: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

High-Speed, Single-Supply, Gain of 2, Closed-Loop, Rail-to-Rail Buffers with Enable

General Description

The MAX4214/MAX4215/MAX4217/MAX4219/MAX4222 are precision, closed-loop, gain of +2 (or -1) buffers featuring high slew rates, high output current drive, and low differential gain and phase error. They operate with a single 3.15 V to 11 V supply or with $\pm 1.575 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ dual supplies. The input common-mode voltage range extends 100 mV beyond the negative power-supply rail and the output swings Rail-to-Rail ${ }^{\circledR}$
These devices require only 5.5 mA of quiescent supply current while achieving a $230 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth and a $600 \mathrm{~V} / \mu \mathrm{s}$ slew rate. In addition, the MAX4215/ MAX4219 have a disable feature that reduces the supply current to $400 \mu \mathrm{~A}$ per buffer. Input voltage noise is only $10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, and input current noise is only $1.3 \mathrm{pA} / \sqrt{\mathrm{Hz}}$. This buffer family is ideal for low-power/lowvoltage applications requiring wide bandwidth, such as video, communications, and instrumentation systems For space-sensitive applications, the MAX4214 comes in a miniature 5-pin SOT23 package.

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4214EUK-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{SOT} 23-5$	ABAH
MAX4215ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	-
MAX4215EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-
MAX4217ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	-
MAX4217EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-
MAX4219ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO	-
MAX4219EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP	-
MAX4222ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO	-
MAX4222EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP	-

Applications
Battery-Powered Instruments
Video Line Drivers
Analog-to-Digital Converter Interface
CCD Imaging Systems
Video Routing and Switching Systems
Video Multiplexing Applications

Typical Application Circuit appears at end of data sheet.
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

Features

- Internal Precision Resistors for Closed-Loop Gains of $+2 \mathrm{~V} / \mathrm{V}$ or $-1 \mathrm{~V} / \mathrm{V}$
- High Speed

230MHz -3dB Bandwidth 90MHz 0.1dB Gain Flatness (MAX4219/MAX4222) 600V/ μ s Slew Rate

- Single 3.3V/5.0V Operation
- Outputs Swing Rail-to-Rail
- Input Common-Mode Range Extends Beyond Vee
- Low Differential Gain/Phase Error: 0.03\%/0.04 ${ }^{\circ}$
- Low Distortion at 5MHz
-72dBc SFDR
-71dB Total Harmonic Distortion
- High Output Drive: $\pm 120 \mathrm{~mA}$
- Low 5.5mA Supply Current
- 400 1 A Shutdown Supply Current (MAX4215/MAX4219)
- Space-Saving SOT23, μ MAX, or QSOP Packages

Selector Guide

PART	NO. OF AMPS	ENABLE	PIN-PACKAGE
MAX4214	1	No	5 SOT23
MAX4215	1	Yes	8 SO/ $\mu \mathrm{MAX}$
MAX4217	2	No	8 SO/ $\mu \mathrm{MAX}$
MAX4219	3	Yes	$14 \mathrm{SO}, 16$ QSOP
MAX4222	4	No	$14 \mathrm{SO}, 16$ QSOP

Pin Configurations

Pin Configurations continued at end of data sheet.

High-Speed, Single-Supply, Gain of 2, Closed-Loop, Rail-to-Rail Buffers with Enable

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC to V_{EE})
IN_-, IN_+, OUT_, EN_(VEE - 0.3V) to (VCC + 0.3V)
Output Short-Circuit Duration to VCC or VEEContinuous Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
5-Pin SOT23 (derate $7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)............. 571 mW
8 -Pin SO (derate $5.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)................... 471 mW

