imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

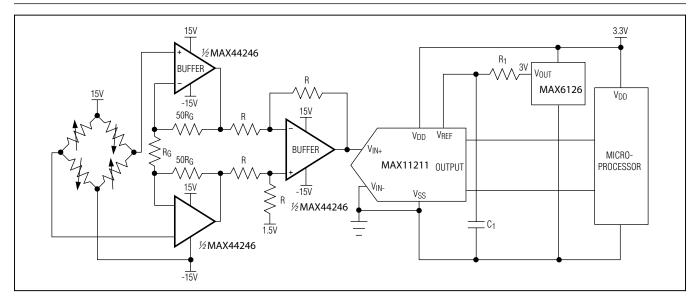
Annlications

The MAX44241/MAX44243/MAX44246 are 36V, ultraprecision, low-noise, low-drift, single/quad/dual operational amplifiers that offer near-zero DC offset and drift through the use of patented chopper stabilized and auto-zeroing techniques. This method constantly measures and compensates the input offset, eliminating drift over time and temperature and the effect of 1/f noise. These single/quad/dual devices feature rail-to-rail outputs, operate from a single 2.7V to 36V supply or dual $\pm 1.35V$ to $\pm 18V$ supplies, and consume only 0.42mA per channel, with only $9nV/\sqrt{Hz}$ input-referred voltage noise.

The ICs are available in 8-pin μ MAX® or SO packages and are rated over the -40°C to +125°C temperature range.

	Applications
Transducer Amplifiers	Battery-Powered
Load Cell Amplifiers	Equipment
Precision Instrumentation	PLC Analog I/O Modules

Benefits and Features


- Reduces Noise-Sensitive Precision Applications
 Low 9nV/√Hz Noise at 1kHz

 - Integrated EMI Filter
- Eliminates Cost of Calibration with Increased Accuracy and Patented Auto-Zero Circuitry
 - Ultra-Low Input VOS: 5µV (max)
 - Low 20nV/°C (max) of Offset Drift
- Suitable for High-Bandwidth Applications
 - 1µs Fast Settling Time
 - 5MHz Gain-Bandwidth Product
- Low 0.55mA Per Channel (max) Quiescent Current
- Wide Supply for High-Voltage Front-Ends
 2.7V to 36V Supply Range
- Rail-to-Rail Output

Ordering Information appears at end of data sheet.

For related parts and recommended products to use with this part, refer to <u>www.maximintegrated.com/MAX44241.related</u>.

µMAX is a registered trademark of Maxim Integrated Products, Inc.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

Typical Operating Circuit

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{DD} to GND)0.3V to +40V
All Other Pins(GND - 0.3V) to (V _{DD} + 0.3V)
Short-Circuit Duration, OUTA,
OUTB to Either Supply Rail 1s
Continuous Input Current (Any Pin)20mA
Differential Input Current±20mA
Differential Input Voltage (Note 1)
Continuous Power Dissipation ($T_A = +70^{\circ}C$)
5-Pin SOT23 (derate 3.9mW/°C above +70°C)312.6mW
8-Pin µMAX (derate 4.8mW/°C above +70°C)387.8mW

8-Pin SO (derate 7.60mW/°C above +70°C)606.1mW
14-Pin SO (derate 12.30mW/°C above +70°C)987.7mW
14-Pin TSSOP (derate 10mW/°C above +70°C)796.8mW
Operating Temperature Range40°C to +125°C
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (soldering, 10s)+300°C
Soldering Temperature (reflow)+260°C

Note 1: The amplifier inputs are connected by internal back-to-back clamp diodes. In order to minimize noise in the input stage, current-limiting resistors are not used. If differential input voltages exceeding ±1V are applied, limit input current to 20mA.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 2)

μΜΑ	Х
-----	---

Junction-to-Ambient Thermal Resistance (θ_{JA})206.3°C/W Junction-to-Case Thermal Resistance (θ_{JC})42°C/W SO-8

