

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Features

General Description

The MAX4210/MAX4211 low-cost, low-power, high-side power/current monitors provide an analog output voltage proportional to the power consumed by a load by multiplying load current and source voltage. The MAX4210/MAX4211 measure load current by using a high-side current-sense amplifier, making them especially useful in battery-powered systems by not interfering with the ground path of the load.

The MAX4210 is a small, simple 6-pin power monitor intended for limited board space applications. The MAX4210A/B/C integrate an internal 25:1 resistor-divider network to reduce component count. The MAX4210D/E/F use an external resistor-divider network for greater design flexibility.

The MAX4211 is a full-featured current and power monitor. The device combines a high-side current-sense amplifier, 1.21V bandgap reference, and two comparators with open-drain outputs to make detector circuits for overpower, overcurrent, and/or overvoltage conditions. The open-drain outputs can be connected to potentials as high as 28V, suitable for driving high-side switches for circuit-breaker applications.

Both the MAX4210/MAX4211 feature three different current-sense amplifier gain options: 16.67V/V, 25.00V/V, and 40.96V/V. The MAX4210 is available in 3mm x 3mm. 6-pin TDFN and 8-pin µMAX® packages and the MAX4211 is available in 4mm x 4mm, 16-pin thin QFN and 16-pin TSSOP packages. Both parts are specified for the -40°C to +85°C extended operating temperature range.

Applications

Overpower Circuit Breakers

Smart Battery Packs/Chargers

Smart Peripheral Control

Short-Circuit Protection

Power-Supply Displays

Measurement Instrumentation

Baseband Analog Multipliers

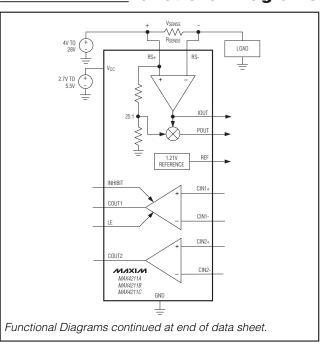
VGA Circuits

Power-Level Detectors

µMAX is a registered trademark of Maxim Integrated Products, Inc.

Pin Configurations and Selector Guide appear at end of data sheet.

- ♦ Real-Time Current and Power Monitoring
- ♦ ±1.5% (max) Current-Sense Accuracy
- ♦ ±1.5% (max) Power-Sense Accuracy
- **♦ Two Uncommitted Comparators (MAX4211)**
- **♦ 1.21V Reference Output (MAX4211)**
- **♦ Three Current/Power Gain Options**
- ♦ 100mV/150mV Current-Sense Full-Scale Voltage
- ♦ +4V to +28V Input Source Voltage Range
- ♦ +2.7V to +5.5V Power-Supply Voltage Range
- ♦ Low Supply Current: 380µA (MAX4210)
- ♦ 220kHz Bandwidth
- ♦ Small 6-Pin TDFN and 8-Pin µMAX Packages (MAX4210)


Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	TOP MARK
MAX4210AETT-T	-40°C to +85°C	6 TDFN-6-EP* (3mm x 3mm)	AHF
MAX4210AEUA	-40°C to +85°C	8 µMAX	_

^{*}EP = Exposed paddle.

Ordering Information continued at end of data sheet.

Functional Diagrams

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V _{CC} , IN, CIN1, CIN2 to GND	0.3V to +6V
RS+, RS-, INHIBIT, LE, COUT1, COUT2 to GN	ID0.3V to +30V
IOUT, POUT, REF to GND0.3	$3V \text{ to } (V_{CC} + 0.3V)$
Differential Input Voltage (V _{RS+} - V _{RS-})	±5V
Maximum Current into Any Pin	±10mA
Output Short-Circuit Duration to VCC or GND.	10s
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
6-Pin TDFN (derate 24.4mW/°C above +70°	C)1951mW

362mW
754mW
2000mW
°C to +85°C
+150°C
C to +150°C
+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC}=5.0V,\,V_{RS+}=25V,\,V_{SENSE}=5mV,\,V_{IN}=1.0V,\,V_{LE}=0V,\,R_{IOUT}=R_{POUT}=1M\Omega,\,V_{CIN1+}=V_{CIN2+}=V_{REF},\,V_{CIN1-}=V_{CIN2-}=6ND,\,V_{INHBIT}=0V,\,R_{COUT1}=R_{COUT2}=5k\Omega$ connected to $V_{CC},\,T_A=-40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Typical values are at $T_A=+25^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL		CON	NDITIONS	MIN	TYP	MAX	UNITS
Operating Voltage Range (Note 2)	Vcc				2.7		5.5	V
Common-Mode Input Range (Note 3)	VCMR	Measured at	RS+		4		28	V
		$T_A = +25^{\circ}C$,		MAX4210		380	570	
Supply Current	loo	$V_{CC} = +5.5V$		MAX4211		670	960	
Supply Current	Icc	\/		MAX4210			670	μΑ
		$V_{CC} = +5.5V$		MAX4211			1100	
	1	\/ · · · · · · · · · · · · · · · · · · ·	/	MAX421_A/B/C		14	25	
Input Bias Current	I _{RS+}	V _{SENSE} = 0m	1V	MAX421_D/E/F		3	8	μΑ
	I _{RS} -	V _{SENSE} = 0m	١V			3	8	
IN Input Bias Current	I _{IN}	MAX421_D/E	:/F			-0.1	-1	μA
Leakage Current	I _{RS+} , I _{RS-}	VCC = 0V			0.1	1	μA	
V _{SENSE} Full-Scale Voltage		MAX421_A/B	B/D/E		150			
(Note 4)	V _{SENSE_FS}	MAX421_C/F		100			mV	
IN Full-Scale Voltage (Note 4)	V _{IN_FS}	MAX421_D/E 100mV	:/F, V	SENSE = 10mV to	1			V
IN Input Voltage Range (Note 5)	VIN	MAX421_D/E 100mV	:/F, V	SENSE = 10mV to	0.16		1.10	V
V _{RS+} Full-Scale Voltage (Note 4)		MAX421_A/B 100mV	3/C, V	SENSE = 10mV to	25			V
V _{RS+} Input Voltage Range (Note 5)	V _{RS+}	MAX421_A/B 100mV	3/C, V	SENSE = 10mV to	4		28	V
			Cur	rent into IOUT = 10µA		1.5		
M: : 101/T/D01/T3/ /:	1	V _{SENSE} =		rent into IOUT = 100µA		2.5	80	1
Minimum IOUT/POUT Voltage	je Vout_min	0V, V _{RS+} =		rent into POUT = 10µA		1.5	mV	
		25V		rent into POUT = 100µA		2.5	80	
Maximum IOUT/POUT Voltage	.,	Va=1,10=		rent out of JT = 500µA			V _{CC} - 0.25	
(Note 6)	VOUT_MAX 300mV, V _{RS+} = 25			rent out of UT = 500µA			V _{CC} - 0.25	V