8-Pin $\mu \mathrm{MAX}$ (derate $4.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).	. 330 mW
14-Pin SO (derate $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).	.667mW
16-Pin QSOP (derate $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$.667mW
Operating Temperature Range	o $+85^{\circ} \mathrm{C}$
Storage Temperature Range...	$+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{E E}=0, \mathrm{IN}_{-}=0, E N_{-}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty\right.$ to $0, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} / 2$, noninverting configuration, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Operating Supply Voltage Range		$V_{C C}$ to $V_{\text {EE }}$, guaranteed by PSRR tests		3.15		11.0	V
Input Voltage Range	VIN	IN_+		$\mathrm{V}_{\text {EE }}-0.1$	V	-2.25	V
		IN_-		$\mathrm{V}_{\mathrm{EE}}-0.1$		+ 0.1	
Input Offset Voltage	Vos	$R \mathrm{~L}=50 \Omega$	SO, QSOP		4	10	mV
			SOT23-5, $\mu \mathrm{MAX}$		4	15	
Input Offset Voltage Drift	TCVos				8		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Voltage Matching		Between any two channels for MAX4217/MAX4219/MAX4222		1			mV
Input Bias Current	IB	IN_+			5.4	12	$\mu \mathrm{A}$
Input Resistance	RIN	IN_+, over input voltage range			3		$\mathrm{M} \Omega$
Voltage Gain	Av	$\mathrm{R}_{\mathrm{L}} \geq 50 \Omega$, ($\left.\mathrm{V}_{\mathrm{EE}}+0.5 \mathrm{~V}\right) \leq \mathrm{V}_{\text {OUT }} \leq\left(\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}\right)$		1.9	2	2.1	V/V
Power-Supply Rejection Ratio (Note 2)	PSRR	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~V}_{\text {EE }}=0, \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V}$		55	58		dB
		$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}$, V $\mathrm{V}_{\text {OUT }}=0$		60	66		
		$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {EE }}=0, \mathrm{~V}_{\text {OUT }}=0.90 \mathrm{~V}$			45		
Output Resistance	Rout	$f=$ DC			25		$\mathrm{m} \Omega$
Output Current	Iout	$R \mathrm{~L}=20 \Omega$ to $\mathrm{V}_{\text {CC }}$ or V_{EE}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	± 70	± 120		mA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	± 60			
Short-Circuit Output Current	IsC	Sinking or sourcing		± 150			mA
Output Voltage Swing	Vout	$R \mathrm{~L}=50 \Omega$	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {OH }}$		1.60	1.90	V
			VOL - Vee		0.04	0.075	
		$R L=150 \Omega$	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{OH}}$		0.75	1.00	
			Vol - Vee		0.04	0.075	
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	VCC - VOH		0.06		
			Vol - Vee		0.06		
Disabled Output Resistance	Rout(OFF)	MAX4215/MAX4219, EN $=0,0 \leq \mathrm{V}_{\text {OUT }} \leq 5 \mathrm{~V}$		1			k Ω
EN_ Logic Low Threshold	VIL	MAX4215/MAX4219		VCC - 2.6			V
EN_ Logic High Threshold	V_{IH}	MAX4215/MAX4219		VCC - 1.6			V

High-Speed, Single-Supply, Gain of 2, Closed-Loop, Rail-to-Rail Buffers with Enable

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{E E}=0, I N_{-}=0, E N_{-}=5 \mathrm{~V}, R_{L}=\infty\right.$ to $0, V_{O U T}=\mathrm{V}_{C C} / 2$, noninverting configuration, $T_{A}=T_{M I N}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
EN_ Logic Input Low Current	IIL	MAX4215/MAX4219, (VEE + 0.2V) \leq EN_ $\leq \mathrm{V}_{\mathrm{CC}}$	0.5		$\mu \mathrm{A}$
		MAX4215/MAX4219, EN_ = VEE	200	350	
EN_ Logic Input High Current	IIH	MAX4215/MAX4219, EN_ = VCC	0.5	10	$\mu \mathrm{A}$
Quiescent Supply Current (per Buffer)	IcC		5.5	7.0	mA
Shutdown Supply Current	ISD	MAX4215/MAX4219, disabled (EN = V $\mathrm{EEE}^{\text {) }}$	400	550	$\mu \mathrm{A}$

Note 1: The MAX421_EU_ is 100% production tested at $T_{A}=25^{\circ} \mathrm{C}$. Specifications over temperature limits are guaranteed by design.
Note 2: PSRR for single 5 V supply tested with $\mathrm{V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ; for dual $\pm 5 \mathrm{~V}$ supply with $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$ to -5.5 V ,
$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V ; and for single 3 V supply with $\mathrm{V}_{E E}=0, \mathrm{~V}_{C C}=3.15 \mathrm{~V}$ to 3.45 V .

