imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

36V, Precision, Low-Power, 90µA, Dual Op Amp

General Description

The MAX44248 is an ultra-precision, low-noise, zero-drift dual operational amplifier featuring very low-power operation with a wide supply range. The device incorporates a patented auto-zero circuit that constantly measures and compensates the input offset to eliminate drift over time and temperature as well as the effect of 1/f noise. The device also features integrated EMI filters to reduce high-frequency signal demodulation on the output. The op amp operates from either a single 2.7V to 36V supply or dual $\pm 1.35V$ to $\pm 18V$ supply. The device is unity-gain stable with a 1MHz gain-bandwidth product and a low 90µA supply current per amplifier.

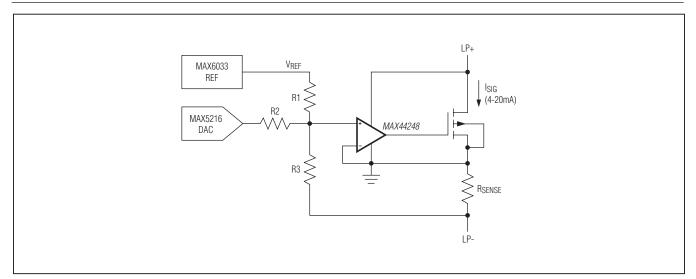
The low offset and noise specifications and high supply range make the device ideal for sensor interfaces and transmitters.

The device is available in 8-pin μ MAX® and SO packages and is specified over the -40°C to +125°C automotive operating temperature range.

Applications

Sensors Interfaces 4-20mA and 0 to10V Transmitters PLC Analog I/O Modules Weight Scales Portable Medical Devices

Features


- Very Low Input Voltage Offset 7.5µV (max)
- Low 30nV/°C Offset Drift (max)
- Low 90µA Quiescent Current per Amplifier
- Low Input Noise 50nV/√Hz at 1kHz 0.5µVp₋p from 0.1Hz to 10Hz
- ♦ 1MHz Gain-Bandwidth Product
- EMI Suppression Circuitry
- Rail-to-Rail Output
- ♦ 2.7V to 36V Supply Range
- ♦ 8-Pin µMAX and SO package

Ordering Information appears at end of data sheet.

For related parts and recommended products to use with this part, refer to **www.maximintegrated.com/MAX44248.related**.

µMAX is a registered trademark of Maxim Integrated Products, Inc.

Typical Operating Circuit

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

36V, Precision, Low-Power, 90µA, Dual Op Amp

ABSOLUTE MAXIMUM RATINGS

V_{DD} to V_{SS}	0.3V to +40V
Common-Mode Input Voltage(V _{SS} - 0.3V) to	$(V_{DD} + 0.3V)$
Differential Input Voltage IN_+, IN	6V
Continuous Input Current Into Any Pin	±20mA
Output Voltage to V _{SS} (OUT_) 0.3V to	$(V_{DD} + 0.3V)$
Output Short-Circuit Duration (OUT_)	1s

Operating Temperature Range40 Storage Temperature	
Junction Temperature	+150°C
Lead Temperature (soldering, 10s) Soldering Temperature (reflow)	

PACKAGE THERMAL CHARACTERISTICS (Note 1) SO

uMAX

Junction-to-Ambient Thermal Resistance (0JA) 206.3°C/W Junction-to-Ambient Thermal Resistance (0,1A) 132°C/W

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 10V, V_{SS} = 0V, V_{IN+} = V_{IN+} = V_{DD}/2, R_L = 5k\Omega$ to $V_{DD}/2, T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted. Typical values are at +25°C.) (Note 2)

