = +10V/V), and the MAX4197 (G =+100V/V). The fixed-gain instrumentation amplifiers feature a shutdown function that reduces the guiescent current to 8µA. A traditional three operational amplifier configuration is used to achieve maximum DC precision.

The MAX4194-MAX4197 have rail-to-rail outputs and inputs that can swing to 200mV below the negative rail and to within 1.1V of the positive rail. All parts draw only 93µA and operate from a single +2.7V to +7.5V supply or from dual ±1.35V to ±3.75V supplies. These amplifiers are offered in 8-pin SO packages and are specified for the extended temperature range (-40°C to +85°C).

See the MAX4198/MAX4199 data sheet for single-supply, precision differential amplifiers.

Applications

Medical Equipment

Thermocouple Amplifier

4-20mA Loop Transmitters

Data-Acquisition Systems

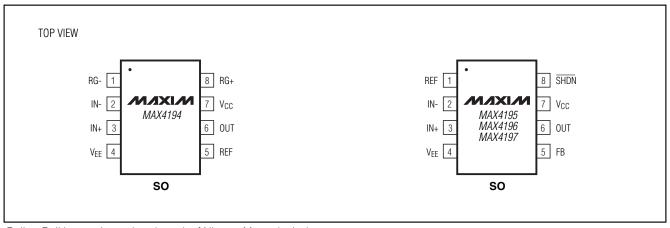
Battery-Powered/Portable Equipment

Transducer Interface

Bridge Amplifier

Features

- ♦ +2.7V Single-Supply Operation
- **♦ Low Power Consumption** 93µA Supply Current 8µA Shutdown Current (MAX4195/MAX4196/MAX4197)
- ♦ High Common-Mode Rejection: 115dB (G = +10V/V)
- ♦ Input Common-Mode Range Extends 200mV **Below GND**
- ♦ Low 50μV Input Offset Voltage (G ≥ +100V/V)
- **♦** Low ±0.01% Gain Error (G = +1V/V)
- ♦ 250kHz -3dB Bandwidth (G = +1V/V, MAX4194)
- ♦ Rail-to-Rail Outputs


Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4194ESA	-40°C to +85°C	8 SO
MAX4195ESA	-40°C to +85°C	8 SO
MAX4196ESA	-40°C to +85°C	8 SO
MAX4197ESA	-40°C to +85°C	8 SO

Selector Guide

PART	SHUTDOWN	GAIN (V/V)	CMRR (dB)
MAX4194	No	Variable	95 (G = +1V/V)
MAX4195	Yes	+1	95
MAX4196	Yes	+10	115
MAX4197	Yes	+100	115

Pin Configurations

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

MIXIM

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC to VEE)+8V	Operating Temperature Range	40°C to +85°C
All Other Pins(V _{CC} + 0.3V) to (V _{EE} - 0.3V)	Junction Temperature	
Current into Any Pin±30mA	Storage Temperature Range	65°C to +150°C
Output Short-Circuit Duration (to VCC or VEE) Continuous	Lead Temperature (soldering, 10s)	+300°C
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	. , , , , , , , , , , , , , , , , , , ,	
8-Pin SO (derate 5.9mW/°C above +70°C)		