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC}=5.0V,\,V_{RS+}=25V,\,V_{SENSE}=5mV,\,V_{IN}=1.0V,\,V_{LE}=0V,\,R_{IOUT}=R_{POUT}=1M\Omega,\,V_{CIN1+}=V_{CIN2+}=V_{REF},\,V_{CIN1-}=V_{CIN2-}=GND,\,V_{INHIBIT}=0V,\,R_{COUT1}=R_{COUT2}=5k\Omega$ connected to $V_{CC},\,T_A=-40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Typical values are at $T_A=+25^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	C	ONDITIONS	MIN	TYP	MAX	UNITS
		MAX4211A/D			16.67		
Current-Sense Amplifier Gain	VIOUT/	MAX4211B/E			25.00		V/V
	V _{SENSE}	MAX4211C/F			40.96		
	VPOUT/	MAX421_A			0.667		
	(VSENSE X	MAX421_B			1.00		
Davis Cara Arabitis Cair	V _{RS+})	MAX421_C			1.64		10,
Power-Sense Amplifier Gain	., ,	MAX421_D			16.67		1/V
	VPOUT/ (VSENSE X VIN)	MAX421_E			25.00		
	(VSENSE X VIN)	MAX421_F			40.96		
IOUT Common-Mode Rejection	CMRI	MAX4211, V _{RS+}	= 4V to 28V	60	80		dB
POUT Common-Mode Rejection	CMRP	MAX421_D/E/F,	V _{RS+} = 4V to 28V	60	80		dB
IOUT Power-Supply Rejection	PSRI	$V_{CC} = 2.7V \text{ to } 5$.5V	52	80		dB
POUT Power-Supply Rejection	PSRP	V _C C = 2.7V to 5	.5V	52	70		dB
Output Resistance for POUT, IOUT, REF	R _{OUT}				0.5		Ω
IOUT -3dB Bandwidth	BWIOUT/SENSE	V _{SENSE} = 100m	V, V _{SENSE} AC source		220		kHz
	BW _{POUT} /SENSE	V _{SENSE} = 100m	V, V _{SENSE} AC source		220		
POUT -3dB Bandwidth	BWPOLITAVIN		VSENSE = 100mV, V _{IN} AC source, MAX421_D/E/F		500		kHz
	BW _{POUT/RS+}	V _{SENSE} = 100mV, V _{RS+} AC source, MAX421_A/B/C			250		
Capacitive-Load Stability (POUT, IOUT, REF)	CLOAD	No sustained os	cillations		450		рF
Current Output (IOUT) Settling		MAX4211	VSENSE = 10mV to 100mV		15		
Time to 1% of Final Value		IVIAA4211	VSENSE = 100mV to 10mV		15		μs
			VSENSE = 10mV to 100mV		10		
			VSENSE = 100mV to 10mV		10		
		MAX421_A/B/C	$V_{RS+} = 4V \text{ to } 25V,$ $V_{SENSE} = 100\text{mV}$		15		
Power Output (POUT) Settling Time to 1% of Final Value			V _{RS+} = 25V to 4V, V _{SENSE} = 100mV		15		
			V _{SENSE} = 10mV to 100mV		10		μs
			VSENSE = 100mV to 10mV		10		
		MAX421_D/E/F	V _{IN} = 160mV to 1V, V _{SENSE} = 100mV		10		
			V _{IN} = 1V to 160mV, V _{SENSE} = 100mV		10		

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC}=5.0V,\,V_{RS+}=25V,\,V_{SENSE}=5mV,\,V_{IN}=1.0V,\,V_{LE}=0V,\,R_{IOUT}=R_{POUT}=1M\Omega,\,V_{CIN1+}=V_{CIN2+}=V_{REF},\,V_{CIN1-}=V_{CIN2-}=GND,\,V_{INHBIT}=0V,\,R_{COUT1}=R_{COUT2}=5k\Omega$ connected to $V_{CC},\,T_A=-40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Typical values are at $T_A=+25^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Power-Up Time to 1% of Current Output Final Value		Vsense = 100mV, C _{LOAD} = 10pF, MAX4211		100		μs
Power-Up Time to 1% of Power Output Final Value		VSENSE = 100mV, CLOAD = 10pF		100		μs
Saturation Recovery Time for		C _{LOAD} = 10pF, V _{SENSE} = -100mV to +100mV		35		μs
Current Out (Note 7)		CLOAD = 10pF, VSENSE = 1.5V to 100mV		35		
Saturation Recovery Time for		$V_{CC} = 5V$, $V_{RS+} = 10V$, $C_{LOAD} = 10pF$, $V_{SENSE} = -100mV$ to $+100mV$		25		
Power Out (Note 7)		V _{CC} = 5V, V _{RS+} = 10V, C _{LOAD} = 10pF, V _{SENSE} = 1.5V to 100mV		25		μs
Reference Voltage	V _{REF}	$I_{REF} = 0 \text{ to } 100\mu\text{A}, T_{A} = +25^{\circ}\text{C}$	1.20	1.21	1.22	V
Treference voltage	V HEF	$I_{REF} = 0$ to 100µA, $T_{A} = -40^{\circ}$ C to +85°C	1.19		1.23	V
Comparator Input Offset		Common-mode voltage = REF		±0.5	±5	mV
Comparator Hysteresis				5		mV
Comparator Common-Mode Low		Functional test		0.1		V
Comparator Common-Mode High		Functional test		V _{CC} - 1.15		V
Comparator Input Bias Current	I _{BIAS}			-2		nA
Comparator Output Low Voltage	V _{OL}	I _{SINK} = 1mA		0.2	0.6	V
Comparator Output-High Leakage Current (Note 8)		V _{PULLUP} = 28V			1	μΑ
LE Logic Input-High Voltage Threshold	VIH		0.67 x V _C C			V
LE Logic Input-Low Voltage Threshold	V _{IL}				0.33 x V _{CC}	V
LE Logic Input Internal Pulldown Current			0.68	1	2.20	μΑ
INHIBIT Logic Input-High Voltage Threshold			1.3			V
INHIBIT Logic Input-Low Voltage Threshold					0.5	V
INHIBIT Logic Input Hysteresis				0.6		V
INHIBIT Logic Input Internal Pulldown Current			0.68	1	2.20	μΑ

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC}=5.0V,\,V_{RS+}=25V,\,V_{SENSE}=5mV,\,V_{IN}=1.0V,\,V_{LE}=0V,\,R_{IOUT}=R_{POUT}=1M\Omega,\,V_{CIN1+}=V_{CIN2+}=V_{REF},\,V_{CIN1-}=V_{CIN2-}=GND,\,V_{INHIBIT}=0V,\,R_{COUT1}=R_{COUT2}=5k\Omega$ connected to $V_{CC},\,T_A=-40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Typical values are at $T_A=+25^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
Comparator Propagation Delay	t _{PD+} , t _{PD-}	C _{LOAD} = 10pF, R _{LOAD} V _{CC} , 5mV overdrive	C_{LOAD} = 10pF, R_{LOAD} = 10k Ω pullup to V _{CC} , 5mV overdrive		4		μs	
Minimum INHIBIT Pulse Width					1		μs	
Minimum LE Pulse Width					1		μs	
Comparator Power-Up Blanking Time From V _{CC}	ton	V _{CC} from 0 to (2.7V to s	5.5V)		300		μs	
LATCH Setup Time	tsetup				3		μs	
MAX4210A/MAX4211A (pow	er gain = 0.667)							
	ΔV _{POUT} /	Vsense = 10mV to	T _A = +25°C		±0.5	±1.5		
POUT Gain Accuracy	ΔVSENSE	100mV, $V_{RS+} = 25V$	$T_A = T_{MIN}$ to T_{MAX}			±3.0	0/	
(Note 9)	ΔV _{POUT} /	V _{SENSE} = 100mV,	T _A = +25°C		±0.5	±1.5	%	
	ΔV _{RS+}	$V_{RS+} = 5V \text{ to } 25V$	$T_A = T_{MIN}$ to T_{MAX}			±3.0	-	
	ΔV _{POUT_MAX} /	$V_{SENSE} = 5mV \text{ to}$ $100mV, V_{RS+} = 5V \text{ to}$	T _A = +25°C		±0.15	±1.5	% FSO*	
	FSO	25V	TA = TMIN to TMAX			±3.0	78130	
T		V _{SENSE} = 150mV,	T _A = +25°C		±0.2	±1.5		
Total POUT Output Error (Note 10)		V _{RS+} ≥ 15V	$T_A = T_{MIN}$ to T_{MAX}			±3.0]	
(14010-10)	ΔVPOUT_MAX/	VSENSE = 100mV, VRS-	- ≥ 4V		±2.5		%	
	VPOUT	V _{SENSE} = 100mV, V _{RS}	₋ ≥ 9V		±1.2		/6	
		V _{SENSE} = 50mV, V _{RS+}	≥ 6V		±1.8		<u> </u>	
		V _{SENSE} = 25mV, V _{RS+}	≥ 15V		±1.8			
POUT Output Offset Voltage		VSENSE = 0V,	$T_A = +25^{\circ}C$		1.5	5	mV	
(Note 11)		$V_{RS+} = 25V$	$T_A = T_{MIN}$ to T_{MAX}			15	1114	
MAX4210B/MAX4211B (pow	er gain = 1.00)							
	ΔV _{POUT} /	V _{SENSE} = 10mV to	T _A = +25°C		±0.5	±1.5		
POUT Gain Accuracy	ΔVSENSE	$100 \text{mV}, V_{RS+} = 25 \text{V}$	$T_A = T_{MIN}$ to T_{MAX}			±3.0	%	
(Note 9)	ΔV _{POUT} /	VSENSE = 100mV,	T _A = +25°C		±0.5	±1.5	/0	
	ΔV _{RS+}	$V_{RS+} = 5V \text{ to } 25V$	TA = TMIN to TMAX			±3.0		

^{*}FSO refers to full-scale output under the conditions: $V_{SENSE} = 100mV$, $V_{RS+} = +25V$, or $V_{IN} = 1V$.

