: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Ultra-Small, Low-Cost, 210MHz, Dual-Supply Op Amps with Rail-to-Rail Outputs

Abstract

General Description The MAX4350 single and MAX4351 dual op amps are unity-gain-stable devices that combine high-speed performance with rail-to-rail outputs. Both devices operate from dual $\pm 5 \mathrm{~V}$ supplies. The common-mode input voltage range extends to the negative power-supply rail. The MAX4350/MAX4351 require only 6.9 mA of quiescent supply current per op amp while achieving a $210 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth and a 485V/us slew rate. Both devices are excellent solutions in low-power systems that require wide bandwidth, such as video, communications, and instrumentation. The MAX4350 is available in an ultra-small 5-pin SC70 package and the MAX4351 is available in a spacesaving 8-pin SOT23 package.

Applications

Set-Top Boxes

Surveillance Video Systems
Video Line Drivers
Analog-to-Digital Converter Interface
CCD Imaging Systems
Video Routing and Switching Systems
Digital Cameras

```
- Ultra-Small 5-Pin SC70, 5-Pin SOT23, and 8-Pin
    SOT23 Packages
- Low Cost
* High Speed
    210MHz -3dB Bandwidth
    55MHz 0.1dB Gain Flatness
    485V/\mus Slew Rate
* Rail-to-Rail Outputs
- Input Common-Mode Range Extends to VEE
- Low Differential Gain/Phase: 0.02%/0.08}\mp@subsup{}{}{\circ
- Low Distortion at 5MHz
    -65dBc SFDR
    -63dB Total Harmonic Distortion
```

 Ordering Information
 | PART | TEMP. RANGE | PIN-
 PACKAGE | TOP
 MARK |
| :--- | :--- | :--- | :---: |
| MAX4350EXK-T | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 5 SC70-5 | ACF |
| MAX4350EUK-T | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 5 SOT23-5 | ADRA |
| MAX4351EKA- T | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 SOT23-8 | AAIC |
| MAX4351ESA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 SO | - |

Pin Configurations
TOP VIEW

Pin Configurations continued at end of data sheet.

Ultra-Small, Low-Cost, 210MHz, Dual-Supply Op Amps with Rail-to-Rail Outputs

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC to $\mathrm{VEE}_{\mathrm{E}}$).

IN_-, IN_+, OUT_ \qquad (VEE $-0.3 \mathrm{~V})$ to $\left(\mathrm{V}_{C C}+0.3 \mathrm{~V}\right)$
Output Short-Circuit Current to V_{CC} or V_{EE}. \qquad
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
5-Pin SC70 (derate $2.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$). \qquad .200 mW
5 -Pin SOT23 (derate $7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)

8-Pin SOT23 (derate $5.26 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots421 \mathrm{~mW}$ 8-Pin SO (derate $5.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 471 mW Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or at any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty\right.$ to $0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note

Ultra-Small, Low-Cost, 210MHz, Dual-Supply Op Amps with Rail-to-Rail Outputs

AC ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{RF}_{\mathrm{F}}=24 \Omega, \mathrm{RL}=100 \Omega\right.$ to $0, \mathrm{AVCL}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
Small-Signal -3dB Bandwidth	BWSS	$V_{\text {OUT }}=100 \mathrm{mV} \mathrm{P}_{\text {P-P }}$		210		MHz
Large-Signal -3dB Bandwidth	BWLS	VOUT $=2 \mathrm{~V}_{\text {P-P }}$		175		MHz
Bandwidth for 0.1 dB Gain Flatness	BW0.1dB	$V_{\text {OUT }}=100 \mathrm{mV} \mathrm{V}_{\text {P-P }}$		55		MHz
		$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$		40		
Slew Rate	SR	Vout $=2 \mathrm{~V}$ step		485		V/ $/ \mathrm{s}$
Settling Time to 0.1\%	ts	VOUT $=2 \mathrm{~V}$ step		16		ns
Rise/Fall Time	t_{R}, t_{F}	$V_{\text {OUT }}=100 \mathrm{mV} \mathrm{P}_{\text {P-P }}$		4		ns
Spurious-Free Dynamic Range	SFDR	$\mathrm{fC}_{\text {C }}=5 \mathrm{MHz}$, VOUT $=2 \mathrm{~V}_{\text {P-P }}$		-65		dBc
Harmonic Distortion	HD	$\begin{aligned} & \mathrm{fC}=5 \mathrm{MHz}, \\ & \text { Vout }=2 \mathrm{~V}_{\text {P-P }} \end{aligned}$	2nd harmonic	-65		dBc
			3rd harmonic	-58		
			Total harmonic distortion	-63		
Two-Tone, Third-Order Intermodulation Distortion	IP3	$\mathrm{f} 1=4.7 \mathrm{MHz}, \mathrm{f} 2=4.8 \mathrm{MHz}$, Vout $=1 \mathrm{~V}_{\text {P-P }}$		66		dBc
Channel-to-Channel Isolation	$\mathrm{CH}_{\text {ISO }}$	Specified at DC, MAX4351 only		102		dB
Input 1dB Compression Point		$\mathrm{fC}=10 \mathrm{MHz}, \mathrm{AvCL}=+2 \mathrm{~V} / \mathrm{V}$		14		dBm
Differential Phase Error	DP	NTSC, RL $=150 \Omega$		0.08		degrees
Differential Gain Error	DG	NTSC, RL $=150 \Omega$		0.02		\%
Input Noise-Voltage Density	eN	$\mathrm{f}=10 \mathrm{kHz}$		10		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise-Current Density	in	$\mathrm{f}=10 \mathrm{kHz}$		1.8		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Input Capacitance	CIN			1		pF
Output Impedance	Zout	$\mathrm{f}=10 \mathrm{MHz}$		1.5		Ω