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +5V, V_{EE} = 0V, R_L = 25k\Omega)$ tied to $V_{CC}/2$, $V_{REF} = V_{CC}/2$, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS	
Supply Voltage Range	\/	Informed by DCD toot	Single supply	2.7		7.5	- v	
	Vcc	Inferred by PSR test	Dual supplies	±1.35		±3.75		
Quiescent Current	Icc	$V_{IN+} = V_{IN-} = V_{CC}/2, V_{CC}$	DIFF = 0V		93	110	μΑ	
Shutdown Current	ISHDN	ISHON = VIL, MAX4195/	MAX4196/MAX4197 only		8	12	μΑ	
		$G = +1V/V, V_{CM} = V_{CO}$	$C/2$, $T_A = +25^{\circ}C$		±100	±450		
		$G = +10V/V, V_{CM} = V_{CM}$	_{CC} /2, T _A = +25°C		±75	±225		
		$G = +100V/V, V_{CM} = V$	$I_{CC}/2$, $T_A = +25^{\circ}C$		±50	±225		
Input Offact Valtage	Vas	$G = +1000V/V, V_{CM} =$	$V_{CC}/2$, $T_A = +25^{\circ}C$		±50		/	
Input Offset Voltage	Vos	$G = +1V/V, V_{CM} = V_{CO}$	$C/2$, $T_A = T_{MIN}$ to T_{MAX}		±100	±690	μV	
		$G = +1V/V, V_{CM} = V_{CC}/2$		±75	±345			
		$G = +100V/V, V_{CM} = V_{C}$		±50	±345			
		$G = +1000V/V, V_{CM} = V$		±50				
Input Offset Voltage Drift	TCvos	G = +1V/V			±1.0	±4.0	μV/°C	
(Note 1)	10005	$G \ge +10V/V$			±0.5	±2.0	μν, Ο	
Innuit Decistores	R _{IN}	V _{CM} = V _{CC} /2	Differential		1000		ΜΩ	
Input Resistance			Common mode		1000			
Input Capacitance	CIN	$V_{CM} = V_{CC}/2$	Differential		1		pF	
при Сараспансе	OIN	VCIVI - VCC/2	Common mode		4		рі	
Input Voltage Range	V _{IN}	Inferred from CMR tes	t	V _{EE} - 0.2		V _{CC} - 1.1	V	
		$V_{CM} = V_{EE} - 0.2V$	G = +1V	66	78		dB	
DC Common-Mode		to V_{CC} - 1.1V, $T_A = +25^{\circ}C$,	G = +10V	80	94			
	0.45	$\Delta R_S = 1k\Omega$ (Note 1)	G = +100V	86	99			
Rejection	CMR _{DC}	V _{CM} = V _{EE} - 0.2V	G = +1V	60	78			
		to V _{CC} - 1.1V, T _A = T _{MIN} to T _{MAX} ,	G = +10V	74	94			
		$\Delta R_S = 1k\Omega$, (Note 1)	G = +100V	77	99		†	

___ /N/XI/N

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +5V, V_{EE} = 0V, R_L = 25k\Omega$ tied to $V_{CC}/2$, $V_{REF} = V_{CC}/2$, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

PARAMETER	SYMBOL CONDITIONS			MIN	TYP	MAX	UNITS	
		., ., ., ., .,	G = +1V	78	95			
		$V_{CM} = V_{EE} + 0.2V$ to $V_{CC} - 1.1V$, $T_{A} = +25^{\circ}C$,	G = +10V	93	115			
			G = +100V/V	95	115			
DC Common-Mode		$\Delta R_S = 1k\Omega$	G = +1000V/V		115			
Rejection	CMR _{DC}		G = +1V	73	95		dB	
- ,		$V_{CM} = V_{EE} + 0.2V$	G = +10V	88			1	
		to V_{CC} - 1.1V, $T_A = T_{MIN}$ to T_{MAX} ,			115		1	
		$\Delta R_S = 1 k\Omega$	G = +100V/V	90	115		 	
			G = +1000V/V		115			
AC Common-Mode		$V_{CM} = V_{EE} + 0.2V$	G = +1V		85		<u> </u>	
Rejection	CMR _{AC}	to V _{CC} - 1.1V,	G = +10V		101		dB	
,		f = 120Hz	G = +100V		106			
Power-Supply Rejection	PSR	$V_{OUT} = +1.5V$; $V_{REF} =$	$+2.7V \le V_{CC} \le +7.5V$; $V_{CM} = +1.5V$; $V_{OUT} = +1.5V$; $V_{REF} = +1.5V$; $R_L = 25k\Omega$ to $+1.5V$; $R_L = 4.5V$; $R_L $				dB	
Input Bias Current	lΒ	V _{CM} = V _{CC} /2			6	20	nA	
Input Bias Current Drift	TC _{IB}	V _{CM} = V _{CC} /2		15		pA/°C		
Input Offset Current	los	V _{CM} = V _{CC} /2		±1.0	±3.0	nA		
Input Offset Current Drift	TC _{IOS}	$V_{CM} = V_{CC}/2$		15		pA/°C		
	e _n	G = +1V/V	f = 10Hz		85		nV/√Hz	
			f = 100Hz		75			
			f = 10kHz		72			
			f = 0.1Hz to 10Hz		1.4		μVRMS	
		G = +10V/V	f = 10Hz		35		nV/√Hz	
Input Noise Voltage			f = 100Hz		32			
input Noise Voltage			f = 10kHz		31			
			f = 0.1Hz to 10Hz		0.7		μVRMS	
			f = 10Hz		32			
		G = +100V/V	f = 100Hz		31		nV/√Hz	
		G = 1100V/V	f = 10kHz		8.7			
			f = 0.1Hz to $10Hz$		0.6		μVRMS	
Input Noise Current		f = 10Hz			2.4			
	in	f = 100Hz			0.76		pA/√Hz	
	111	f = 10kHz			0.1			
		f = 0.1Hz to 10Hz	Т		16		pA _{RMS}	
		$R_L = 25k\Omega$ to $V_{CC}/2$	VCC - VOH		30	100	mV	
Output Voltage Swing	V _{OH} , V _{OL}	11 201\\\ 2 10 \\ \(\)(\/2	V _{OL}		30	100		
Output Voltage Owing	1011, 101	$R_L = 5k\Omega$ to $V_{CC}/2$	VCC - VOH		100	200		
			V _{OL}		100	200		