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC}=5.0V,\,V_{RS+}=25V,\,V_{SENSE}=5mV,\,V_{IN}=1.0V,\,V_{LE}=0V,\,R_{IOUT}=R_{POUT}=1M\Omega,\,V_{CIN1+}=V_{CIN2+}=V_{REF},\,V_{CIN1-}=V_{CIN2-}=6ND,\,V_{INHBIT}=0V,\,R_{COUT1}=R_{COUT2}=5k\Omega$ connected to $V_{CC},\,T_A=-40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Typical values are at $T_A=+25^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDI	TIONS	MIN	TYP	MAX	UNITS
	ΔV _{POUT_MAX} /	VSENSE = 5mV to	T _A = +25°C		±0.15	±1.5	0/ 500*
	FSO	100mV, $V_{RS+} = 5V$ to 25V	$T_A = T_{MIN}$ to T_{MAX}			±3.0	% FSO*
		V _{SENSE} = 150mV,	$T_A = +25^{\circ}C$		±0.2	±1.5	
Total POUT Output Error	ΔVpout_max/	V _{RS+} > 15V	$T_A = T_{MIN}$ to T_{MAX}			±3.0	
(Note 10)		VSENSE = 100mV, VRS	S+ > 4V		±2.5		<u> </u>
	VPOUT	VSENSE = 100mV, VRS	S+ > 9V		±1.2		/0
		V _{SENSE} = 50mV, V _{RS} -	- > 6V		±1.8		
		V _{SENSE} = 25mV, V _{RS} -	₊ > 15V		±1.8		
POUT Output Offset Voltage		V _{SENSE} = 0V,	T _A = +25°C		2	6.5	mV
(Note 11)		$V_{RS+} = 25V$	$T_A = T_{MIN}$ to T_{MAX}			20	IIIV
MAX4210C/MAX4211C (power of	gain = 1.64)						
		Vsense = 10mV to	T _A = +25°C		±0.5	±1.5	
POUT Gain Accuracy		100mV, $V_{RS+} = 25V$	$T_A = T_{MIN}$ to T_{MAX}			±3.0	%
(Note 9)	$\Delta V_{POUT}/$ ΔV_{RS+}	V _{SENSE} = 100mV,	T _A = +25°C		±0.5	±1.5	
		$V_{RS+} = 5V \text{ to } 25V$	$T_A = T_{MIN}$ to T_{MAX}			±3.0	
	ΔVPOUT MAX/	VSENSE = 5mV to	T _A = +25°C		±0.15	±1.5	0/ F0.0*
	FSO					±3.0	% FSO*
Total POUT Output Error		VSENSE = 100mV, VRS	S+ ≥ 4V		±2.5		
(Note 10)	ΔV _{POUT_MAX} /	VSENSE = 100mV, VRS	S+ ≥ 9V		±1.2		%
	VPOUT	VSENSE = 50mV, VRS-	- ≥ 6V		±1.8		7/0
		VSENSE = 25mV, VRS-	₊ ≥ 15V		±1.8		
POUT Output Offset Voltage		VSENSE = 0V,	$T_A = +25^{\circ}C$		3	10	mV
(Note 11)		$V_{RS+} = 25V$	$T_A = T_{MIN}$ to T_{MAX}			30	1111
MAX4210D/MAX4211D (power of	gain = 16.67)						
ΔV _{POUT} /		V _{SENSE} = 10mV to	$T_A = +25$ °C		±0.5	±1.5	
POUT Gain Accuracy	ΔVSENSE	100mV, V _{IN} = 1V	$T_A = T_{MIN}$ to T_{MAX}			±3.0	- %
(Note 9)	ΔV _{POUT} /	V _{SENSE} = 100mV,	$T_A = +25$ °C		±0.5	±1.5	
	ΔV_{IN} $V_{IN} = 0.2V \text{ to } 1V$	$V_{IN} = 0.2V$ to 1V	$T_A = T_{MIN}$ to T_{MAX}			±3.0	

^{*}FSO refers to full-scale output under the conditions: VSENSE = 100mV, VRS+ = +25V, or VIN = 1V.

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC}=5.0V,\,V_{RS+}=25V,\,V_{SENSE}=5mV,\,V_{IN}=1.0V,\,V_{LE}=0V,\,R_{IOUT}=R_{POUT}=1M\Omega,\,V_{CIN1+}=V_{CIN2+}=V_{REF},\,V_{CIN1-}=V_{CIN2-}=GND,\,V_{INHIBIT}=0V,\,R_{COUT1}=R_{COUT2}=5k\Omega$ connected to $V_{CC},\,T_A=-40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Typical values are at $T_A=+25^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDIT	IONS	MIN	TYP	MAX	UNITS		
	ΔV _{POUT_MAX} /	V _{SENSE} = 5mV to	T _A = +25°C		±0.15	±1.5	% FSO*		
	FSO	100mV, $V_{RS+} = 25V$, $V_{IN} = 0.2V$ to 1V	$T_A = T_{MIN}$ to T_{MAX}			±3.0	% F3U		
		V _{SENSE} = 150mV, V _{RS+}	T _A = +25°C		±0.2	±1.5			
		= 25V, V _{IN} = 600mV	$T_A = T_{MIN}$ to T_{MAX}			±3.0			
Total POUT Output Error (Note 10)		$V_{SENSE} = 100$ mV, V_{RS+} $V_{IN} \ge 160$ mV	= 15V,		±2.5				
(Note 10)	ΔVPOUT_MAX/ VPOUT	V _{SENSE} = 100mV, V _{RS+} V _{IN} ≥ 360mV	= 15V,		±1.2		%		
		$V_{SENSE} = 50$ mV, $V_{RS+} = V_{IN} \ge 240$ mV	: 15V,		±1.8				
		V _{SENSE} = 25mV, V _{RS+} = V _{IN} ≥ 600mV	: 15V,		±1.8				
POUT Output Offset Voltage		V _{SENSE} = 0V,	T _A = +25°C		1.5	5	mV		
(Note 11)		$V_{RS+} = 25V, V_{IN} = 1V$	$T_A = T_{MIN}$ to T_{MAX}			15	IIIV		
MAX4210E/MAX4211E (powe	r gain = 25.00)						•		
	ΔVPOUT/ ΔVSENSE ΔVPOUT/	100 mV, $V_{IN} = 1$ V $V_{SENSE} = 100$ mV,	T _A = +25°C		±0.5	±1.5	- %		
POUT Gain Accuracy			$T_A = T_{MIN}$ to T_{MAX}			±3.0			
(Note 9)			T _A = +25°C		±0.5	±1.5			
	ΔVIN	$V_{IN} = 0.2V \text{ to } 1V$	$T_A = T_{MIN}$ to T_{MAX}			±3.0			
	$\Delta V_{ extsf{POUT_MAX}}$			$V_{SENSE} = 5 \text{mV to}$ $100 \text{mV}, V_{RS+} = 25 \text{V},$	$T_A = +25$ °C		±0.15	±1.5	% FSO*
	FSO	$V_{IN} = 0.2V \text{ to } 1V$	$T_A = T_{MIN}$ to T_{MAX}			±3.0	70130		
		V _{SENSE} = 150mV, V _{RS+} =25V, V _{IN} =	T _A = +25°C		±0.2	±1.5			
		600mV	$T_A = T_{MIN}$ to T_{MAX}			±3.0			
Total POUT Output Error (Note 10)		$V_{SENSE} = 100$ mV, $V_{RS+} = 15$ V, $V_{IN} \ge 160$ mV			±2.5				
	ΔV _{POUT_MAX} / V _{POUT}	$V_{SENSE} = 100$ mV, V_{RS+} $V_{IN} \ge 360$ mV	= 15V,		±1.2		%		
		V _{SENSE} = 50mV, V _{RS+} = 15V, V _{IN} ≥ 240mV			±1.8				
		V _{SENSE} = 25mV, V _{RS+} = V _{IN} ≥ 600mV	15V,		±1.8				
POUT Output Offset Voltage		V _{SENSE} = 0V,	T _A = +25°C		2	6.5	mV		
(Note 11)		$V_{RS+} = 25V, V_{IN} = 1V$	$T_A = T_{MIN}$ to T_{MAX}			20	IIIV		

^{*}FSO refers to full-scale output under the conditions: $V_{SENSE} = 100$ mV, $V_{RS+} = +25$ V, or $V_{IN} = 1$ V.