SO-14

 SOT23

Junction-to-Ambient Thermal Resistance (θ_{JA}) 255.9°C/W Junction-to-Case Thermal Resistance (θ_{JC}) 81°C/W TSSOP

Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to <u>www.maximintegrated.com/thermal-tutorial</u>.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 30V, V_{GND} = 0V, V_{IN+} = V_{IN-} = V_{DD}/2, R_L = 5k\Omega$ to $V_{DD}/2, T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted. Typical values at $T_A = +25^{\circ}C$.) (Note 3)

PARAMETER	SYMBOL	CC	ONDITIONS	MIN	ТҮР	МАХ	UNITS
Supply Voltage Range	V _{DD}	Guaranteed by P	SRR	2.7		36	V
Power-Supply Rejection Ratio	PSRR	$V_{DD} = 2.7 V \text{ to } 36^{\circ}$	$V, T_{A} = +25^{\circ}C$	148	166		dD
(Note 4)	PSRR	$V_{DD} = 2.7 V \text{ to } 36^{\circ}$	$V, -40^{\circ}C < T_{A} < +125^{\circ}C$	146			dB
		D	$T_A = +25^{\circ}C$		0.42	0.55	
Quiescent Current per Amplifier	IDD	R _L = ∞	$-40^{\circ}C < T_{A} < +125^{\circ}C$			0.60	mA
Power-Up Time	t _{ON}				20		μs
DC SPECIFICATIONS							
Input Common-Mode Range	V _{CM}	Guaranteed by CMRR test		(V _{GND} - 0.05)		(V _{DD} - 1.5)	V
Common-Mode Rejection Ratio (Note 4)	CMRR	$V_{CM} = (V_{GND} - 0.05V) \text{ to } (V_{DD} - 1.5V)$		146	166		dB
Input Offset Voltage (Note 4)	V _{OS}				1	5	μV

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = 30V, V_{GND} = 0V, V_{IN+} = V_{IN-} = V_{DD}/2, R_L = 5k\Omega$ to $V_{DD}/2, T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted. Typical values at $T_A = +25^{\circ}C$.) (Note 3)