ELECTRICAL CHARACTERISTICS (continued)

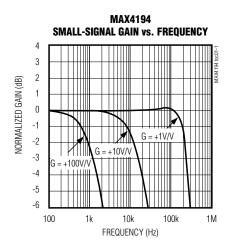
 $(V_{CC} = +5V, V_{EE} = 0V, R_L = 25k\Omega)$ tied to $V_{CC}/2$, $V_{REF} = V_{CC}/2$, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

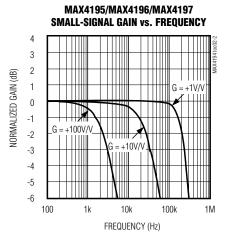
PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS	
Short-Circuit Current (Note 2)	I _{SC}						±4.5		mA
Gain Equation		MAX4194 only				1 + (50kΩ/R _G)			
		T _A = +25°C,	G :	= +1V			±0.01	±0.1	
		$V_{CM} = V_{CC}/2$,	G :	= +10V			±0.03	±0.3	
		$R_L = 25k\Omega$, $V_{EE} + 0.1V \le V_{OU}$, G:	= +100V/	/		±0.05	±0.5	
		≤ V _{CC} - 0.1V		= +1000V/	V, MAX4194		±0.5		
Gain Error		T _A = +25°C,		= +1V			±0.01	±0.1	%
		$V_{CM} = V_{CC}/2$	G	= +10V			±0.03	±0.3	
		$R_L = 5k\Omega$,		= +100V/	1		±0.05	±0.5	
		$V_{EE} + 0.2V \le V_{OU}$ $\le V_{CC} - 0.2V$	JI					10.5	
					V, MAX4194		±0.5	. 0	
Gain Temperature Coefficient (Note 1)		MAX4194/MAX4		= +1V/V		1	±1	±8	ppm/°C
· · · · · · · · · · · · · · · · · · ·		MAX4196/MAX4	197				±1	±15	
50kΩ Resistance Temperature Coefficient (Note 3)	TC _{50k} Ω	MAX4194				±16		ppm/°C	
Nonlinearity		$V_{EE} + 0.1V \le V_{OUT} \le V_{CC} - 0.1V$, $V_{CM} = V_{CC}/2$, $G = +1V/V$, $+100V/V$, +100V/V, $+1000V/V$				±0.001		%	
Capacitive-Load Stability	CL						300		рF
				4) / / / /	MAX4194		250		·
			G = +	·1V/V	MAX4195		220		
				10)///	MAX4194		17		
-3dB Bandwidth	BW _{-3dB}	$V_{OUT} \le 0.1V_{P-P}$, $V_{CM} = V_{CC}/2$	G = +	- 100/0	MAX4196		34		kHz
		VCM = VCC/2	<u> </u>	100\/\/	MAX4194		1.5		
			G = +	-100V/V	MAX4197		3.1		
			G = +	-1000V/V	MAX4194		0.147		
Slew Rate	SR	Vout = 2V _{P-P} , G	$= +1V_{1}$	N			0.06		V/µs
				G = +1V/V			0.05		
Settling Time	to	0.19/ \/0.17 - 2\/	'n n	G = +10	V/V		0.04		mo
	ts	$0.1\%, V_{OUT} = 2V$	Q = +100V/V			5		ms	
		G = +1000V/V			7				
Total Harmonic Distortion	THD	V _{OUT} = 2V _{P-P} , G	= +1V	/V, $f = 1kh$	Hz		0.001		%
Input Logic Voltage High	VIH					V _{CC} - 1.5			V
Input Logic Voltage Low	V _{IL}							V _C C - 2.5	V
SHDN Input Current		V _{EE} < V SHDN < V	/cc	MAX419 MAX419	5/MAX4196/ 7 only			±0.1	μΑ