PARAMETER	SYMBOL	OL CONDITIONS		ТҮР	MAX	UNITS	
POWER SUPPLY							
Supply Voltage Range	V _{DD}	Guaranteed by PSRR	2.7		36	V	
Power-Supply Rejection Ratio		$T_A = +25^{\circ}C, V_{IN+} = V_{IN-} = V_{DD}/2 - 1V$	140	148		٩D	
(Note 3)	PSRR	-40°C < T _A < +125°C	133			dB	
Ouisseent Current per Amplifier		$T_A = +25^{\circ}C$		90	120		
Quiescent Current per Amplifier	I _{DD}	-40°C < T _A < +125°C			130	μA	
DC SPECIFICATIONS							
Input Common-Mode Range	V _{CM}	Guaranteed by CMRR test	V _{SS} - 0.05		V _{DD} - 1.5	V	
Common-Mode Rejection Ratio (Note 3)	O CMRR	$T_A = +25^{\circ}C$, $V_{CM} = V_{SS} - 0.05V$ to $V_{DD} - 1.5V$	126	130		15	
		$-40^{\circ}C < T_A < +125^{\circ}C, V_{CM} = V_{SS} - 0.05V$ to $V_{DD} - 1.5V$	120			dB	
		$T_A = +25^{\circ}C$		2	7.5		
Input Offset Voltage (Note 3)	V _{OS}	-40°C < T _A < +125°C			10	μV	
Input Offset Voltage Drift (Note 3)	TC V _{OS}			10	30	nV/°C	
		$T_A = +25^{\circ}C$		150	300		
Input Bias Current (Note 3)	Ι _Β	$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +125^{\circ}\text{C}$			700	рА	
Input Offect Ourrent (Nete 2)		$T_A = +25^{\circ}C$		300	600	~	
Input Offset Current (Note 3)	los	$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +125^{\circ}\text{C}$			1400	рА	

36V, Precision, Low-Power, 90µA, Dual Op Amp

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = 10V, V_{SS} = 0V, V_{IN+} = V_{IN-} = V_{DD}/2, R_L = 5k\Omega$ to $V_{DD}/2, T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted. Typical values are at $+25^{\circ}C$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
		$V_{SS} + 0.5V \leq$	$T_A = +25^{\circ}C$	140	150		
Open-Loop Gain (Note 3)	A _{VOL}	$V_{OUT} \le V_{DD} - 0.5V$	$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +125^{\circ}\text{C}$	135			dB
Output Short-Circuit Current		To V _{DD} or V _{SS} , non	continuous		40		mA
	V _{DD} –	$T_A = +25^{\circ}C$				80	
Output Voltage Swing	V _{OUT}	$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +125^{\circ}$	C			110	mV
Output Voltage Swing	V _{OUT} –	$T_A = +25^{\circ}C$				50	
	V _{SS}	$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +125^{\circ}$	C			75	
AC SPECIFICATIONS							_
Input Voltage-Noise Density	e _N	f = 1kHz			50		nV/√Hz
Input Voltage Noise		0.1Hz < f < 10Hz			500		nV _{P-P}
Input Current-Noise Density	i _N	f = 1kHz			0.1		pA/√Hz
Gain-Bandwidth Product	GBW				1		MHz
Slew Rate	SR	$A_V = 1V/V, V_{OUT} = 2V_{P-P}$			0.7		V/µs
Capacitive Loading	CL	No sustained oscilla	ation, $A_V = 1V/V$		400		рF
Total Harmonic Distortion Plus Noise	THD+N	$V_{OUT} = 2V_{P-P}, A_V = +1V/V, f = 1kHz$			-100		dB
			f = 400MHz		75		
		100	f = 900MHz		78		
EMI Rejection Ratio	EMIRR	$V_{RF_{PEAK}} = 100 \text{mV}$	f = 1800MHz		80	dB] dB
			f = 2400MHz		90		