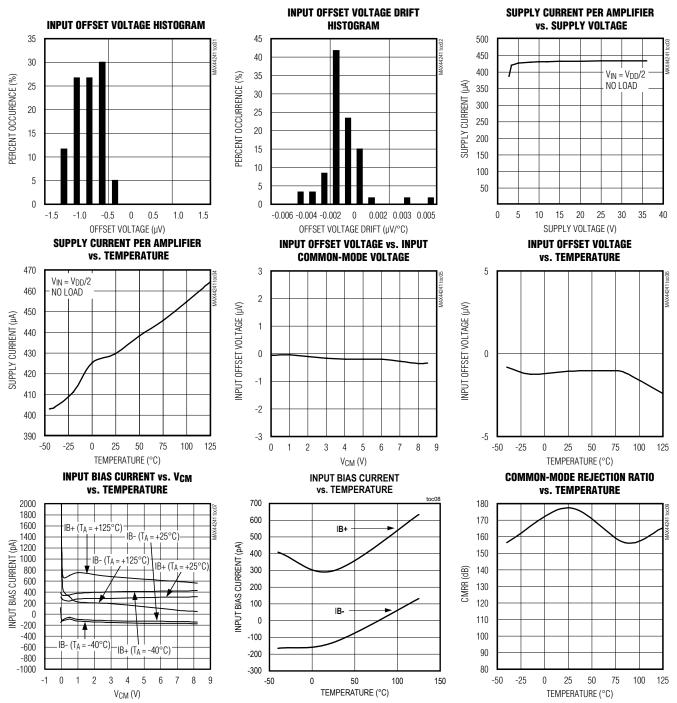
PARAMETER	SYMBOL	c	ONDITIONS	MIN	ТҮР	MAX	UNITS
Input Offset Voltage Drift (Note 4)	TC V _{OS}				1	20	nV/°C
Input Diag Ourrent (Nate 4)		$T_A = +25^{\circ}C$			300	600	
Input Bias Current (Note 4)	IB	$-40^{\circ}C < T_A < +^{-1}$	125°C			1250	рА
Input Offect Ourrent (Note 4)	I _{OS}	$T_A = +25^{\circ}C$			600	1200	5
Input Offset Current (Note 4)	.03	$-40^{\circ}C < T_A < +$	125°C			2500	рА
Open-Loop Gain (Note 4)	A _{VOL}	(V _{GND} + 0.5V) :	$\leq V_{OUT} \leq (V_{DD} - 0.5V)$	154	168		dB
Output Short-Circuit Current		Noncontinuous	Sinking		40		mA
Output Short-Orean Current		Noncontinuous	Sourcing		30		
Output Voltage Low	V _{OL}	$T_A = +25^{\circ}C$			90	115	mV
Oulput Vollage Low	.01	$-40^{\circ}C < T_{A} < +125^{\circ}C$				180	IIIV
	Maria	$T_A = +25^{\circ}C$		(V _{DD} - 0.17)	(V _{DD} - 0.13)		v
Output Voltage High	V _{OH}	$-40^{\circ}C < T_{A} < +125^{\circ}C$		(V _{DD} - 0.25)			
AC SPECIFICATIONS				.			
Input Voltage-Noise Density	e _N	f = 1kHz			9		nV/√Hz
Input Voltage Noise		0.1Hz < f < 10H	Z		117		nV _{P-P}
Input Capacitance	C _{IN}				2		рF
Gain-Bandwidth Product	GBW				5		MHz
Phase Margin	PM	$C_L = 20 pF$			60		Degrees
Slew Rate	SR	$A_V = 1V/V, V_{OUT} = 4V_{P-P}$		3.8			V/µs
Capacitive Loading	CL	No sustained oscillation, $A_V = 1V/V$		300			рF
		$V_{OUT} = 4V_{P-P}$	f = 1kHz		-96		
Total Harmonic Distortion	THD	$A_V = +1V/V$	f = 20kHz		-77		- dB
TOTAL HAIMONIC DISTOLION		$V_{OUT} = 2V_{P-P}$	f = 1kHz		-91		d D
		$A_V = +1V/V$	f = 20kHz		-76		dB

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 10V, V_{GND} = 0V, V_{IN+} = V_{IN-} = V_{DD}/2, R_L = 5k\Omega$ to $V_{DD}/2, T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted. Typical values at $T_A = +25^{\circ}C$.) (Note 3)

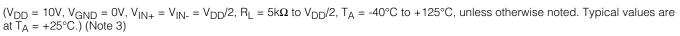
PARAMETER	SYMBOL	CONDITIONS			TYP	MAX	UNITS
POWER SUPPLY	PLY						
			$T_A = +25^{\circ}C$		0.42	0.55	
Quiescent Current per Amplifier	IDD	$R_{L} = \infty$	-40°C < T _A < +125°C			0.60	mA
Power-Up Time	t _{ON}				20		μs

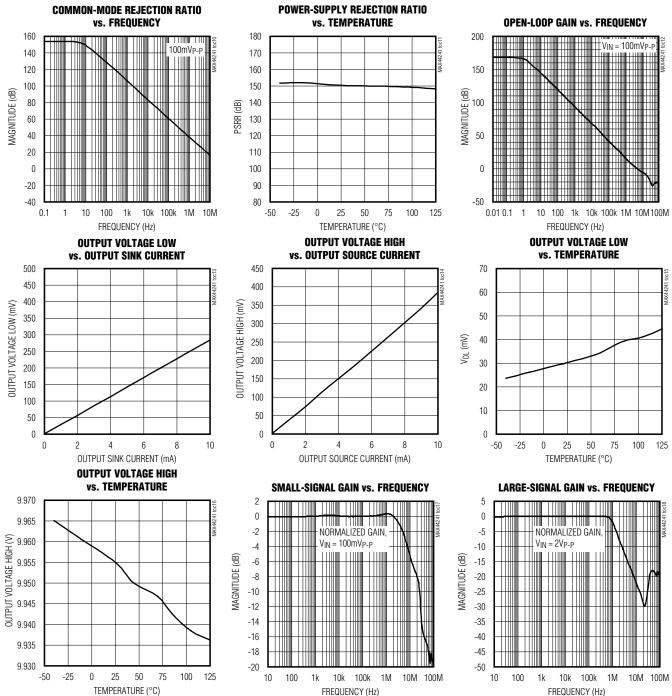
ELECTRICAL CHARACTERISTICS (continued)