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +5V, V_{EE} = 0V, R_L = 25k\Omega)$ tied to $V_{CC}/2$, $V_{REF} = V_{CC}/2$, $V_{A} = V_{MIN}$ to V_{MAX} , unless otherwise noted. Typical values are at $V_{A} = +25$ °C.)

PARAMETER	SYMBOL	COND	MIN	TYP	MAX	UNITS	
Time to Shutdown	tshdn	G = +1V/V, 0.1%, $V_{OUT} = +3V$	MAX4195/MAX4196/ MAX4197 only		0.5		ms
Enable Time From Shutdown	tENABLE	G = +1V/V, 0.1%, $V_{OUT} = +3.5V$	MAX4195/MAX4196/ MAX4197 only		0.5		ms
Power-Up Delay		$G = +1V/V, 0.1\%, V_{OUT} = +3.5V$			1		ms
On/Off Settling Time	ton/off	$V_{SHDN} = V_{CC} - 2.5V \text{ to } V_{CC} - 1.5V,$ $G = +100V/V, 0.1\%, V_{OUT} = +3.5V$			0.5		ms

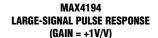

Note 1: Guaranteed by design.

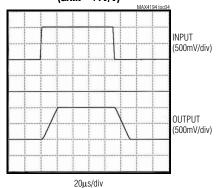

Note 2: Maximum output current (sinking/sourcing) in which the gain changes by less than 0.1%.

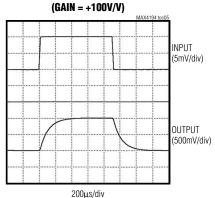
Note 3: This specification represents the typical temperature coefficient of an on-chip thin film resistor. In practice, the temperature coefficient of the gain for the MAX4194 will be dominated by the temperature coefficient of the external gain-setting resistor.

Typical Operating Characteristics

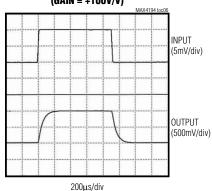
(V_{CC} = +5V, V_{EE} = 0, R_L = 25k Ω tied to V_{CC}/2, T_A = +25°C, unless otherwise noted.)