AC ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{E E}=0, \mathbb{I N}_{-}=0, E N_{-}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2$, noninverting configuration, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to T_{MAX}, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}^{-}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS			MIN TYP	MAX	UNITS
Small-Signal -3dB	BW-3dB	VOUT $=$ 100 mV - -P	MAX4214/MAX4215/MAX4217		230		MHz
Bandwidth			MAX4219/MAX4222		200		
Full-Power -3dB	FPBW	$\begin{aligned} & \text { VoUT = } \\ & 2 \mathrm{VP}_{\text {P-P }} \end{aligned}$	MAX4214/MAX4215/MAX4217		220		MHz
Bandwidth			MAX4219/MAX4222		200		
Bandwidth for 0.1dB Gain Flatness	$B W_{0.1 d B}$	VOUT $=$ 100 mVP -p	MAX4214/MAX4215/MAX4217		50		MHz
			MAX4219/MAX4222		90		
Slew Rate	SR	Vout $=2 \mathrm{~V}$ step			600		V/us
Settling Time to 0.1\%	ts	Vout $=2 \mathrm{~V}$ step			45		ns
Rise/Fall Time	$\mathrm{t}_{\mathrm{R}, \mathrm{tF}}$	VOUT $=100 \mathrm{mV} \mathrm{P}_{\text {-P }}$			1		ns
Spurious-Free Dynamic Range	SFDR	$\mathrm{fc}_{\mathrm{C}}=5 \mathrm{MHz}$, $\mathrm{V}_{\text {OUT }}=2 \mathrm{VPP-P}$			-72		dBc
Harmonic Distortion	HD	$\begin{aligned} & \text { VOUT }=2 V_{P-P}, \\ & \mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz} \end{aligned}$		Second harmonic	-72		dBc
				Third harmonic	-77		
				Total harmonic distortion	-71		
Third-Order Intercept	IP3	$\mathrm{f}=10 \mathrm{MHz}$			35		dBm
Input 1dB Compression Point		$\mathrm{f}=10 \mathrm{MHz}$			11		dBm
Differential Phase Error	DP	NTSC, RL $=150 \Omega$			0.04		degrees
Differential Gain Error	DG	NTSC, RL $=150 \Omega$			0.03		\%
Input Noise-Voltage Density	e_{n}	$\mathrm{f}=10 \mathrm{kHz}$			10		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise-Current Density	i_{n}	$\mathrm{f}=10 \mathrm{kHz}$			1.3		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Input Capacitance	$\mathrm{CIN}_{\text {N }}$				1		pF
Disabled Output Capacitance	COUT(OFF)	MAX4215/MAX4219, EN_ = 0			2		pF

High-Speed, Single-Supply, Gain of 2, Closed-Loop, Rail-to-Rail Buffers with Enable

AC ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{E E}=0, \mathrm{IN}_{-}=0, E N_{-}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega\right.$ to $\mathrm{V}_{C C} / 2$, noninverting configuration, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}^{-}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Output Impedance	ZOUT	$\mathrm{f}=10 \mathrm{MHz}$	200		$\mathrm{m} \Omega$
Buffer Enable Time	ton	MAX4215/MAX4219	100		ns
Buffer Disable Time	tofF	MAX4215/MAX4219	1		$\mu \mathrm{S}$
Buffer Gain Matching		$\begin{aligned} & \text { MAX4217/MAX4219/MAX4222, } \mathrm{f}=10 \mathrm{MHz} \text {, } \\ & \text { VOUT }=100 \mathrm{mVP-P} \end{aligned}$	0.1		dB
All-Hostile Crosstalk	XTALK	$\begin{aligned} & \text { MAX4217/MAX4219/MAX4222, } f=10 \mathrm{MHz}, \\ & \text { VOUT }=2 V_{P-P} \end{aligned}$	-95		dB

$\left(V_{C C}=5 V, V_{E E}=0, A v C L=2 V / V, R_{L}=100 \Omega\right.$ to $V_{C C} / 2, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

High-Speed, Single-Supply, Gain of 2, Closed-Loop, Rail-to-Rail Buffers with Enable