 $(V_{DD} = 10V, V_{GND} = 0V, V_{IN+} = V_{IN-} = V_{DD}/2, R_L = 5k\Omega$ to $V_{DD}/2, T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted. Typical values at $T_A = +25^{\circ}C$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	МАХ	UNITS	
DC SPECIFICATIONS								
Input Common-Mode Range	V _{CM}	Guaranteed by C	CMRR test	(V _{GND} - 0.05)		(V _{DD} – 1.5)	V	
Common-Mode Rejection Ratio (Note 4)	CMRR	$V_{CM} = (V_{GND} - 0)$	0.05V) to (V _{DD} - 1.5V)	140	158		dB	
Input Offset Voltage (Note 4)	V _{OS}				1	5	μV	
Input Offset Voltage Drift (Note 4)	TC V _{OS}				2.4	20	nV/°C	
Input Bias Current (Note 4)	Ι _Β	$T_A = +25^{\circ}C$ -40°C < $T_A < +1$	25°C		300	600 1100	рА	
		$T_A = +25^{\circ}C$			600	1200		
Input Offset Current (Note 4)	I _{OS}	$-40^{\circ}C < T_A < +1$	25°C			2200	рА	
Open-Loop Gain (Note 4)	A _{VOL}	1	$V_{OUT} \le (V_{DD} - 0.5V)$	144	164		dB	
		Noncontinuous	Sinking		40		mA	
Output Short-Circuit Current			Sourcing		30			
		$T_A = +25^{\circ}C$			30	40	mV	
Output Voltage Low	V _{OL}		$-40^{\circ}C < T_{A} < +125^{\circ}C$			60		
		$T_A = +25^{\circ}C$		(V _{DD} - 0.06)	(V _{DD} - 0.05)			
Output Voltage High	V _{OH}	$-40^{\circ}C < T_{A} < +1$	25°C	(V _{DD} - 0.09)				
AC SPECIFICATIONS		·						
Input Voltage-Noise Density	e _N	f = 1kHz			9		nV/√Hz	
Input Voltage Noise		0.1Hz < f < 10Hz	Ζ		117		nV _{P-P}	
Input Capacitance	C _{IN}				2		рF	
Gain-Bandwidth Product	GBW				5		MHz	
Phase Margin	PM	$C_{L} = 20 pF$			60		Degrees	
Slew Rate	SR	$A_V = +1V/V, V_{OUT} = 2V_{P-P}, 10\% \text{ to } 90\%$			3.8		V/µs	
Capacitive Loading	CL	No sustained oscillation, $A_V = 1V/V$			300		рF	
	TUD	$V_{OUT} = 2V_{P-P},$	f = 1kHz		-92			
Total Harmonic Distortion	THD	$A_V = 1V/V$	f = 20kHz		-76		dB	
Settling Time		To 0.01%, V _{OUT} :	= 2V step, $A_V = 1V/V$		1		μs	