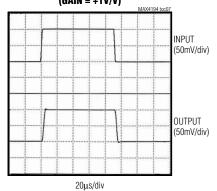


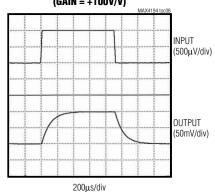


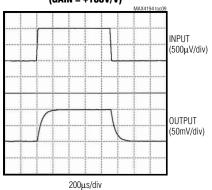

Typical Operating Characteristics (continued)

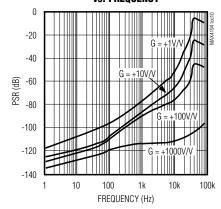
 $(VCC = +5V, VEE = 0, R_L = 25k\Omega \text{ tied to } VCC/2, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

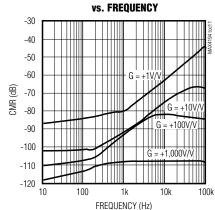



MAX4194 LARGE-SIGNAL PULSE RESPONSE

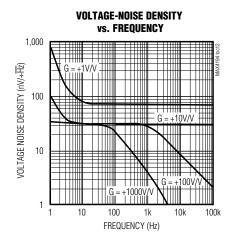

MAX4197 LARGE-SIGNAL PULSE RESPONSE (GAIN = +100V/V)

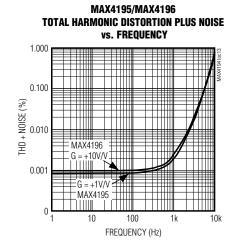

MAX4194 SMALL-SIGNAL PULSE RESPONSE (GAIN = +1V/V)

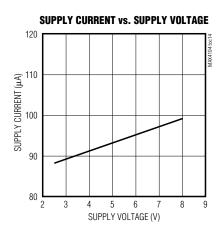

MAX4194 SMALL-SIGNAL PULSE RESPONSE (GAIN = +100V/V)

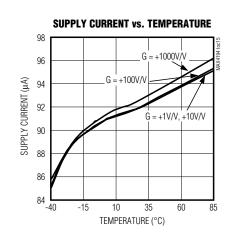

MAX4197 SMALL-SIGNAL PULSE RESPONSE (GAIN = +100V/V)

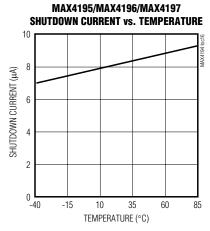
POWER-SUPPLY REJECTION vs. FREQUENCY

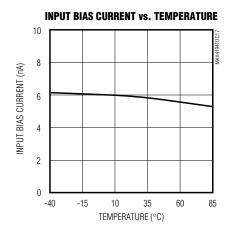


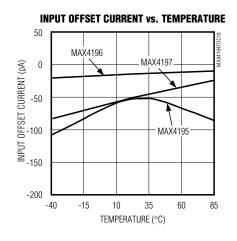

COMMON-MODE REJECTION
VS. FREQUENCY

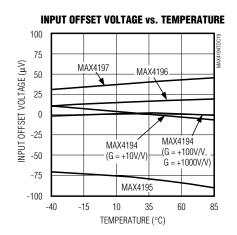



Typical Operating Characteristics (continued)


 $(V_{CC} = +5V, V_{EE} = 0, R_L = 25k\Omega \text{ tied to } V_{CC}/2, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$







Typical Operating Characteristics (continued)

 $(V_{CC} = +5V, V_{EE} = 0, R_L = 25k\Omega \text{ tied to } V_{CC}/2, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Pin Description

P	IN			
MAX4194	MAX4195 MAX4196 MAX4197	NAME	FUNCTION	
1, 8	_	RG-, RG+	Connection for Gain-Setting Resistor	
5	1	REF	Reference Voltage. Offsets output voltage.	
2	2	IN-	Inverting Input	
3	3	IN+	Noninverting Input	
4	4	VEE	Negative Supply Voltage	
_	5	FB	Feedback. Connects to OUT.	
6	6	OUT	Amplifier Output	
7	7	V _C C	Positive Supply Voltage	
_	8	SHDN	Shutdown Control	

Detailed Description

Input Stage

The MAX4194–MAX4197 family of low-power instrumentation amplifiers implements a three-amplifier topology (Figure 1). The input stage is composed of two operational amplifiers that together provide a fixed-gain differential and a unity common-mode gain. The output stage is a conventional differential amplifier that provides an overall common-mode rejection of 115dB (G =