Typical Operating Characteristics (continued)

$\left(V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{AVCL}^{2}=2 \mathrm{~V} / \mathrm{V}, \mathrm{R}_{\mathrm{L}}=100 \Omega\right.$ to $\mathrm{V}_{C C} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

High-Speed, Single-Supply, Gain of 2, Closed-Loop, Rail-to-Rail Buffers with Enable

20ns/div
$V_{C M}=1.25 \mathrm{~V}, R_{L}=100 \Omega$ to GROUND

$V_{C M}=1.25 \mathrm{~V}, R_{L}=100 \Omega$ to 0

,

Typical Operating Characteristics (continued)
$\left(V_{C C}=5 V, V_{E E}=0, A_{V C L}=2 V / V, R_{L}=100 \Omega\right.$ to $V_{C C} / 2, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

20ns/div
$V_{C M}=0.9 \mathrm{~V}, R_{L}=100 \Omega$ to $G R O U N D$

$V_{C M}=1.75 \mathrm{~V}, R_{L}=100 \Omega$ to 0

ENABLE RESPONSE TIME

High-Speed, Single-Supply, Gain of 2, Closed-Loop, Rail-to-Rail Buffers with Enable

Typical Operating Characteristics (continued)
$\left(V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{AVCL}^{2}=2 \mathrm{~V} / \mathrm{V}, \mathrm{R}_{\mathrm{L}}=100 \Omega\right.$ to $\mathrm{V}_{C C} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

POWER-SUPPLY CURRENT (PER AMPLIFIER)

High-Speed, Single-Supply, Gain of 2, Closed-Loop, Rail-to-Rail Buffers with Enable

Pin Description

PIN							NAME	FUNCTION
MAX4214	MAX4215	MAX4217	MAX4219		MAX4222			
SOT23-5	SO/LMAX	SO/HMAX	SO	QSOP	SO	QSOP		
-	1,5	-	-	8, 9	-	8, 9	N.C.	No Connection. Not internally connected. Tie to ground or leave open.
1	6	-	-	-	-	-	OUT	Amplifier Output
2	4	4	11	13	11	13	Vee	Negative Power Supply or Ground (in single-supply operation)
3	3	-	-	-	-	-	$\mathrm{IN}+$	Noninverting Input
4	2	-	-	-	-	-	IN-	Inverting Input
5	7	8	4	4	4	4	VCC	Positive Power Supply
-	8	-	-	-	-	-	EN	Enable Amplifier
-	-	-	1	1	-	-	ENA	Enable Amplifier A
-	-	-	3	3	-	-	ENB	Enable Amplifier B
-	-	-	2	2	-	-	ENC	Enable Amplifier C
-	-	1	7	7	1	1	OUTA	Amplifier A Output
-	-	2	6	6	2	2	INA-	Amplifier A Inverting Input
-	-	3	5	5	3	3	INA+	Amplifier A Noninverting Input
-	-	7	8	10	7	7	OUTB	Amplifier B Output
-	-	6	9	11	6	6	INB-	Amplifier B Inverting Input
-	-	5	10	12	5	5	INB+	Amplifier B Noninverting Input
-	-	-	14	16	8	10	OUTC	Amplifier C Output
-	-	-	13	15	9	11	INC-	Amplifier C Inverting Input
-	-	-	12	14	10	12	INC+	Amplifier C Noninverting Input
-	-	-	-	-	14	16	OUTD	Amplifier D Output
-	-	-	-	-	13	15	IND-	Amplifier D Inverting Input
-	-	-	-	-	12	14	IND+	Amplifier D Noninverting Input

High-Speed, Single-Supply, Gain of 2, Closed-Loop, Rail-to-Rail Buffers with Enable

Detailed Description
The MAX4214/MAX4215/MAX4217/MAX4219/MAX4222 are single-supply, rail-to-rail output, voltage-feedback, closed-loop buffers that employ current-feedback techniques to achieve $600 \mathrm{~V} / \mu$ s slew rates and 230 MHz bandwidths. These buffers use internal 500Ω resistors to provide a preset closed-loop gain of $2 \mathrm{~V} / \mathrm{V}$ in the noninverting configuration or $-1 \mathrm{~V} / \mathrm{V}$ in the inverting configuration. Excellent harmonic distortion and differential gain/phase performance make them an ideal choice for a wide variety of video and RF signal-processing applications.
Local feedback around the buffer's output stage ensures low output impedance, which reduces gain sensitivity to load variations. This feedback also produces demand-driven current bias to the output transistors for $\pm 120 \mathrm{~mA}$ drive capability, while constraining total supply current to less than 7 mA .