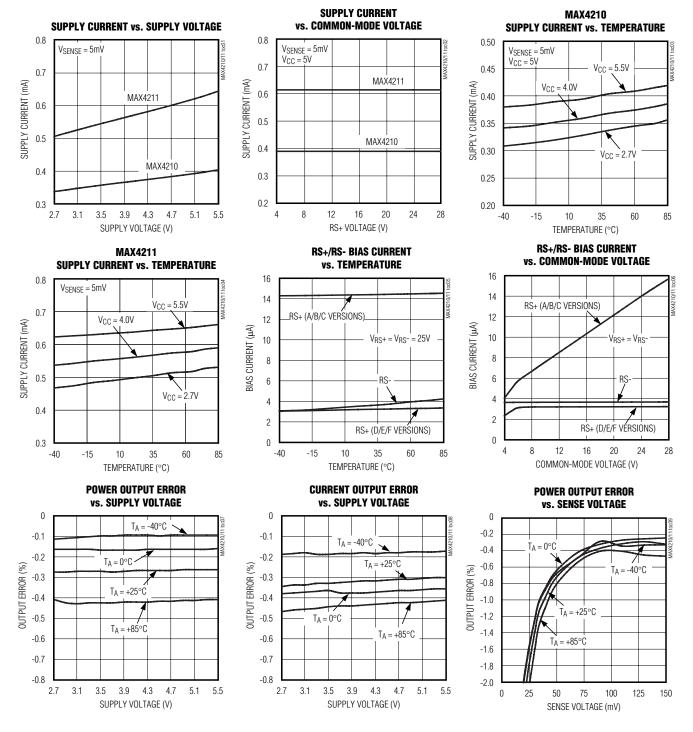
ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC}=5.0V, V_{RS+}=25V, V_{SENSE}=5mV, V_{IN}=1.0V, V_{LE}=0V, R_{IOUT}=R_{POUT}=1M\Omega, V_{CIN1+}=V_{CIN2+}=V_{REF}, V_{CIN1-}=V_{CIN2-}=GND, V_{INHBIT}=0V, R_{COUT1}=R_{COUT2}=5k\Omega$ connected to V_{CC} , $T_A=-40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Typical values are at $T_A=+25^{\circ}C$, unless otherwise noted.) (Note 1)

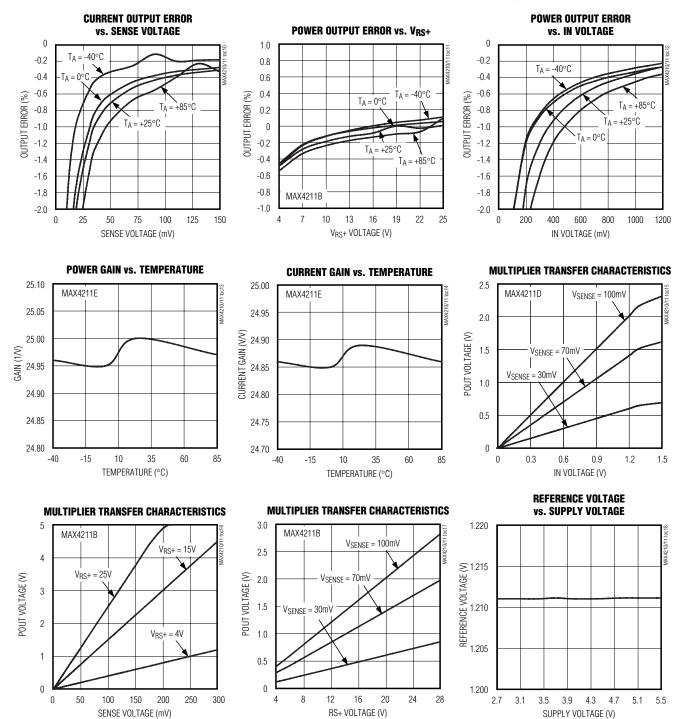
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
MAX4210F/MAX4211F (power	er gain = 40.96)						
	ΔV _{POUT} /	V _{SENSE} = 10mV to	T _A = +25°C		±0.5	±1.5	
POUT Gain Accuracy	ΔVSENSE	100mV, V _{IN} = 1V	$T_A = T_{MIN}$ to T_{MAX}			±3.0	%
(Note 9)	ΔV _{POUT} /	V _{SENSE} = 100mV,	T _A = +25°C		±0.5	±1.5	70
	ΔVIN	$V_{IN} = 0.2V \text{ to } 1V$	$T_A = T_{MIN}$ to T_{MAX}			±3.0	
	ΔV _{POUT_MAX} /	$V_{SENSE} = 5mV$ to $100mV$, $V_{RS+} = 25V$,	T _A = +25°C		±0.15	±1.5	% FSO*
	FSO	$V_{IN} = 0.2V \text{ to } 1V$	$T_A = T_{MIN}$ to T_{MAX}			±3.0	76130
		$V_{SENSE} = 100$ mV, V_{RS+} $V_{IN} \ge 160$ mV	= 15V,		±2.5		
Total POUT Output Error (Note 10)	·	$V_{SENSE} = 100 \text{mV}, V_{RS+} = 15 \text{V}, V_{IN} \ge 360 \text{mV}$		±1.2			%
	VPOUT	$V_{SENSE} = 50 \text{mV}, V_{RS+} = 15 \text{V},$ $V_{IN} \ge 240 \text{mV}$			±1.8		
		$V_{SENSE} = 25$ mV, $V_{RS+} = V_{IN} \ge 600$ mV	= 15V,		±1.8		
POUT Output Offset Voltage		Vsense = 0V,	T _A = +25°C		3	10	mV
(Note 11)		$V_{RS+} = 25V, V_{IN} = 1V$	$T_A = T_{MIN}$ to T_{MAX}			30	IIIV
MAX4211A/MAX4211D (curre	ent gain = 16.67)	.	,				_
IOUT Gain Accuracy	ΔV _{IOUT} /	Vsense = 20mV to	T _A = +25°C		±0.5	±1.5	%
1001 dail17 loculacy	ΔVSENSE	100mV, $V_{RS+} = 25V$	$T_A = T_{MIN}$ to T_{MAX}			±3.0	70
	ΔV IOUT_MAX/	V _{SENSE} = 5mV to	T _A = +25°C		±0.15	±1.5	% FSO*
	FSO	100mV	$T_A = T_{MIN}$ to T_{MAX}			±3.0	70100
Total IOUT Output Error (Note 10)		V _{SENSE} = 150mV	T _A = +25°C		±0.2	±1.5	
	ΔVIOUT_MAX/	TOLINGE TOURS	$T_A = T_{MIN}$ to T_{MAX}			±3.0	1
,	VIOUT	Vsense = 50mV			±1.2		%
		Vsense = 25mV			±1.8		
		V _{SENSE} = 5mV			±20		

^{*}FSO refers to full-scale output under the conditions: V_{SENSE} = 100mV, V_{RS+} = +25V, or V_{IN} = 1V.

