: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Dual-Supply, 180MHz, 16-Bit Accurate, Ultra-Low Distortion Op Amps

Abstract

General Description The MAX4430/MAX4431 single and MAX4432/MAX4433 dual operational amplifiers feature wide bandwidth, 16bit settling times in 37ns, and low-noise/low-distortion operation. The MAX4430/MAX4432 are compensated for unity gain stability and have a small signal -3dB bandwidth of 180 MHz . The MAX4431/MAX4433 are compensated for closed-loop gains of +2 or greater and have a small-signal -3dB bandwidth of 215 MHz . The MAX4430-MAX4433 op amps require only 11 mA of supply current per amplifier while achieving 125dB openloop gain. Voltage noise density is a low $2.8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, and provides 100 dB spurious-free dynamic range (SFDR) at 1 MHz . These characteristics make these op amps ideal for driving modern high-speed 14- and 16bit analog-to-digital converters (ADCs). These high-speed op amps feature wide output voltage swings capable of driving ADCs with $\geq 4 \mathrm{~V}$ input dynamic range and a high current output drive up to 60 mA . Using a voltage feedback architecture, the MAX4430MAX4433 meet the requirements of many applications that previously depended on current feedback amplifiers. The MAX4430/MAX4431 are available in a space-saving 5-pin SOT23 package, and the MAX4432/MAX4433 are available in an 8-pin $\mu \mathrm{MAX}$ package.

Applications

High-Speed 14- and 16-Bit ADC Preamplifiers Low-Noise Preamplifiers
IF/RF Amplifiers
Low-Distortion Active Filters
High-Performance Receivers
Precision Instrumentation
Pin Configurations

Pin Configurations continued at end of data sheet.

Features

- 16-Bit Accurate Settling in 37ns (MAX4430/MAX4432)
- 100dB SFDR at 1MHz, 4Vp-p Output
- $2.8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Input Voltage Noise Density
- 110dB (min) Open-Loop Gain
- 145V/ μ s Slew Rate (MAX4431/MAX4433)
- 60mA High Output Drive
- Wide Voltage Swing Capable of Driving ADC Inputs with $\geq 4 V p-p$ Input Dynamic Range
- Available in Space-Saving Packages

5-pin SOT23 (MAX4430/MAX4431)
8-pin μ MAX (MAX4432/MAX4433)
Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX4430EUK-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23-5
MAX4430ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO

Ordering Information continued at end of data sheet.
Selector Guide

PART	AMPS	MIN GAIN STABLE (V/V)	BW (MHz)	SETTLING TIME TO $\mathbf{0 . 0 0 1 5 \% ~}$ (ns)
MAX4430	1	+1	180	37
MAX4431	1	+2	215	63
MAX4432	2	+1	180	37
MAX4433	2	+2	215	63

Typical Operating Circuit

Dual-Supply, 180MHz, 16-Bit Accurate, Ultra-Low Distortion Op Amps

ABSOLUTE MAXIMUM RATINGS

Su	V
Differential Input Voltage	+2V
Input Voltage Range $\mathrm{V}_{\mathrm{CC}}+0.3$	-0.3V)
Output Short-Circuit Duration to $\mathrm{V}_{\text {CC }}$ or V_{EE}.	(Note 1)
Current Into Any Input Pin	$\pm 25 \mathrm{~mA}$
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
5 -Pin SOT23 (derate $7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	. 571 mW
8-Pin $\mu \mathrm{MAX}$ (derate $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	. 330 mW
8 -Pin SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	471 mW

Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature ... $150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$