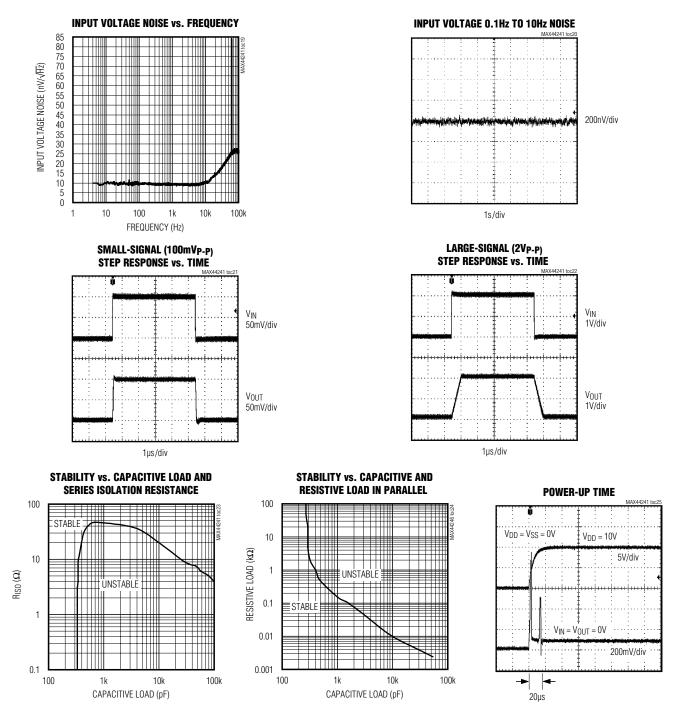
Note 3: All devices are 100% production tested at $T_A = +25$ °C. Temperature limits are guaranteed by design. **Note 4:** Guaranteed by design.

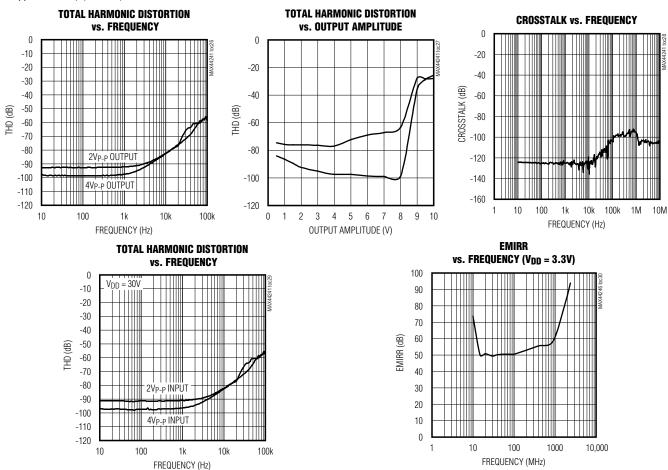

Typical Operating Characteristics


 $(V_{DD} = 10V, V_{GND} = 0V, V_{IN+} = V_{IN-} = V_{DD}/2, R_L = 5k\Omega$ to $V_{DD}/2, T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 3)

Maxim Integrated

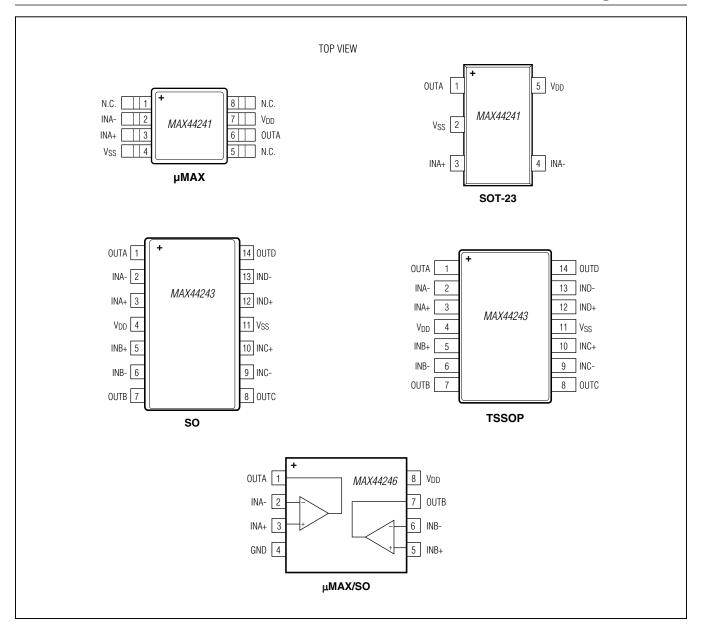
Typical Operating Characteristics (continued)