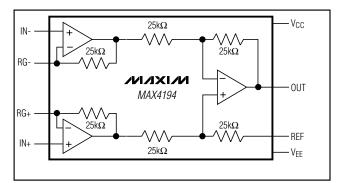


Figure 1. MAX4194 Simplified Block Diagram

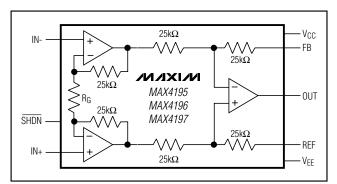


Figure 2. MAX4195/MAX4196/MAX4197 Simplified Block Diagram

+10V/V). The MAX4194's gain can be externally set between +1V/V and +10,000V/V (Table 1). The MAX4195/MAX4196/MAX4197 have on-chip gain-setting resistors (Figure 2), and their gains are fixed at +1V/V, +10V/V, and +100V/V, respectively.

Input Voltage Range and Detailed Operation

The common-mode input range for all of these amplifiers is $V_{\rm EE}$ - 0.2V to $V_{\rm CC}$ - 1.1V. Ideally, the instrumentation amplifier (Figure 3) responds only to a differential voltage applied to its inputs, IN+ and IN-. If both inputs are at the same voltage, the output is $V_{\rm REF}$. A differential voltage at IN+ ($V_{\rm IN+}$) and IN- ($V_{\rm IN-}$) develops an identical voltage across the gain-setting resistor, causing a current ($I_{\rm G}$) to flow. This current also flows through the feedback resistors of the two input amplifiers A1 and A2, generating a differential voltage of:

$$Vout_2 - Vout_1 = Ig \cdot (R_1 + R_G + R_1)$$

where V_{OUT1} and V_{OUT2} are the output voltages of A1 and A2, R_G is the gain-setting resistor (internal or external to the part), and R1 is the feedback resistor of the input amplifiers.

IG is determined by the following equation:

$$I_G = (V_{IN+} - V_{IN-}) / R_G$$

The output voltage (V_{OUT}) for the instrumentation amplifier is expressed in the following equation:

$$V_{OUT} = (V_{IN+} - V_{IN-}) \cdot [(2 \cdot R1) / R_G] + 1$$

The common-mode input range is a function of the amplifier's output voltage and the supply voltage. With a power supply of V_{CC}, the largest output signal swing can be obtained with REF tied to V_{CC}/2. This results in an output voltage swing of \pm V_{CC}/2. An output voltage swing less than full-scale increases the common-mode input range.

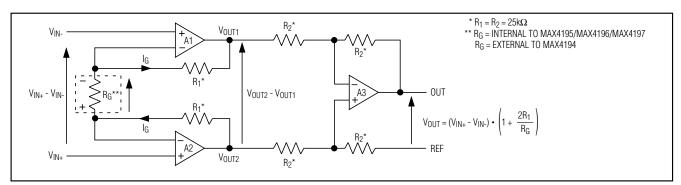


Figure 3. Instrumentation Amplifier Configuration

Table 1. MAX4194 External Gain Resistor Selection

GAIN (V/V)	CLOSEST R _G (1%) (Ω)	CLOSEST R _G (5%) (Ω)
+1	∞ *	∞ *
+2	49.9k	51k
+5	12.4k	12k
+10	5.62k	5.6k
+20	2.61k	2.7k
+50	1.02k	1.0k
+100	511	510
+200	249	240
+500	100	100
+1,000	49.9	51
+2,000	24.9	24
+5,000	10	10
+10,000	4.99	5.1

^{*}Leave pins 1 and 8 open for G = +1V/V.

VCM vs. VOUT Characterization

Figure 4 illustrates the MAX4194 typical common-mode input voltage range over output voltage swing at unitygain (pins 1 and 8 left floating), with a single-supply voltage of V_{CC} = +5V and a bias reference voltage of V_{REF} = V_{CC}/2 = +2.5V. Points A and D show the full input voltage range of the input amplifiers (V_{EE} - 0.2V to V_{CC} - 1.1V) since, with +2.5V output, there is zero input differential swing. The other points (B, C, E, and F) are determined by the input voltage range of the input amps minus the differential input amplitude necessary to produce the associated V_{OUT}. For the higher gain configurations, the V_{CM} range will increase at the endpoints (B, C, E, and F) since a smaller differential voltage is necessary for the given output voltage.