ELECTRICAL CHARACTERISTICS

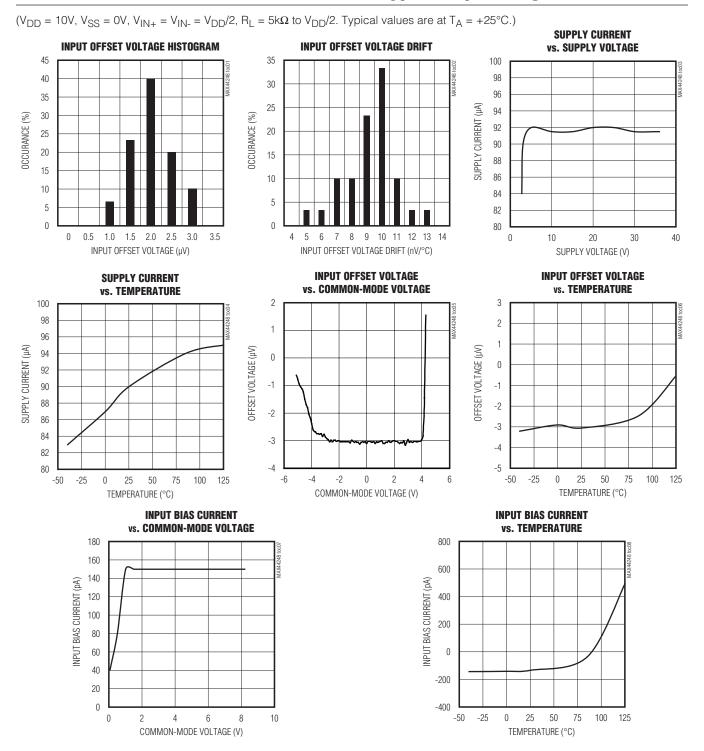
 $(V_{DD} = 30V, V_{SS} = 0V, V_{IN+} = V_{IN-} = V_{DD}/2, R_L = 5k\Omega$ to $V_{DD}/2, T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted. Typical values are at $+25^{\circ}C$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
POWER SUPPLY						
Quieseent Qurrent ner Amplifier		$T_A = +25^{\circ}C$		90	120	
Quiescent Current per Amplifier	IDD	-40°C < T _A < +125°C			130	μA
DC SPECIFICATIONS						
Input Common-Mode Range	V _{CM}	Guaranteed by CMRR test	V _{SS} - 0.05		V _{DD} - 1.5	V
Common-Mode Rejection Ratio		$T_A = +25^{\circ}C$, $V_{CM} = V_{SS} - 0.05V$ to $V_{DD} - 1.5V$	130	140		
(Note 3)	CMRR	-40°C < T_A < +125°C, V_{CM} = V_{SS} - 0.05V to V_{DD} - 1.5V	126			dB

36V, Precision, Low-Power, 90µA, Dual Op Amp

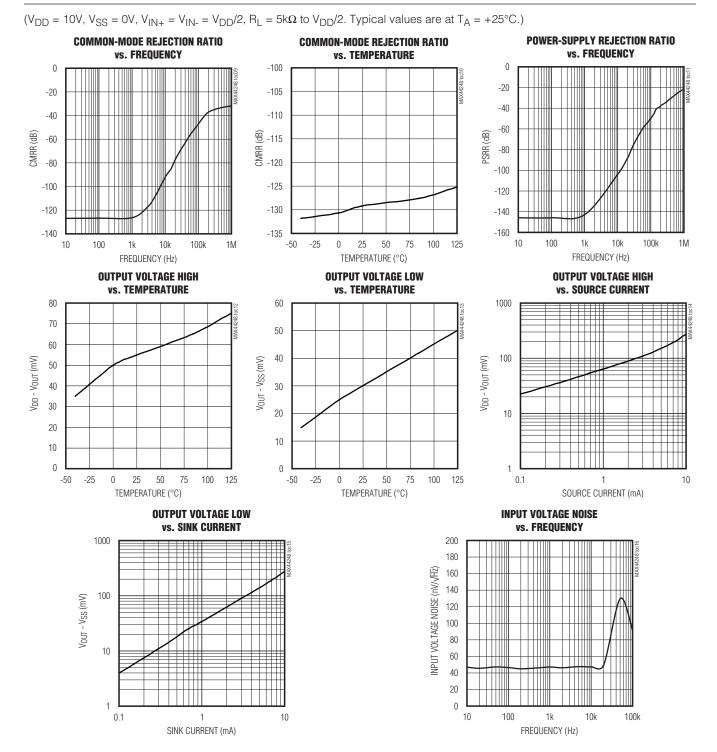
ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = 30V, V_{SS} = 0V, V_{IN+} = V_{IN-} = V_{DD}/2, R_L = 5k\Omega$ to $V_{DD}/2, T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted. Typical values are at $+25^{\circ}C$.) (Note 2)