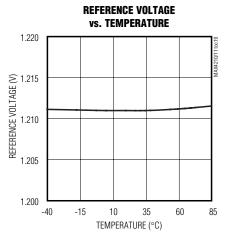
ELECTRICAL CHARACTERISTICS (continued)

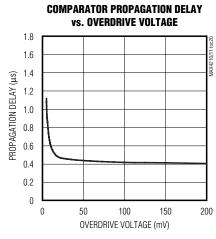

 $(V_{CC}=5.0V, V_{RS+}=25V, V_{SENSE}=5mV, V_{IN}=1.0V, V_{LE}=0V, R_{IOUT}=R_{POUT}=1M\Omega, V_{CIN1+}=V_{CIN2+}=V_{REF}, V_{CIN1-}=V_{CIN2-}=GND, V_{INHBIT}=0V, R_{COUT1}=R_{COUT2}=5k\Omega$ connected to V_{CC} , $T_{A}=-40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Typical values are at $T_{A}=+25^{\circ}C$, unless otherwise noted.) (Note 1)

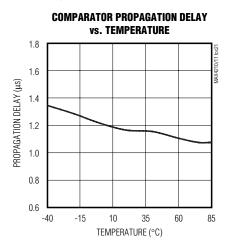
PARAMETER	SYMBOL	CONI	DITIONS	MIN	TYP	MAX	UNITS
MAX4211B/MAX4211E (cur	rent gain = 25.00)	•		•			
IOLIT Coin Aggurgay	ΔV _{IOUT} /	V _{SENSE} = 20mV to	T _A = +25°C		±0.5	±1.5	<u> </u>
IOUT Gain Accuracy	ΔVSENSE	100mV, $V_{RS+} = 25V$	$T_A = T_{MIN}$ to T_{MAX}			±3.0	70
	ΔV _{IOUT_MAX} /	V _{SENSE} = 5mV to	$T_A = +25^{\circ}C$		±0.15	±1.5	% FSO*
	FSO	100mV	$T_A = T_{MIN}$ to T_{MAX}			±3.0	/» F3O
T-t-LIQUE Outs at Fores		V _{SENSE} = 150mV	$T_A = +25^{\circ}C$		±0.2	±1.5	
Total IOUT Output Error (Note 10)	A)//	VSENSE = 130111V	$T_A = T_{MIN}$ to T_{MAX}			±3.0	
(14010-10)	ΔVIOUT_MAX/ VIOUT	VSENSE = 50mV VSENSE = 25mV VSENSE = 5mV			±1.2		%
	1001				±1.8		
					±20		
MAX4211C/MAX4211F (cur	rent gain = 40.96)						
IOLIT Goin Aggurgay	ΔV _{IOUT} /	V _{SENSE} = 20mV to	$T_A = +25^{\circ}C$		±0.5	±1.5	%
IOUT Gain Accuracy	ΔV_{SENSE}	100mV, $V_{RS+} = 25V$	$T_A = T_{MIN}$ to T_{MAX}			±3.0	70
	ΔVIOUT_MAX/	VSENSE = 5mV to	T _A = +25°C		±0.15	±1.5	% FSO*
	FSO	100mV	$T_A = T_{MIN}$ to T_{MAX}			±3.0	% F3U
Total IOUT Output Error (Note 10)		VSENSE = 100mV	$T_A = +25^{\circ}C$		±0.2	±1.5	
		VSENSE = TOUTTV	TA = TMIN to TMAX			±3.0	1
	ΔVIOUT_MAX/ VIOUT	Vsense = 50mV			±1.2		%
	1001	Vsense = 25mV	VSENSE = 25mV		±1.8		
		Vsense = 5mV			±20		

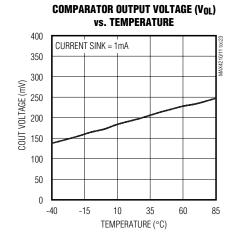

^{*}FSO refers to full-scale output under the conditions: VSENSE = 100mV, VRS+ = +25V, or VIN = 1V.

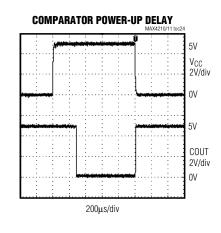
- **Note 1:** All devices are 100% production tested at $T_A = +25$ °C. All temperature limits are guaranteed by design.
- Note 2: Guaranteed by power-supply rejection test.
- Note 3: Guaranteed by output voltage error tests (IOUT).
- **Note 4:** Guaranteed by output voltage error tests (IOUT or POUT, or both).
- Note 5: IN Input Voltage Range (MAX421_D/E/F) and V_{RS+} Input Voltage Range (MAX421_A/B/C) are guaranteed by design (GBD) and not production tested. See Multiplier Transfer Characteristics graphs in the *Typical Operating Characteristics*.
- Note 6: This test does not apply to the low gain options, MAX421_A/D, because OUT is clamped at approximately 4V.
- **Note 7:** The device does not experience phase reversal when overdriven.
- Note 8: VPULLUP is defined as an externally applied voltage through a resistor, RPULLUP, to pull up the comparator output.
- **Note 9:** POUT gain accuracy is the sum of gain error and multiplier nonlinearity.
- Note 10: Total output voltage error is the sum of gain and offset voltage errors.
- Note 11: POUT Output Offset Voltage is the sum of offset and multiplier feedthrough.

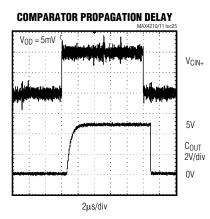

Typical Operating Characteristics

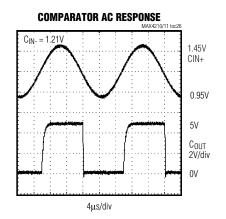


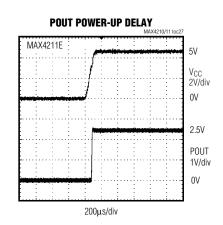

Typical Operating Characteristics (continued)

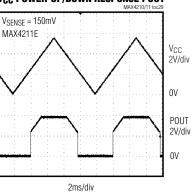

Typical Operating Characteristics (continued)



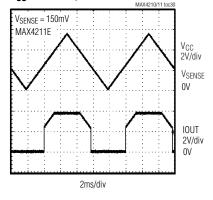




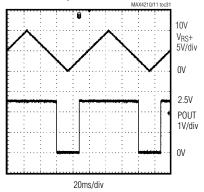


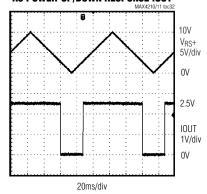


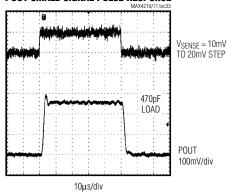
Typical Operating Characteristics (continued)

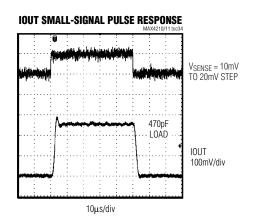

 $(V_{CC} = 5.0V, V_{RS+} = 25V, V_{SENSE} = 100mV, V_{IN} = 1V, V_{LE} = 0V, R_{IOUT} = R_{POUT} = 1M\Omega, V_{CIN1+} = V_{CIN2+} = V_{REF}, V_{CIN1-} = V_{CIN2-} = 0V, V_{INHIBIT} = 0V, R_{COUT1} = R_{COUT2} = 5k\Omega$ connected to V_{CC} , V_{CC} ,

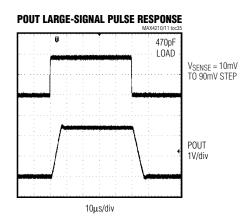
IOUT POWER-UP DELAY MAX4211E 5V VCC 2V/div 0V 2.5V IOUT 1V/div 0V