Rail-to-Rail Output Stage

The MAX4194–MAX4197's output stage incorporates a common-source structure that maximizes the dynamic range of the instrumentation amplifier.

The output can drive up to a $25k\Omega$ (tied to $V_{CC}/2$) resistive load and still typically swing within 30mV of the rails. With an output load of $5k\Omega$ tied to $V_{CC}/2$, the output voltage swings within 100mV of the rails.

Shutdown Mode

The MAX4195–MAX4197 feature a low-power shutdown mode. When the shutdown pin (SHDN) is pulled low, the internal amplifiers are switched off and the supply current drops to 8µA typically (Figures 5a, 5b, and 5c).

This disables the instrumentation amplifier and puts its output in a high-impedance state. Pulling SHDN high enables the instrumentation amplifier.

Applications Information

Setting the Gain (MAX4194)

The MAX4194's gain is set by connecting a single, external gain resistor between the two RG pins (pin 1 and pin 8), and can be described as:

$$G = 1 + 50k\Omega / R_G$$

where G is the instrumentation amplifier's gain and RG is the gain-setting resistor.

The $50k\Omega$ resistor of the gain equation is the sum of the two resistors internally connected to the feedback loops of the IN+ and IN- amplifiers. These embedded feedback resistors are laser trimmed, and their accuracy and temperature coefficients are included in the gain and drift specification for the MAX4194.

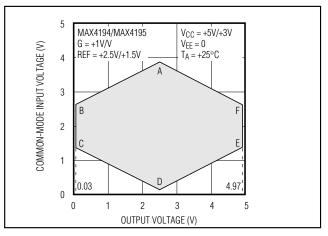


Figure 4. Common-Mode Input Voltage vs. Output Voltage

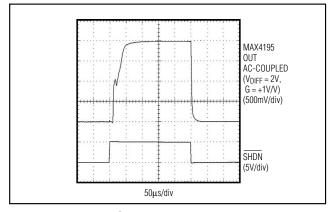


Figure 5a. MAX4195 Shutdown Mode

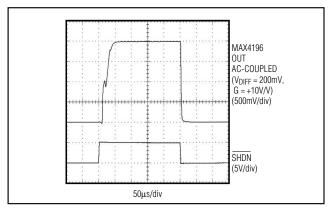


Figure 5b. MAX4196 Shutdown Mode

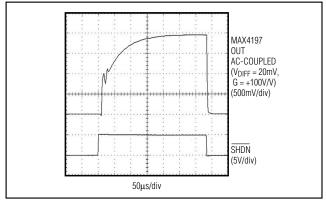


Figure 5c. MAX4197 Shutdown Mode

The accuracy and temperature drift of the R_G resistors also influence the IC's precision and gain drift, and can be derived from the equation above. With low R_G values, which are required for high-gain operation, parasitic resistances may significantly increase the gain error.

Capacitive-Load Stability

The MAX4194–MAX4197 are stable for capacitive loads up to 300pF (Figure 6a). Applications that require greater capacitive-load driving capability can use an isolation resistor (Figure 6b) between the output and the capacitive load to reduce ringing on the output signal. However, this alternative reduces gain accuracy because RISO (Figure 6c) forms a potential divider with the load resistor.