PARAMETER	SYMBOL	CON	DITIONS	MIN	ТҮР	MAX	UNITS
	V _{OS}	$T_A = +25^{\circ}C$			2	7.5	
Input Offset Voltage (Note 3)		-40°C < T _A < +125°	-40°C < T _A < +125°C			10	μV
Input Offset Voltage Drift (Note 3)	TC V _{OS}				10	30	nV/°C
		$T_A = +25^{\circ}C$			150	300	
Input Bias Current (Note 3)	Ι _Β	-40°C < T _A < +125°	С			700	рА
land Offerst Original (Nester Original		$T_A = +25^{\circ}C$			300	600	
Input Offset Current (Note 3)	los	$-40^{\circ}C < T_A < +125^{\circ}$	С			1400	рА
		V_{SS} + 0.5V \leq V _{OUT}	$T_A = +25^{\circ}C$	146	150		
Open-Loop Gain (Note 3)	A _{VOL}	$\leq V_{DD} - 0.5V$	$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +125^{\circ}\text{C}$	140			- dB
Output Short-Circuit Current		To V_{DD} or V_{SS} , none	continuous		40		mA
	V _{DD} -V _{OUT}	$T_A = +25^{\circ}C$				200	
Output Voltage Swing		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +125^{\circ}\text{C}$				270	
	V _{OUT} -	$T_{A} = +25^{\circ}C$				140	mV
		-40°C < T _A < +125°C				220	
AC SPECIFICATIONS							
Input Voltage-Noise Density	e _N	f = 1kHz			50		nV/√Hz
Input Voltage Noise		0.1Hz < f < 10Hz			500		nV _{P-P}
Input Current-Noise Density	i _N	f = 1kHz			0.1		pA/√Hz
Gain-Bandwidth Product	GBW				1		MHz
Slew Rate	SR	$A_V = 1V/V, V_{OUT} = 2$	2V _{P-P}		0.7		V/µs
Capacitive Loading	CL	No sustained oscilla	tion, $A_V = 1V/V$		400		рF
Total Harmonic Distortion Plus Noise	THD+N	$V_{OUT} = 2V_{P-P}, A_V = +1V/V, f = 1kHz$			-100		dB
			f = 400MHz		75	-	
		EMIRR 100mV f = 180	f = 900MHz		78]
EMI Rejection Ratio	EMIKK		f = 1800MHz		80		dB
			f = 2400MHz		90]

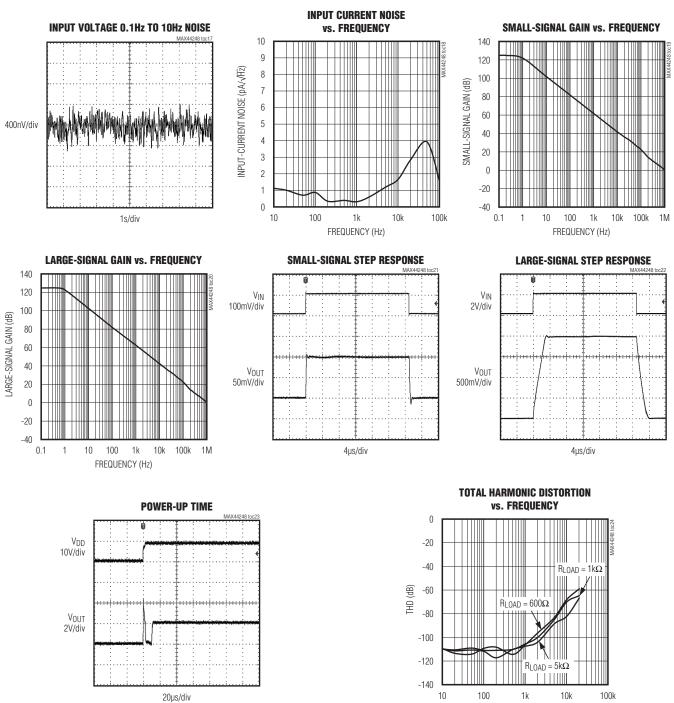
Note 2: All devices are 100% production tested at $T_A = +25$ °C. Temperature limits are guaranteed by design.

Note 3: Guaranteed by design.


Note 4: At IN+ and IN-. Defined as 20log ($V_{RF} PEAK / \Delta V_{OS}$).