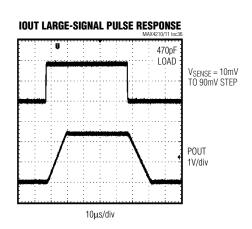

V_{CC} POWER-UP/DOWN RESPONSE POUT

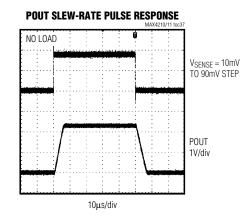

VCC POWER-UP/DOWN RESPONSE IOUT

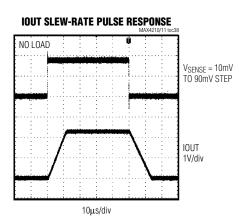

RS POWER-UP/DOWN RESPONSE POUT

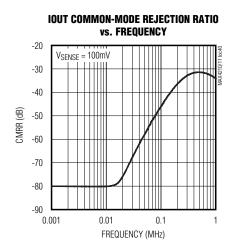

RS POWER-UP/DOWN RESPONSE IOUT

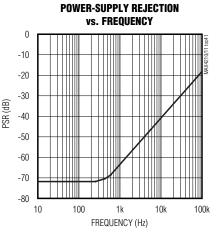


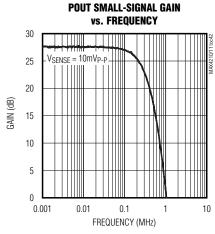

POUT SMALL-SIGNAL PULSE RESPONSE

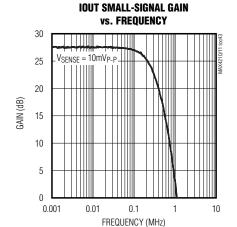


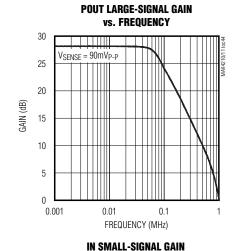

Typical Operating Characteristics (continued)

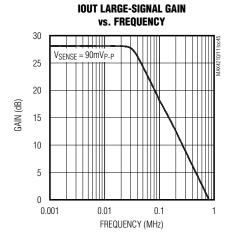


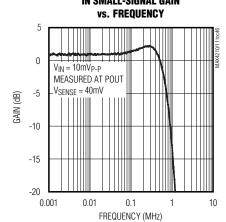







Typical Operating Characteristics (continued)





MAX4210A/B/C Pin Description

Р	IN	NAME	FUNCTION
6 TDFN	8 µMAX	NAME	FUNCTION
1	1	GND	Ground
2	2, 3, 6	N.C.	No Connection. Not internally connected.
3	4	Vcc	Power-Supply Voltage. Connect a 0.1µF bypass capacitor from VCC to GND.
4	5	RS+	Power Connection to External-Sense Resistor and Internal Resistor-Divider
5	7	RS-	Load-Side Connection for External-Sense Resistor
6	8	POUT	Power Output Voltage. Voltage output proportional to source power (input voltage multiplied by load current).
EP	_	EP*	Exposed Paddle. EP is internally connected to GND.

^{*}TDFN package only.

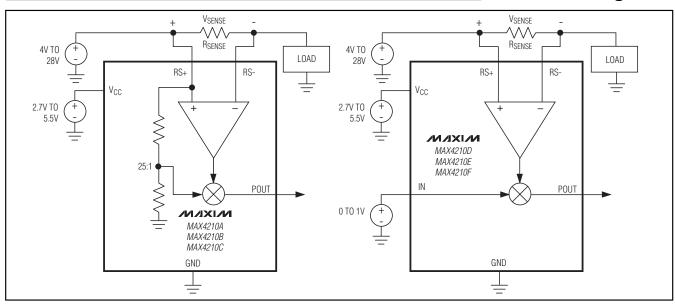
MAX4210D/E/F Pin Description

PIN		NAME	FUNCTION	
6 TDFN	8 µMAX	NAME	FUNCTION	
1	1	GND	Ground	
2	2	IN	Multiplier Input Voltage. Voltage input for internal multiplier.	
3	4	Vcc	Power-Supply Voltage. Connect a 0.1µF bypass capacitor from V _{CC} to GND.	
4	5	RS+	Power Connection to External-Sense Resistor	
5	7	RS-	Load-Side Connection for External-Sense Resistor	
6	8	POUT	Power Output Voltage. Voltage output proportional to source power (input voltage multiplied by load current).	
EP	_	EP*	Exposed Paddle. EP is internally connected to GND.	
_	3, 6	N.C.	No Connection. Not internally connected.	

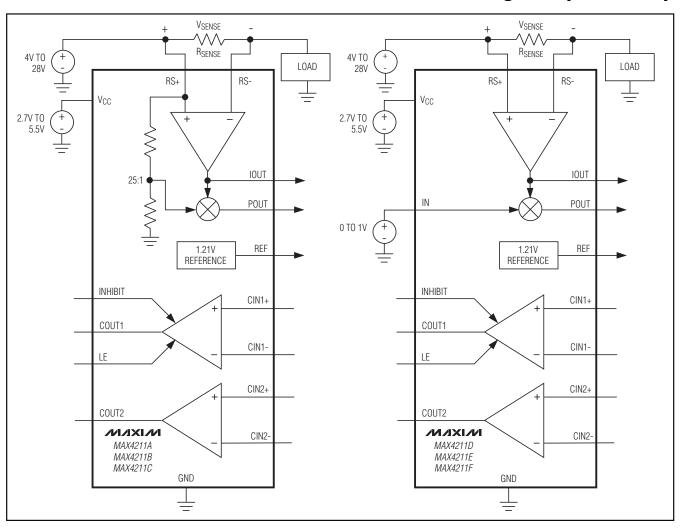
^{*}TDFN package only.

MAX4211A/B/C Pin Description

PIN				
16 THIN QFN	16 TSSOP	NAME	FUNCTION	
1	3	Vcc	Power-Supply Voltage. Connect a 0.1µF bypass capacitor from V _{CC} to GND.	
2	4	N.C.	No Connection. Not internally connected.	
3	5	LE	Latch Enable for Comparator 1. Driving logic low makes the comparator transparent (regular comparator). Driving logic high latches the output.	
4	6	COUT1	Open-Drain Comparator 1 Output. LE and INHIBIT control the comparator 1 output.	
5	7	INHIBIT	INHIBIT for Comparator 1 Output. Driving logic high inhibits the comparator operation. Drive logic low for normal operation.	
6	8	COUT2	Open-Drain Comparator 2 Output	
7	9	GND	Ground	
8	10	CIN2+	Comparator 2 Positive Input	
9	11	CIN2-	Comparator 2 Negative Input	
10	12	CIN1+	Comparator 1 Positive Input	
11	13	CIN1-	Comparator 1 Negative Input	
12	14	REF	1.21V Internal Reference Output	
13	15	POUT	Power Output Voltage. Voltage output proportional to source power (input voltage multiplied by load current).	
14	16	IOUT	Current Output Voltage. Voltage output proportional to V _{SENSE} (V _{RS+} - V _{RS-}) load current.	
15	1	RS-	Load-Side Connection for External-Sense Resistor	
16	2	RS+	Power Connection to External-Sense Resistor and Internal Resistor-Divider	
EP	_	EP*	Exposed Paddle. EP is internally connected to GND.	


^{*}Thin QFN package only.

MAX4211D/E/F Pin Description


PIN			FUNCTION	
16 THIN QFN	16 TSSOP	NAME	FUNCTION	
1	3	Vcc	Power-Supply Voltage. Connect a 0.1µF bypass capacitor from V _{CC} to GND.	
2	4	IN	Multiplier Input Voltage. Voltage input for internal multiplier.	
3	5	LE	Latch Enable for Comparator 1. Driving logic low makes the comparator transparent (regular comparator). Driving logic high latches the output.	
4	6	COUT1	Open-Drain Comparator 1 Output. Output controlled by LE and INHIBIT.	
5	7	INHIBIT	INHIBIT for Comparator 1 Output. Driving logic high inhibits the comparator operation. Drive logic low for normal operation.	
6	8	COUT2	Open-Drain Comparator 2 Output	
7	9	GND	Ground	
8	10	CIN2+	Comparator 2 Positive Input	
9	11	CIN2-	Comparator 2 Negative Input	
10	12	CIN1+	Comparator 1 Positive Input	
11	13	CIN1-	Comparator 1 Negative Input	
12	14	REF	1.21V Internal Reference Output	
13	15	POUT	Power Output Voltage. Voltage output proportional source power (input voltage multiplied by load current).	
14	16	IOUT	Current Output Voltage. Voltage output proportional V _{SENSE} (V _{RS+} - V _{RS-}) load current.	
15	1	RS-	Load-Side Connection for External-Sense Resistor	
16	2	RS+	Power Connection to External-Sense Resistor	
EP	_	EP*	Exposed Paddle. EP is internally connected to GND.	