Note 1: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over temperature limits are guaranteed by design.

Ultra-Small, Low-Cost, 210MHz, Dual-Supply Op Amps with Rail-to-Rail Outputs

```
(VCC}=+5V,\mp@subsup{V}{EE}{}=-5V,\mp@subsup{V}{CM}{}=0V,AVCL=+1V/V, RF = 24\Omega, RL = 100\Omega to 0, TA = +25* C, unless otherwise noted.)
```


OUTPUT IMPEDANCE vs. FREQUENCY

DISTORTION vs. FREQUENCY

GAIN FLATNESS vs. FREQUENCY

DISTORTION vs. FREQUENCY

DISTORTION vs. LOAD RESISTANCE

Ultra-Small, Low-Cost, 210MHz, Dual-Supply Op Amps with Rail-to-Rail Outputs

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{AVCL}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{RF}_{\mathrm{F}}=24 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega\right.$ to $0, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

20ns/div

DIFFERENTIAL GAIN AND PHASE

OUTPUT VOLTAGE SWING
vs. LOAD RESISTANCE

SMALL-SIGNAL PULSE RESPONSE

20ns/div

SMALL-SIGNAL PULSE RESPONSE

LARGE-SIGNAL PULSE RESPONSE

20ns/div

Ultra-Small, Low-Cost, 210MHz, Dual-Supply Op Amps with Rail-to-Rail Outputs

Typical Operating Characteristics (continued)

$\left(V_{C C}=+5 V, V_{E E}=-5 V, V_{C M}=0 V, A V C L=+1 V / V, R_{F}=24 \Omega, R_{L}=100 \Omega\right.$ to $0, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

20ns/div

20ns/div

ISOLATION RESISTANCE
vs. CAPACITIVE LOAD

SMALL-SIGNAL BANDWIDTH

MAX4351
CROSSTALK vs. FREQUENCY

Ultra-Small, Low-Cost, 210MHz, Dual-Supply Op Amps with Rail-to-Rail Outputs

Pin Description			
PIN		NAME	FUNCTION
MAX4350	MAX4351		Amplifier Output
1	-	VEE	Negative Power Supply or Ground (in single- supply operation)
2	4	IN+	Noninverting Input
3	-	IN-	Inverting Input
4	-	VCC	Positive Power Supply
5	8	OUTA	Amplifier A Output
-	1	INA-	Amplifier A Inverting Input
-	2	INA+	Amplifier A Noninverting Input
-	7	OUTB	Amplifier B Output
-	6	INB-	Amplifier B Inverting Input
-	5	INB+	Amplifier B Noninverting Input
-			

Detailed Description

The MAX4350/MAX4351 are single-supply, rail-to-rail, voltage-feedback amplifiers that employ current-feedback techniques to achieve $485 \mathrm{~V} / \mu$ s slew rates and 210 MHz bandwidths. Excellent harmonic distortion and differential gain/phase performance make these amplifiers an ideal choice for a wide variety of video and RF signal-processing applications.
The output voltage swings to within 125 mV of each supply rail. Local feedback around the output stage ensures low open-loop output impedance to reduce gain sensitivity to load variations. The input stage permits common-mode voltages beyond the negative supply and to within 2.25 V of the positive supply rail.

Applications Information

Choosing Resistor Values
 Unity-Gain Configuration

The MAX4350/MAX4351 are internally compensated for unity gain. When configured for unity gain, a 24Ω resistor (RF_{F}) in series with the feedback path optimizes AC performance. This resistor improves AC response by reducing the Q of the parallel LC circuit formed by the parasitic feedback capacitance and inductance.