36V, Precision, Low-Power, 90µA, Dual Op Amp

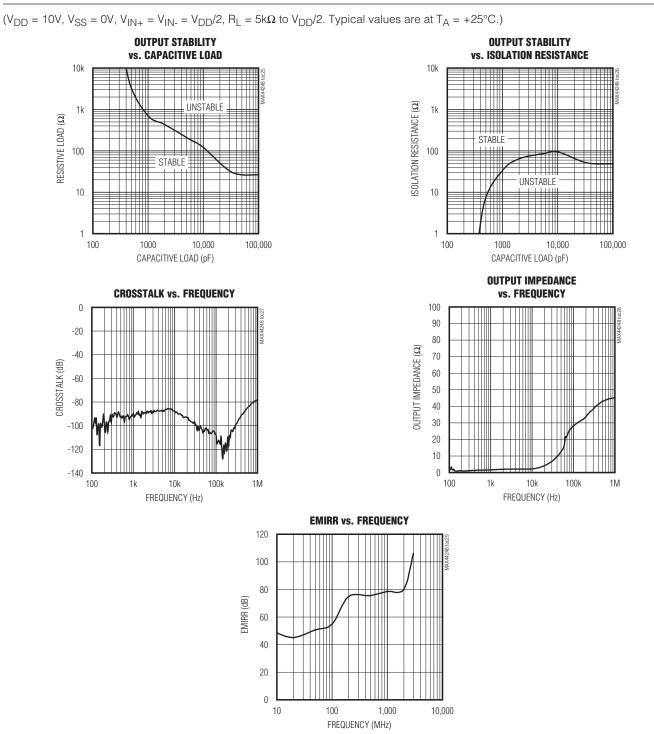
Typical Operating Characteristics


36V, Precision, Low-Power, 90µA, Dual Op Amp

Typical Operating Characteristics (continued)

Maxim Integrated

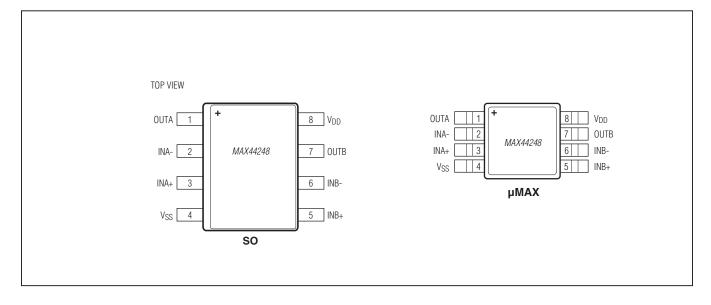
36V, Precision, Low-Power, 90µA, Dual Op Amp



Typical Operating Characteristics (continued)

(V_DD = 10V, V_{SS} = 0V, V_{IN+} = V_{IN-} = V_{DD}/2, RL = 5k Ω to V_DD/2. Typical values are at TA = +25°C.)

FREQUENCY (Hz)


36V, Precision, Low-Power, 90µA, Dual Op Amp

Typical Operating Characteristics (continued)

36V, Precision, Low-Power, 90µA, Dual Op Amp

Pin Configurations

Pin Description

l	PIN	NAME	FUNCTION	
SO	μΜΑΧ	NAME	FUNCTION	
1	1	OUTA	Channel A Output	
2	2	INA-	Channel A Negative Input	
3	3	INA+	Channel A Positive Input	
4	4	V _{SS}	Negative Supply Voltage	
5	5	INB+	Channel B Positive Input	
6	6	INB-	Channel B Negative Input	
7	7	OUTB	Channel B Output	
8	8	V _{DD}	Positive Supply Voltage	

36V, Precision, Low-Power, 90µA, Dual Op Amp

Detailed Description

The MAX44248 is a high-precision amplifier that has a less than $2\mu V$ (typ) input-referred offset and low input voltage-noise density at 10Hz. 1/f noise, in fact, is eliminated to improve the performance in low-frequency applications. These characteristics are achieved through an auto-zeroing technique that cancels the input offset voltage and 1/f noise of the amplifier.

External Noise Suppression in EMI Form

The device has input EMI filters to prevent effects of radio frequency interference on the output. The EMI filters comprise passive devices that present significant higher impedance to higher frequency signals. See the EMIRR vs. Frequency graph in the <u>Typical Operating</u> <u>Characteristics</u> section for details.

High Supply Voltage Range

The device features 90μ A current consumption per channel and a voltage supply range from either 2.7V to 36V single supply or ± 1.35 V to ± 18 V split supply.

Applications Information

The device is an ultra-high precision operational amplifier with a high supply voltage range designed for load cell, medical instrumentation, and precision instrument applications.