^{*}Thin QFN package only.

Functional Diagrams

Functional Diagrams (continued)

Detailed Description

The MAX4210/MAX4211 families of current- and power-monitoring ICs integrate a precision current-sense amplifier and an analog multiplier for a variety of current and power measurements. The MAX4211 integrates an additional uncommitted 1.21V reference and two comparators with open-drain outputs. These features enable the design of detector circuits for over-power, overcurrent, overvoltage, or any combination of fault conditions. The MAX4210/MAX4211 offer various gains, packages, and configurations allowing for greater design flexibility and lower overall cost.

These devices monitor the load current with their highside current-sense amplifiers and provide an analog output voltage proportional to that current at IOUT (MAX4211). This voltage is fed to the analog multiplier for multiplying the load current with a source voltage to obtain a voltage proportional to load power at POUT.

Current-Sense Amplifier

The integrated current-sense amplifier is a differential amplifier that amplifies the voltage across RS+ and RS-. A sense resistor, RSENSE, is connected across RS+ and RS-. A voltage drop across RSENSE is developed when a load current is passed through it. This voltage is amplified and is proportional to the load current. This voltage is also fed to the analog multiplier for powersensing applications (see the *Analog Multiplier* section). The current-sense amplifiers feature three gain options: 16.67V/V, 25.0V/V, and 40.96V/V (see Table 1).

The common-mode voltage range is +4V to +28V and independent of the supply voltage. With this feature, the device can monitor the output current of a high-voltage source while running at a lower system voltage typically between 2.7V and 5.5V.

The MAX4211 has a current-sense amplifier output. The voltage at IOUT is proportional to the voltage across Vsense:

VIOUT = AVIOUT X VSENSE

where VSENSE is the voltage across RS+ and RS-, and AVIOUT is the amplifier gain of the device given in Table 1.

Analog Multiplier

The MAX4210/MAX4211 integrate an analog multiplier that enables real-time monitoring of power delivered to a load. The voltage proportional to the load current is fed to one input of the multiplier and a voltage proportional to the source voltage is fed to the other. The analog multiplier multiplies these two voltages to obtain an output voltage proportional to the load power. The analog multiplier is designed only to operate in the positive quadrant, that is, the inputs and outputs are always positive voltages.

For the MAX4210D/E/F and MAX4211D/E/F, the analog multiplier full-scale input at IN is approximately 1V. This independent multiplier input allows greater design flexibility when using an external voltage-divider. For the MAX4210A/B/C and MAX4211A/B/C, an integrated voltage-divider divides the source voltage at the RS+ pin by a nominal value of 25 and passes this voltage to the multiplier. Thus, the full-scale input voltage at RS+ is 25V. The integrated, trimmed resistor-dividers reduce external component count and cost.

The voltage output at POUT is proportional to the output power:

For the MAX4210A/B/C and MAX4211A/B/C:

VPOUT = AVPOUT x VSENSE x VRS+

For the MAX4210D/E/F and MAX4211D/E/F:

VPOUT = AVPOUT X VSENSE X VIN

Table 1. MAX4211 Current-Sense Amplifier Gain and Full-Scale Sense Voltage

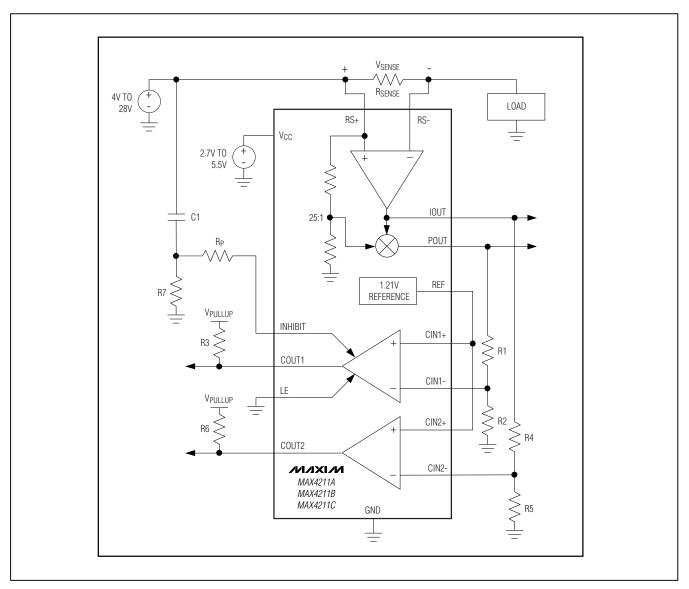
PART	CURRENT-SENSE AMPLIFIER GAIN (AVIOUT, V/V)	FULL-SCALE SENSE VOLTAGE (mV)
MAX4211A/D	16.67	150
MAX4211B/E	25.00	150
MAX4211C/F	40.96	100

where V_{SENSE} is the voltage across RS+ and RS- and A_{VPOUT} is the amplifier gain of the device given in Table 2.

Internal Comparators (MAX4211)

The MAX4211 features two uncommitted open-drain output comparators. These comparators can be configured to trip when load current or power reaches a set limit. They can also be configured as a window comparator with wire-OR output. Comparator 1 (COUT1) features latch-enable (LE) and inhibit (INHIBIT) inputs. When LE is low, the comparator is transparent (it functions as a regular unlatched comparator). When LE is high, the comparator output (COUT1) is latched. When high, the INHIBIT input suspends the comparator operation and latches the output to the current state. The operation of INHIBIT is similar to LE, except it has a different input threshold and wider hysteresis. The INHIB-IT logic-high threshold is 1.21V and logic-low threshold is 0.6V with 0.6V hysteresis. INHIBIT is useful in preventing the comparator from giving false output during fast RS+ transients. INHIBIT is generally triggered by an RC network connected to RS+ (see the Applications Information). Both comparators have a built-in 300µs blanking period at power-up to prevent false outputs. The comparator outputs are open drain and they can be pulled up to VCC, RS+, or any voltage less than +28V. LE and INHIBIT are internally pulled down by a 1µA source.

Table 2. MAX4210/MAX4211 Power-Sense Amplifier Gain and Full-Scale Sense Voltage


PART	POWER-SENSE AMPLIFIER GAIN (AVPOUT, 1/V)	FULL-SCALE SENSE VOLTAGE (mV)
MAX4210A	0.667	150
MAX4210B	1.000	150
MAX4210C	1.640	100
MAX4210D	16.670	150
MAX4210E	25.000	150
MAX4210F	40.960	100
MAX4211A	0.667	150
MAX4211B	1.000	150
MAX4211C	1.640	100
MAX4211D	16.670	150
MAX4211E	25.000	150
MAX4211F	40.960	100

Internal Reference (MAX4211)

The MAX4211 features a 1.21V bandgap reference output, stable over supply voltage and temperature. Typically, the reference output is connected to one of

the comparators' inputs. This is the comparison reference voltage. If a lower reference voltage is needed, use an external voltage-divider. The reference can source or sink a load current up to $100\mu A$.

Typical Operating Circuit

Applications Information

Recommended Component Values

Ideally, the maximum load current develops the full-scale sense voltage across the current-sense resistor. Choose the gain version needed to yield the maximum current-sense amplifier output voltage without saturating it. The typical high-side saturation voltage is about $V_{\rm CC}$ - 0.25V. The current-sense amplifier output voltage is given by:

$$V_{IOUT} = V_{SENSE} \times A_{VIOUT}$$

where V_{IOUT} is the voltage fed to the analog multiplier or at IOUT. V_{SENSE} is the sense voltage. A_{VIOUT} is the current-sense amplifier gain of the device specified in Table 1. Calculate the maximum value for R_{SENSE} so the differential voltage across RS+ and RS- does not exceed the full-scale sense voltage:

$$R_{SENSE} = \frac{V_{SENSE(FULL-SCALE)}}{I_{LOAD(FULL-SCALE)}}$$

Choose the highest value resistance possible to maximize VSENSE and thus minimize total output error. In applications monitoring high current, ensure that RSENSE is able to dissipate its own I²R power dissipation. If the resistor's power dissipation is exceeded, its value can drift or it can fail altogether, causing a differential voltage across the terminals in excess of the absolute maximum ratings. Use resistors specified for current-sensing applications.