Note 1: The MAX4430-MAX4433 are not protected for output short-circuit conditions.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=-5 \mathrm{~V}, R_{L}=\infty, \mathrm{V}_{C M}=0\right.$, and $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Common-Mode Voltage Range	$V_{\text {CM }}$	Guaranteed by CMRR test	$\begin{gathered} \mathrm{V}_{\mathrm{EE}}+ \\ 2.5 \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.9 \end{gathered}$	V
Input Offset Voltage	VOS			± 1.25	± 5	mV
Input Offset Voltage Temperature Coefficient	TCvos			7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Voltage Matching		MAX4432/MAX4433		± 0.25		mV
Input Bias Current	IB			11	30	$\mu \mathrm{A}$
Input Offset Current	los			0.35	5	$\mu \mathrm{A}$
Input Resistance	RIN	Differential ($-10 \mathrm{mV} \leq \mathrm{V}_{\text {IN }} \leq+10 \mathrm{mV}$)		12k		Ω
		Common mode ($\left.\mathrm{V}_{\mathrm{EE}}+2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}_{\mathrm{CC}}-0.9 \mathrm{~V}\right)$		1M		
Common-Mode Rejection Ratio	CMRR	$V_{E E}+2.5 \mathrm{~V} \leq \mathrm{V}_{C M} \leq \mathrm{V}_{C C}-0.9 \mathrm{~V}$	100	120		dB
Open-Loop Gain	Avol	$\begin{aligned} & V_{E E}+2.5 \leq V_{O U T} \leq V_{C C}-0.9 \mathrm{~V} \\ & R_{L}=10 \mathrm{k} \Omega \text { to ground } \end{aligned}$	115	125		dB
		$\begin{aligned} & V_{E E}+2.5 \leq V_{O U T} \leq V_{C C}-0.9 \mathrm{~V} \\ & R_{L}=500 \Omega \text { to ground } \end{aligned}$	110	125		
Output Voltage Swing	Vout	$\mathrm{RL}=10 \mathrm{k} \Omega$ to ground	$\begin{gathered} \mathrm{V}_{\mathrm{EE}}+ \\ 2.5 \end{gathered}$		$\begin{gathered} V_{C C}- \\ 0.25 \end{gathered}$	V
		$R \mathrm{~L}=500 \Omega$ to ground	$\begin{gathered} \mathrm{V}_{\mathrm{EE}}+ \\ 2.6 \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.6 \end{gathered}$	
Output Current	IOUT	$R \mathrm{~L}=20 \Omega$ to ground	± 30	± 60		mA
Output Short-Circuit Current	ISC	Sinking or sourcing		± 100		mA
Power-Supply Rejection Ratio	PSRR-	$\mathrm{V}_{\mathrm{EE}}=-5.5 \mathrm{~V}$ to -4.5 V	75	95		dB
	PSRR+	$\mathrm{V}_{\text {CC }}=+4.5 \mathrm{~V}$ to +5.5 V				
Operating Supply Voltage Range	VS	Guaranteed by PSRR test	± 4.5		± 5.5	V
Quiescent Supply Current (per amplifier)	Is			11	13.5	mA

Dual-Supply, 180MHz, 16-Bit Accurate, Ultra-Low Distortion Op Amps

AC ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{AVCL}=+1, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Small-Signal -3dB Bandwidth	BWSs	VOUT $=100 \mathrm{mVp}-\mathrm{p}$, MAX4430/MAX4432	180		MHz
		$\begin{aligned} & \text { VOUT }=100 \mathrm{mVp}-\mathrm{p}, \\ & \text { MAX4431/MAX4433 (AVCL }=+2) \end{aligned}$	215		
Large-Signal -3dB Bandwidth	BWLS	$V_{\text {OUT }}=1 \mathrm{Vp}-\mathrm{p}$, MAX4430/MAX4432	45		MHz
		$\begin{aligned} & \text { Vout }=2 \text { Vp-p, } \\ & \text { MAX } 4430 / M A X 4432 \end{aligned}$	32		
		$\begin{aligned} & \text { VOUT }=2 \text { Vp-p, } \\ & \text { MAX } 4431 / \text { MAX4433 (AvCL }=+2) \end{aligned}$	40		
		$\begin{aligned} & \text { VOUT }=4 \mathrm{Vp}-\mathrm{p}, \\ & \text { MAX4431/MAX4433 (AVCL }=+2) \end{aligned}$	20		
Bandwidth for 0.1 dB Flatness	BW0.1dB	VOUT $=100 \mathrm{mVp}-\mathrm{p}$, MAX4430/MAX4432	12		MHz
		VOUT $=100 \mathrm{mVp}-\mathrm{p}$, MAX4431/MAX4433 (AvcL = +2)	80		
Slew Rate	SR	Vout $=2 \mathrm{~V}$ step, MAX4430/MAX4432	100		V/us
		VOUT $=2 \mathrm{~V}$ step, MAX4431/MAX4433 (AvcL = +2)	145		
Rise/Fall Time	$\mathrm{t}_{\mathrm{R}, \mathrm{tF}}$	VOUT $=2 \mathrm{~V}$ step	20		ns
		VOUT $=4 \mathrm{~V}$ step	40		
Settling Time to 16 Bit (0.0015\%)	ts	Vout $=0$ to 2 V step, MAX4430/MAX4432	37		ns
		Vout $=0$ to 2 V step, MAX4431/MAX4433 (AvCL = +2)	63		
		Vout $=0$ to 4 V step, MAX4430/MAX4432	56		
		Vout $=0$ to 4 V step, MAX4431/MAX4433 (AvcL = +2)	140		