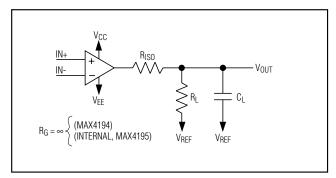


Figure 6a. Using a Resistor to Isolate a Capacitive Load from the Instrumentation Amplifier (G = +1V/V)

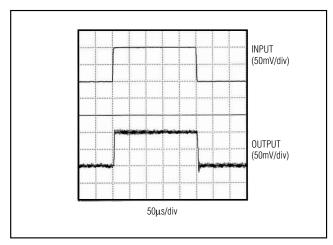


Figure 6b. Small-Signal Pulse Response with Excessive Capacitive Load ($R_L = 25k\Omega$, $C_L = 1000pF$)

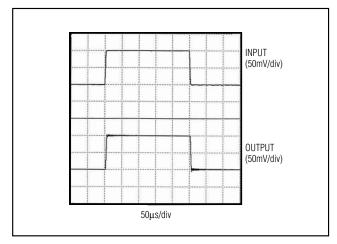


Figure 6c. Small-Signal Pulse Response with Excessive Capacitive Load and Isolating Resistor ($R_{ISO} = 75\Omega$, $R_{L} = 25k\Omega$, $C_{L} = 1000pF$)

Power-Supply Bypassing and Layout

Good layout technique optimizes performance by decreasing the amount of stray capacitance at the instrumentation amplifier's gain-setting pins. Excess capacitance will produce peaking in the amplifier's frequency response. To decrease stray capacitance, minimize trace lengths by placing external components as close to the instrumentation amplifier as possible. For best performance, bypass each power supply to ground with a separate 0.1µF capacitor.

Transducer Applications

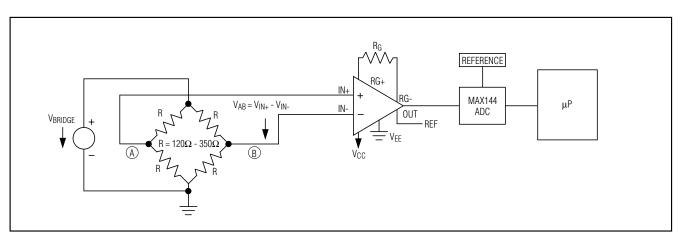
The MAX4194–MAX4197 instrumentation amplifiers can be used in various signal-conditioning circuits for thermocouples, PT100s, strain gauges (displacement sensors), piezoresistive transducers (PRTs), flow sensors, and bioelectrical applications. Figure 7 shows a simplified example of how to attach four strain gauges (two

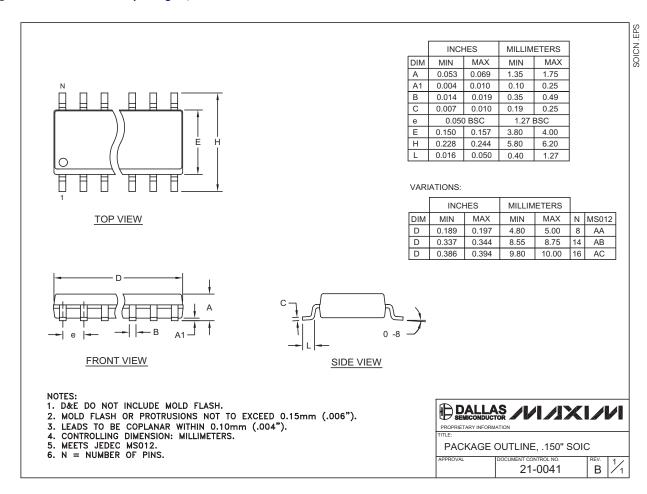
identical two-element strain gauges) to the inputs of the MAX4194. The bridge contains four resistors, two of which increase and two of which decrease by the same ratio.

With a fully balanced bridge, points A (IN+) and B (IN-) see half the excitation voltage (VBRIDGE). The low impedance (120 Ω to 350 Ω) of the strain gauges, however, could cause significant voltage drop contributions by the wires leading to the bridge, which would cause excitation variations. Output voltage VOUT can be calculated as follows:

where G = (1 + 50k Ω / R_G) is the gain of the instrumentation amplifier.

Since VAB is directly proportional to the excitation, gain errors may occur.




Figure 7. Strain Gauge Connection to the MAX4194

_____Chip Information

TRANSISTOR COUNT: 432

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.