Figure 1a. Noninverting Gain Configuration

Figure 1b. Inverting Gain Configuration

Abstract

Inverting and Noninverting Configurations Select the gain-setting feedback (R_{F}) and input (R_{G}) resistor values to fit your application (Figures 1a and 1b). Large resistor values increase voltage noise and interact with the amplifier's input and PC board capaci1b). Large resistor values increase voltage noise and interact with the amplifier's input and PC board capacitance. This can generate undesirable poles and zeros and decrease bandwidth or cause oscillations. For example, a noninverting gain-of-two configuration ($\mathrm{RF}_{\mathrm{F}}=$ $R G$) using $1 \mathrm{k} \Omega$ resistors, combined with 1 pF of amplifier input capacitance and 1 pF of PC board capacitance, causes a pole at 159 MHz . Since this pole is within the amplifier bandwidth, it jeopardizes stability. Reducing the $1 \mathrm{k} \Omega$ resistors to 100Ω extends the pole frequency to 1.59 GHz , but could limit output swing by adding 200Ω in parallel with the amplifier's load resistor.

$$
\begin{aligned}
& \text { Layout and Power-Supply Bypassing } \\
& \text { These amplifiers operate from dual } \pm 5 \mathrm{~V} \text { supplies. Bypass } \\
& \text { each supply with a } 0.1 \mu \mathrm{~F} \text { capacitor to ground. } \\
& \text { Maxim recommends using microstrip and stripline tech- } \\
& \text { niques to obtain full bandwidth. To ensure that the PC } \\
& \text { board does not degrade the amplifier's performance, } \\
& \text { design it for a frequency greater than } 1 \mathrm{GHz} \text {. Pay care- }
\end{aligned}
$$

Ultra-Small, Low-Cost, 210MHz, Dual-Supply Op Amps with Rail-to-Rail Outputs

ful attention to inputs and outputs to avoid large parasitic capacitance. Whether or not you use a constantimpedance board, observe the following design guidelines:

- Don't use wire-wrap boards; they are too inductive.
- Don't use IC sockets; they increase parasitic capacitance and inductance.
- Use surface-mount instead of through-hole components for better high-frequency performance.
- Use a PC board with at least two layers; it should be as free from voids as possible.
- Keep signal lines as short and as straight as possible. Do not make 90° turns; round all corners.

Rail-to-Rail Outputs, Ground-Sensing Input

The input common-mode range extends from VEE to (VCC - 2.25 V) with excellent common-mode rejection. Beyond this range, the amplifier output is a nonlinear function of the input, but does not undergo phase reversal or latchup. The output swings to within 125 mV of either power-supply rail with a $2 \mathrm{k} \Omega$ load.

Figure 2. Driving a Capacitive Load Through an Isolation Resistor

Output Capacitive Load and Stability

The MAX4350/MAX4351 are optimized for AC performance. They are not designed to drive highly reactive loads, which decrease phase margin and may produce excessive ringing and oscillation. Figure 2 shows a circuit that eliminates this problem. Figure 3 is a graph of the Isolation Resistance (RISO) vs. Capacitive Load. Figure 4 shows how a capacitive load causes excessive peaking of the amplifier's frequency response if the capacitor is not isolated from the amplifier by a resistor. A small isolation resistor (usually 20Ω to 30Ω) placed before the reactive load prevents ringing and oscillation. At higher capacitive loads, AC performance is controlled by the interaction of the load capacitance and the isolation resistor. Figure 5 shows the effect of a 27Ω isolation resistor on closed-loop response.
Coaxial cable and other transmission lines are easily driven when properly terminated at both ends with their characteristic impedance. Driving back-terminated transmission lines essentially eliminates the line's capacitance.

Figure 3. Isolation Resistance vs. Capacitive Load

Ultra-Small, Low-Cost, 210MHz, Dual-Supply Op Amps with Rail-to-Rail Outputs

Figure 4. Small-Signal Gain vs. Frequency with Load Capacitance and No Isolation Resistor

Pin Configurations (continued)

Figure 5. Small-Signal Gain vs. Frequency with Load Capacitance and 27Ω Isolation Resistor
\qquad Chip Information
MAX4350 TRANSISTOR COUNT: 86
MAX4351 TRANSISTOR COUNT: 170

Ultra-Small, Low-Cost, 210MHz, Dual-Supply Op Amps with Rail-to-Rail Outputs

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

IDP VIEW

SIDE VIEW

FRONT VIEW
NOTES
ALL DIMENSIDNS ARE IN MILLIMETERS.
FIOT LENGTH MEASURED AT INTERCEPT PIINT BETWEEN
DAUM A \& LEAD SURFACE.
FLASH, PROTRUSIIN IR METAL BURR SHIULD NOT EXCEED 0.25 MM.
PACKAGE IUTLINE INCLUSIVE OF SDLDER PLATING.
MEETS JEDEC ME178, VARIATION AA.
LEADS TO BE CIPLANAR WITHIN 0.10 mm
SaLDER THICKNESS MEASURED AT FLAT SECTION af LEAD beTwEen
0.08 mm AND 0.15 mm FRDM LEAD TIP.

PBALLAS

	PACKAGE OUTLINE, SOT-23, 5L	
N/	Documen conral $21-0057$	E.

Ultra-Small, Low-Cost, 200MHz, Dual-Supply Op Amps with Rail-to-Rail Outputs

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

[^0]
[^0]: © 2005 Maxim Integrated Products
 Printed USA ЛИЛXIM is a registered trademark of Maxim Integrated Products, Inc.