Dual-Supply, 180MHz, 16-Bit Accurate, Ultra-Low Distortion Op Amps

AC ELECTRICAL CHARACTERISTICS (continued)
$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{AVCL}^{2}=+1, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Output "Glitch" Settling to 16-Bit (0.0015\%)		5pF load; CL charged from 0 to 4V	24		ns
Output Overload Recovery Time		50\% overdrive, settling to 10\% accuracy	95		ns
AC Common-Mode Rejection Ratio		$\mathrm{f}=100 \mathrm{kHz}$	-84		dB
AC Power-Supply Rejection Ratio		$\mathrm{f}=100 \mathrm{kHz}$	-77		dB
Spurious-Free Dynamic Range	SFDR	VOUT $=2 \mathrm{Vp}-\mathrm{p}$ centered at OV , $\mathrm{f}_{\mathrm{C}}=100 \mathrm{kHz}$	-110		dBc
		VOUT $=2 \mathrm{Vp}-\mathrm{p}$ centered at OV , $\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$	-105		
		$\begin{aligned} & \text { VOUT }=4 \mathrm{Vp}-\mathrm{p} \text { centered at } \mathrm{OV} \text {, } \\ & \mathrm{fC}=100 \mathrm{kHz} \end{aligned}$	-105		
		$\begin{aligned} & \text { VOUT }=4 \mathrm{Vp}-\mathrm{p} \text { centered at } \mathrm{OV} \text {, } \\ & \mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz} \end{aligned}$	-103		
		$\begin{aligned} & \text { VOUT }=2 \mathrm{Vp} \text {-p centered at } 1 \mathrm{~V} \text {, } \\ & \mathrm{fC}=100 \mathrm{kHz} \end{aligned}$	-112		
		VOUT $=2 \mathrm{~V}$ p-p centered at 1 V , $\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$	-107		
		VOUT $=4 \mathrm{Vp}-\mathrm{p}$ centered at 2 V , $\mathrm{ff}_{\mathrm{C}}=100 \mathrm{kHz}$	-106		
		VOUT $=4 \mathrm{Vp}-\mathrm{p}$ centered at 2 V , $\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$	-100		
		VOUT $=4 \mathrm{Vp}-\mathrm{p}$ centered at 2 V , $\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}\left(\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\right)$	-99		
		VOUT $=4 \mathrm{Vp}$-p centered at 2 V , $\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}\left(\mathrm{RL}_{\mathrm{L}}=10 \mathrm{k} \Omega\right)$	-100		
Input Noise Voltage Density	e_{n}	$\mathrm{f}=100 \mathrm{kHz}$	2.8		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current Density	in	$\mathrm{f}=100 \mathrm{kHz}$	1.8		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Input Capacitance	CIN		2.5		pF
Maximum Capacitive Load Without Sustained Oscillations			47		pF
Output Impedance	Zout	$\mathrm{f}=1 \mathrm{MHz}$	0.2		Ω
Crosstalk		MAX4432/MAX4433 $\mathrm{fC}=1 \mathrm{MHz}$	-125		dB

Note 2: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. All temperature limits are guaranteed by design.