Maxim Integrated

Typical Operating Characteristics (continued)

 $(V_{DD} = 10V, V_{GND} = 0V, V_{IN+} = V_{IN-} = V_{DD}/2, R_L = 5k\Omega$ to $V_{DD}/2, T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 3)



Typical Operating Characteristics (continued)

 $(V_{DD} = 10V, V_{GND} = 0V, V_{IN+} = V_{IN-} = V_{DD}/2, R_L = 5k\Omega$ to $V_{DD}/2, T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 3)

Pin Configurations

Pin Descriptions

	·	·	PIN				
MAX	MAX44241		MAX44243		MAX44246		FUNCTION
SOT23-5	µMAX-8	SO-14	TSSOP-14	SO-8	µMAX-8		
1	6	1	1	1	1	OUTA	Channel A Output
2	4	11	11	4	4	V _{SS}	Negative Supply Voltage
3	3	3	3	3	3	INA+	Channel A Positive Input
4	2	2	2	2	2	INA-	Channel A Negative Input
5	7	4	4	8	8	V _{DD}	Positive Supply Voltage
—	_	5	5	5	5	INB+	Channel B Positive Input
_	_	6	6	6	6	INB-	Channel B Negative Input
_		7	7	7	7	OUTB	Channel B Output
_	_	8	8			OUTC	Channel C Output
_	_	9	9	_	_	INC-	Channel C Negative Input
_	_	10	10		_	INC+	Channel C Positive Input
_	_	12	12			IND+	Channel D Positive Input
	_	13	13	_	_	IND-	Channel D Negative Input
	_	14	14	_	_	OUTD	Channel D Output
_	1, 5, 8	_	_		_	N.C.	No Connection. Not internally connected.

Detailed Description

The MAX44241/MAX44243/MAX44246 are high-precision amplifiers that provide below 5µV of maximum inputreferred offset and low flicker noise. These characteristics are achieved by using a combination of proprietary auto-zeroing and chopper stabilized techniques. This combination of auto-zeroing and chopping ensures that these amplifiers give all the benefits of zero-drift amplifiers, while still ensuring low noise, minimizing chopper spikes, and providing wide bandwidth. Offset voltages due to power ripple/spikes as well as common-mode variation, are corrected resulting in excellent PSRR and CMRR specifications.

Noise Suppression

Flicker noise, inherent in all active devices, is inversely proportional to frequency present. Charges at the oxide-silicon interface that are trapped-and-released by MOSFET oxide occurs at low frequency more often. For this reason, flicker noise is also called 1/f noise. The MAX44241/MAX44243/MAX44246 eliminate the 1/f noise internally, thus making them ideal choices for DC or sub-Hz precision applications. The 1/f noise appears as a slow varying offset voltage and is eliminated by the chopping technique used.

Electromagnetic interference (EMI) noise occurs at higher frequency, resulting in malfunction or degradation of electrical equipment. The ICs have an input EMI filter to avoid the output being affected by radio frequency interference. The EMI filter composed of passive devices, presents significant higher impedance to higher frequency.

Applications Information

ADC Buffer Amplifier

The MAX44241/MAX44243/MAX44246 have low input offset voltage, low noise, and fast settling time that make these amplifiers ideal for ADC buffers. Weight scales are one application that often requires a low-noise, high-voltage amplifier in front of an ADC. The *Typical Operating*

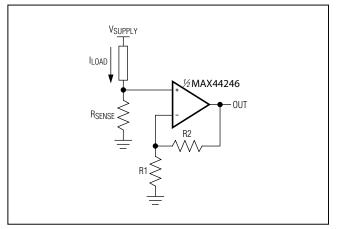


Figure 1. Low-Side Current Sensing

Circuit details an example of a load cell and amplifier driven from the same $\pm 10V$ supplies, along with the MAX11211 18-bit delta sigma ADC. Load cells produce a very small voltage change at their outputs; therefore driving the excitation source with a higher voltage produces a wider dynamic range that can be measured at the ADC inputs.