Window Comparator

In some applications where undercurrent or underpower (open-circuit fault) and overcurrent or overpower (short-circuit fault) needs to be monitored, a window comparator is desirable. Figure 1 shows a simple circuit suitable for window detection. Let POVER be the minimum load power required to cause a low state at COUT2, and let PUNDER be the maximum load current required to cause a high state at COUT1:

$$\begin{split} & P_{UNDER}(WATTS) \ = \ \frac{V_{REF}}{A_{VPOUT} \times R_{SENSE}} \left(\frac{R1 + R_2}{R_2} \right) \\ & P_{OVER}(WATTS) \ = \ \frac{V_{REF}}{A_{VPOUT} \times R_{SENSE}} \left(\frac{R4 + R_5}{R_5} \right) \end{split}$$

where AVPOUT is the power-sense amplifier gain given in Table 2, and VREF is the internal reference voltage (1.2V, typ). The resulting comparator output is high

when the current is inside the current window and low when the current is outside the window. Note that COUT1 and COUT2 are wire-ORed together.

Overpower Circuit Breaker

Figure 2 shows a circuit breaker that shuts off current to the load when an overpower fault is detected (the same circuit can be used to detect overcurrent conditions by connecting the R1-R2 resistor-divider to IOUT, instead of POUT). This circuit is useful for protecting the battery from short-circuit or overpower conditions. When a power fault is detected, the P-MOSFET, M1, is turned off and stays off until the manual reset button is pressed. Also, cycling the input power causes the LE pin to go low, which unlatches the comparator output OUT1 and resets the circuit breaker.

During power-up or when the characteristics of the load change, there can be an inrush current into the load. The temporary inrush current results in a higher voltage at POUT. This can bring the voltage at CIN+ above the reference voltage at CIN-, and, as a result, COUT1 goes high triggering the circuit-breaker function. This unwanted behavior can be disabled by bringing comparator 1's INHIBIT input high. An RC network connected to INHIBIT (R4 and C1) can be incorporated to suspend comparator 1's operation for a brief period. In this way, short surges in load power can be made invisible to the circuit-breaker function, while longer term overpower load demands (or a load short circuit) still "trip the breaker."

The logic-high threshold for INHIBIT is typically 1.2V, and the logic-low threshold is 0.6V. During power-up, INHIBIT quickly exceeds 1.2V through C1 and inhibits COUT1 from changing state. The comparator inputs are "inhibited" until the INHIBIT voltage is discharged to 0.6V. R3 is a current-limiting resistor, typically $10k\Omega,$ which protects the INHIBIT input. Since INHIBIT is a high-impedance input, R3 has no effect on the R4-C1 charge/discharge time. The time during which the comparator is suspended is approximated by:

$$t_{INHIBIT} = R_4 \times C1 \ln \left(\frac{\Delta V}{0.6V} \right)$$

where ΔV is the voltage change at the load. For improved transient immunity, t_{INHIBIT} can be increased as required, with the understanding that the breaker function will be suspended for this period.

If any comparator is not used, its input must be biased to a known state. For example, connect CIN+ to V_{CC} and CIN- to GND.

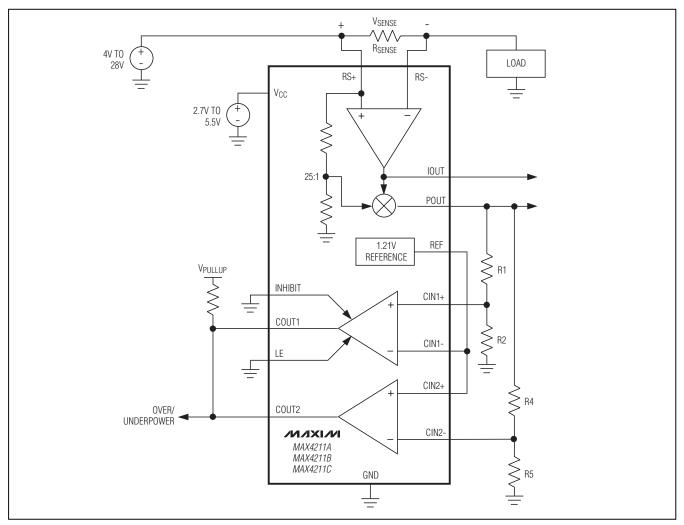


Figure 1. Window Comparator for Detecting Underpower and Overpower Faults (Also Detects Undercurrent and Overcurrent Faults by R1 and R4 to IOUT Instead of POUT)

Variable-Gain Amplifier

Figure 3 shows single-ended input, variable-gain amplifiers (VGA). This VGA features more than 200kHz bandwidth and is useful in automatic gain-control circuits commonly found in baseband processors. The gain is controlled by applying 0 to 1V to IN (VGC) of the MAX4210D/E/F; 0V corresponds to minimum gain and 1V corresponds to maximum gain.

Measure Load Power

The MAX4210A/B/C and MAX4211A/B/C have internal voltage-divider resistors connected to RS+ and the analog multiplier input. This configuration measures source power accurately and provides protection to the power source such as a battery. To measure the load

power accurately, choose the MAX4210D/E/F and MAX4211D/E/F with an external resistor-divider connected directly to the load as shown in Figure 4. This configuration improves the load-power measurement accuracy by excluding the additional power dissipated by RSENSE.

Power-Supply Bypassing

Bypass V_{CC} to GND with a 0.1 μ F ceramic capacitor to isolate the IC from supply-voltage transients. To prevent high-frequency coupling, bypass RS+ or RS- with a 0.1 μ F capacitor. On the TDFN and thin QFN packages, there is an exposed paddle that does not carry any current, but should also be connected to the ground plane for rated power dissipation.

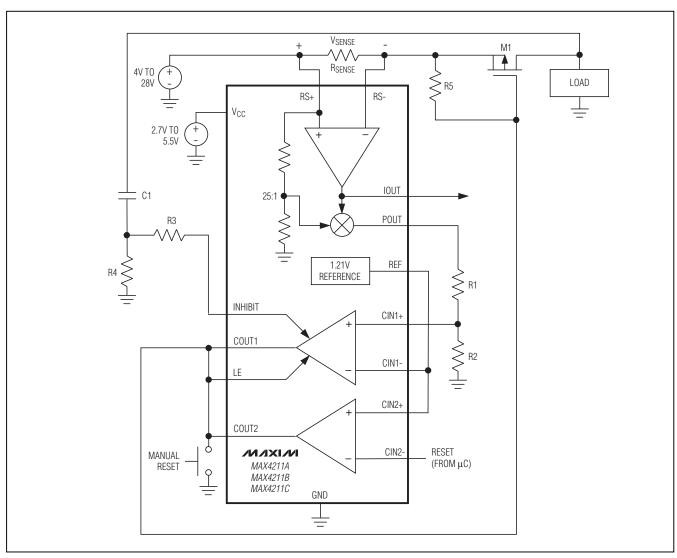


Figure 2. Overpower Circuit Breaker (For a Detailed Example, Refer to the MAX4211E EV Kit)

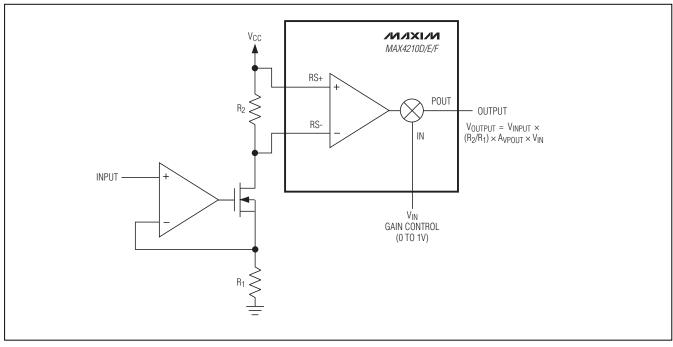


Figure 3. Single-Ended-Input, Variable-Gain Amplifier



Figure 4. Load-Power Measurement with External Voltage-Divider