Applications Information

Power Supplies
These devices operate from a single 3.15 V to 11 V power supply or from dual supplies of $\pm 1.575 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$. For single-supply operation, bypass the VCC pin to ground with a $0.1 \mu \mathrm{~F}$ capacitor as close to the pin as possible. If operating with dual supplies, bypass each supply with a $0.1 \mu \mathrm{~F}$ capacitor.

Selecting Gain Configuration

Each buffer in the MAX4214 family can be configured for a voltage gain of $2 \mathrm{~V} / \mathrm{V}$ or $-1 \mathrm{~V} / \mathrm{V}$. For a gain of $2 \mathrm{~V} / \mathrm{V}$, ground the inverting terminal. Use the noninverting terminal as the signal input of the buffer (Figure 1a). Grounding the noninverting terminal and using the inverting terminal as the signal input configures the buffer for a gain of $-1 \mathrm{~V} / \mathrm{V}$ (Figure 1b).

Figure 1a. Noninverting Gain Configuration $\left(A_{V}=+2 V / V\right)$

Since the inverting input exhibits a 500Ω input impedance, terminate the input with a 56Ω resistor when configured for an inverting gain in 50Ω applications (terminate with 88Ω in 75Ω applications). Terminate the input with a 49.9Ω resistor in the noninverting case. Output terminating resistors should directly match cable impedances in either configuration.

Layout Techniques

Maxim recommends using microstrip and stripline techniques to obtain full bandwidth. To ensure the PC board does not degrade the buffer's performance, design it for a frequency greater than 1 GHz . Pay careful attention to inputs and outputs to avoid large parasitic capacitance. Whether or not you use a constantimpedance board, observe the following guidelines when designing the board:

- Don't use wire-wrapped boards. They are too inductive.
- Don't use IC sockets. They increase parasitic capacitance and inductance.
- Use surface-mount instead of through-hole components for better high-frequency performance.
- Use a PC board with at least two layers; it should be as free from voids as possible.
- Keep signal lines as short and as straight as possible. Do not make 90° turns; round all corners.

Input Voltage Range and Output Swing
The MAX4214 family's input range extends from (VEE - 100mV) to (VCC -2.25 V). Input ground sensing increases the dynamic range for single-supply applications. The outputs drive a $2 \mathrm{k} \Omega$ load to within 60 mV of the power-supply rails. With smaller resistive loads, the output swing is reduced as shown in the Electrical Characteristics and Typical Operating Characteristics.

Figure 1b. Inverting Gain Configuration $(A v=-1 V / V)$

High-Speed, Single-Supply, Gain of 2, Closed-Loop, Rail-to-Rail Buffers with Enable

As the load resistance decreases, the useful input range is effectively limited by the output drive capability, since the buffers have a fixed voltage gain of $2 \mathrm{~V} / \mathrm{V}$ or $-1 \mathrm{~V} / \mathrm{N}$.
For example, a 50Ω load can typically be driven from 40 mV above V_{EE} to 1.6 V below V_{CC}, or 40 mV to 3.4 V when operating from a single 5 V supply. If the buffer is operated in the noninverting, gain of $2 \mathrm{~V} / \mathrm{V}$ configuration with the inverting input grounded, the useful input voltage range becomes 20 mV to 1.7 V instead of the -100 mV to 2.75 V indicated by the Electrical Characteristics. Beyond the useful input range, the buffer output is a nonlinear function of the input, but it will not undergo phase reversal or latchup.

Enable

The MAX4215/MAX4219 have an enable feature (EN_) that allows the buffer to be placed in a low-power state. When the buffers are disabled, the supply current is reduced to $400 \mu \mathrm{~A}$ per buffer.
As the voltage at the EN_ pin approaches the negative supply rail, the EN_ input current rises. Figure 2 shows a graph of EN_ input current versus EN_ pin voltage. Figure 3 shows the addition of an optional resistor in series with the EN pin, to limit the magnitude of the current increase. Figure 4 displays the resulting EN pin input current to voltage relationship.