The MAX11211 ADC operates from a single 2.7V to 3.6V analog supply, offers 18-bit noise-free resolution and 0.86mW power dissipation. The MAX11211 also offers > 100dB rejection at 50Hz and 60Hz. This ADC is part of a family of 16-, 18-, 20-, and 24-bit delta sigma ADCs with high precision and < 1mW power dissipation.

The low input offset voltage and low noise of MAX44241/ MAX44243/MAX44246 allow a gain circuit to precede the MAX11211 without losing any dynamic range at the ADC. See the *Typical Operating Circuit*.

Precision Low-Side Current Sensing

The ICs' ultra-low offset voltage and drift make them ideal for precision current-sensing applications. Figure 1 shows the ICs in a low-side current-sense configuration. This circuit produces an accurate output voltage, V_{OUT} equal to $I_{LOAD} \times R_{SENSE} \times (1 + R_2/R_1)$.

Layout Guidelines

The MAX44241/MAX44243/MAX44246 feature ultra-low offset voltage and noise. Therefore, to get optimum performance follow the following layout guidelines.

Avoid temperature gradients at the junction of two dissimilar metals. The most common dissimilar metals used on a PCB are solder-to-component lead and solder-toboard trace. Dissimilar metals create a local thermocouple. A variation in temperature across the board can cause an additional offset due to Seebeck effect at the solder junctions. To minimize the Seebeck effect, place the amplifier away from potential heat sources on the board, if possible. Orient the resistors such that both the ends are heated equally. It is a good practice to match the input signal path to ensure that the type and number of thermoelectric junctions remain the same. For example, consider using dummy 0Ω resistors oriented in such a way that the thermoelectric sources, due to the real resistors in the signal path, are cancelled. It is recommended to flood the PCB with ground plane. The ground plane ensures that heat is distributed uniformly reducing the potential offset voltage degradation due to Seebeck effect

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX44241AUA+	-40°C to +125°C	8 µMAX	_
MAX44241AUK+	-40°C to +125°C	5 SOT23	AFMQ
MAX44243ASD+	-40°C to +125°C	14 SO	
MAX44243AUD+	-40°C to +125°C	14 TSSOP	
MAX44246ASA+	-40°C to +125°C	8 SO	
MAX44246AUA+	-40°C to +125°C	8 µMAX	

+Denotes a lead(Pb)-free/RoHS-compliant package.

Chip Information

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
5 SOT23	U5+1	<u>21-0057</u>	<u>90-0174</u>
8 SO	S8+4	<u>21-0041</u>	<u>90-0096</u>
8 µMAX	U8+1	<u>21-0036</u>	<u>90-0092</u>
14 SO	S14M+4	<u>21-0041</u>	<u>90-0112</u>
14 TSSOP	U14M+1	<u>21-0066</u>	<u>90-0113</u>

Revision History

13

REVISION NUMBER	DESCRIPTION				
0	7/12	Initial release			
1	9/12	Revised the Electrical Characteristics and the Typical Operating Characteristics.	1, 2, 3, 5		
2	2/13	Revised the Typical Operating Characteristics.	8		
3	5/13	Updated General Description, Typical Application Circuit, and Pin Description.	1, 9		
4	9/13	Added the MAX44241/MAX44243 to the data sheet. Revised the <i>Typical Operating Circuit</i> .	1–13		
5	1/14	Revised Electrical Characteristics and the Typical Operating Characteristics.	2, 5		
6	12/14	Revised Benefits and Features section.	1		
7	4/15	Revised Ordering Information	13		

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

© 2015 Maxim Integrated

The Maxim logo and Maxim Integrated are trademarks of Maxim Integrated Products, Inc.