4–20mA Current-Loop Communication Industrial environments typically have a large amount of broadcast electromagnetic interference (EMI) from highvoltage transients and switching motors. This combined with long cables for sensor communication leads to high-voltage noise on communication lines. Current-Loop communication is resistant to this noise because the EMI induced current is low. This configuration also allows for low-power sensor applications to be powered from the communication lines.

The *Typical Operating Circuit* shows how the device can be used to make a current loop driver.

The circuit uses low-power components such as the MAX44248 op amp, the 16-bit MAX5216 DAC, and the high-precision 60µA-only MAX6033 reference. In this circuit, both the DAC and the reference are referred to the local ground. The MAX44248 op-amp inputs are capable of swinging to the negative supply (which is the local ground in this case). R3 acts as a current mirror with RSENSE. Therefore, if RSENSE = 50 Ω (i.e. 20mA will drop 1V) and if the current through R3 is 10µA when I_{OUT} is 20mA (0.05% error) then R3 = 100k Ω . R1 is chosen along with the reference voltage to provide the 4mA offset. R2 = 512k Ω for 20mA full scale or R2 = 614k Ω for 20% overrange. RSENSE is ratiometric with R3, R1 independently sets the offset current and R2 independently sets the DAC scaling.

Driving High-Performance ADCs

The MAX44248's low input offset voltage and low noise make this amplifier ideal for ADC buffering. Weight scale applications require a low-noise, precision amplifier in front of an ADC. Figure 1 details an example of a load cell and amplifier driven from the same 5V supply, along with a 16-bit delta sigma ADC such as the MAX11205.

The MAX11205 is an ultra-low-power (< 300µA, max active current), high-resolution, serial output ADC. It provides the highest resolution per unit power in the industry and is optimized for applications that require very high dynamic range with low power such as sensors on a 4–20mA industrial control loop. The device provides a high-accuracy internal oscillator that requires no external components.

36V, Precision, Low-Power, 90µA, Dual Op Amp

Layout Guidelines

The MAX44248 features ultra-low voltage and noise. Therefore, to get optimum performance follow the layout guidelines.

Avoid temperature tradients at the junction of two dissimilar metals. The most common dissimilar metals used on a PCB are solder-to-component lead and solder-to-board trace. Dissimilar metals create a local thermocouple. A variation in temperature across the board can cause an additional offset due to Seebeck effect at the solder junctions. To minimize the Seebeck effect, place the amplifier away from potential heat sources on the board, if possible. Orient the resistors such that both the ends are heated equally. It is a good practice to match the input signal path to ensure that the type and number of thermoelectric juntions remain the same. For example, consider using dummy 0 Ω resistors oriented in such a way that the thermoelectric source, due to the real resistors in the signal path, are cancelled. It is recommended to flood the PCB with ground plane. The ground plane ensures that heat is distributed uniformly reducing the potential offset voltage degradation due to Seebeck effect.

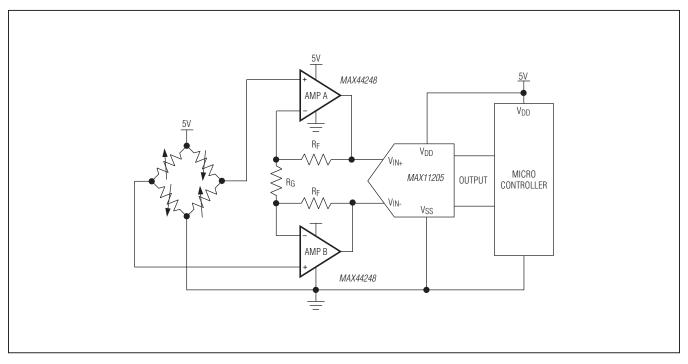


Figure 1. Weight Application

36V, Precision, Low-Power, 90µA, Dual Op Amp

Chip Information

PROCESS: BICMOS

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX44248AUA+	-40°C to +125°C	8 µMAX
MAX44248ASA+	-40°C to +125°C	8 SO

+Denotes a lead(Pb)-free/RoHS-compliant package.

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
8 SO	S8+4	<u>21-0041</u>	<u>90-0096</u>
8 µMAX	U8+1	<u>21-0036</u>	<u>90-0092</u>

36V, Precision, Low-Power, 90µA, Dual Op Amp

Revision History

13

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
0	7/12	Initial release	_

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

© 2012 Maxim Integrated

The Maxim logo and Maxim Integrated are trademarks of Maxim Integrated Products, Inc.