Disabled Output Resistance The MAX4214/MAX4215/MAX4217/MAX4219/MAX4222 include internal protection circuitry that prevents damage to the precision input stage from large differential input voltages (Figure 5). This protection circuitry con-

Figure 2. Enable Logic-Low Input Current vs. Enable LogicLow Threshold
sists of five back-to-back Schottky diodes between IN_+ and IN_-. These diodes reduce the disabled output resistance from $1 \mathrm{k} \Omega$ to 500Ω when the output voltage is 3 V greater or less than the voltage at $\mathrm{IN}_{-}+$. Under these conditions, the input protection diodes will be forward biased, lowering the disabled output resistance to 500Ω.

Output Capacitive Loading and Stability

The MAX4214 family provides maximum AC performance with no load capacitance. This is the case when the load is a properly terminated transmission line. These devices are designed to drive up to 20pF of load capacitance without oscillating, but AC performance will be reduced under these conditions.

Figure 3. Circuit to Reduce Enable Logic-Low Input Current

Figure 4. Enable Logic-Low Input Current vs. Enable LogicLow Threshold with $10 \mathrm{k} \Omega$ Series Resistor

High－Speed，Single－Supply，Gain of 2， Closed－Loop，Rail－to－Rail Buffers with Enable

Figure 5．Input Protection Circuit

Figure 7．Driving a Capacitive Load Through an Isolation Resistor

Driving large capacitive loads increases the chance of oscillations occurring in most amplifier circuits．This is especially true for circuits with high loop gains，such as voltage followers．The buffer＇s output resistance and the load capacitor combine to add a pole and excess phase to the loop response．If the frequency of this pole is low enough to interfere with the loop response and degrade phase margin sufficiently，oscillations can occur．
A second problem when driving capacitive loads results from the amplifier＇s output impedance，which looks inductive at high frequencies．This inductance forms an L－C resonant circuit with the capacitive load， which causes peaking in the frequency response and degrades the amplifier＇s gain margin．

Figure 6．Small－Signal Gain vs．Frequency with Load Capacitance and No Isolation Resistor

Figure 8．Isolation Resistance vs．Capacitive Load

Figure 6 shows the devices＇frequency response under different capacitive loads．To drive loads with greater than 20 pF of capacitance or to settle out some of the peaking，the output requires an isolation resistor like the one shown in Figure 7．Figure 8 is a graph of the Optimal Isolation Resistor vs．Load Capacitance． Figure 9 shows the frequency response of the MAX4214／MAX4215／MAX4217／MAX4219／MAX4222 when driving capacitive loads with a 27Ω isolation resistor．

Coaxial cables and other transmission lines are easily driven when properly terminated at both ends with their characteristic impedance．Driving back－terminated transmission lines essentially eliminates the lines＇ capacitance．

High-Speed, Single-Supply, Gain of 2, Closed-Loop, Rail-to-Rail Buffers with Enable

Figure 9. Small-Signal Gain vs. Frequency with Load Capacitance and 27Ω Isolation Resistor

Typical Application Circuit

Chip Information

> MAX4214 TRANSISTOR COUNT: 95
> MAX4215 TRANSISTOR COUNT: 95
> MAX4217 TRANSISTOR COUNT: 190
> MAX4219 TRANSISTOR COUNT: 299
> MAX4222 TRANSISTOR COUNT: 362
> SUBSTRATE CONNECTED TO VEE

High-Speed, Single-Supply, Gain of 2, Closed-Loop, Rail-to-Rail Buffers with Enable

High-Speed, Single-Supply, Gain of 2, Closed-Loop, Rail-to-Rail Buffers with Enable

\qquad

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

High-Speed, Single-Supply, Gain of 2, Closed-Loop, Rail-to-Rail Buffers with Enable

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

High-Speed, Single-Supply, Gain of 2, Closed-Loop, Rail-to-Rail Buffers with Enable

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

[^0]\qquad

[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