Dual-Supply, 180MHz, 16-Bit Accurate, Ultra-Low Distortion Op Amps

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Dual-Supply, 180MHz, 16-Bit Accurate, Ultra-Low Distortion Op Amps

MAX4430/MAX4432 LARGE-SIGNAL PULSE RESPONSE

Typical Operating Characteristics (continued)
$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, R_{L}=500 \Omega, C_{L}=0 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

MAX4431/MAX4433 LARGE-SIGNAL PULSE RESPONSE

10ns/div

OUTPUT ISOLATION RESISTANCE
vs. CAPACITIVE LOAD

MAX4431/MAX4433 SMALL-SIGNAL PULSE RESPONSE

POWER-SUPPLY REJECTION RATIO vs. FREQUENCY

CLOSED-LOOP OUTPUT IMPEDANCE vs. FREQUENCY

Dual-Supply, 180MHz, 16-Bit Accurate, Ultra-Low Distortion Op Amps

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Dual-Supply, 180MHz, 16-Bit Accurate, Ultra-Low Distortion Op Amps

Typical Operating Characteristics (continued)

Pin Description

PIN		NAME	FUNCTION
MAX4430/MAX4431			
5 SOT23	8 SO		
1	6	OUT	Output
2	4	$V_{\text {EE }}$	Negative Power Supply
3	3	$\mathrm{IN}+$	Noninverting Input
4	2	IN-	Inverting Input
5	7	V_{CC}	Positive Power Supply
-	1,5,8	N.C.	No Connection. Not internally connected.

PIN	NAME	FUNCTION
MAX4432/MAX4433		
8 SO/8 μ MAX		
1	OUTA	Amplifier A Output
2	INA-	Amplifier A Inverting Input
3	INA+	Amplifier A Noninverting Input
4	VEE	Negative Power Supply
5	INB+	Amplifier B Noninverting Input
6	INB-	Amplifier B Inverting Input
7	OUTB	Amplifier B Output
8	VCC	Positive Power Supply

Dual-Supply, 180MHz, 16-Bit Accurate, Ultra-Low Distortion Op Amps

Detailed Description

The MAX4430-MAX4433 are wide-bandwidth, ultra-lowdistortion, voltage-feedback amplifiers. The MAX4430/ MAX4432 are internally compensated for unity gain. The MAX4431/MAX4433 are internally compensated for gains of $+2 \mathrm{~V} / \mathrm{V}$ or greater.
These amplifiers have ultra-fast 37ns (MAX4430/ MAX4432) 16-bit settling times, 100 dB SFDR at 1 MHz , and $4 \mathrm{Vp}-\mathrm{p}$ output swing with minimum 110dB openloop gain.

High-Speed ADC Input Driver Application The MAX4430-MAX4433 op amps are ideal for driving high-speed 14- to 16-bit ADCs. In most cases, these ADCs operate with a charge balance scheme, with capacitive loads internally switched on and off from the input. The driver used must withstand these changing capacitive loads while holding the signal amplitude stability consistent with the ADC's resolution and, at the same time, have a frequency response compatible with the sampling speed of the ADC (Figure 1).

Inverting and Noninverting Configurations

The circuits typically used for the inverting and noninverting configurations of the MAX4430-MAX4433 are shown in Figures 2 a and 2 b . The minimum unconditionally stable gain values are 1 for the MAX4430/MAX4432

Figure 1. Typical Application Circuit

Figure 2a. Noninverting Configuration
and 2 for the MAX4431/MAX4433. Use care in selecting the value for the resistor marked Rs in both circuits. From dynamic stability considerations (based on the part's frequency response and the input capacitance of the MAX4430-MAX4433), the maximum recommended value for R_{S} is 500Ω. In general, lower Rs values will yield a higher bandwidth and better dynamic stability, at the cost of higher power consumption, higher power dissipation in the IC, and reduced output drive availability. For a minimum Rs value, take into consideration that the current indicated as I_{F} is supplied by the output stage and must be discounted from the maximum output current to calculate the maximum current available to the load. If can be found using the following equation:

$$
I_{F}=V_{I N}(M A X) / R S
$$

If DC thermal stability is an important design concern, the Thevenin resistance seen by both inputs at DC must be balanced. This includes the resistance of the signal source and termination resistors if the amplifier signal input is fed from a transmission line. The capacitance associated with the feedback resistors must also be considered as a possible limitation to the available bandwidth or to the dynamic stability. Only resistors with small parallel capacitance specifications should be considered.

Applications Information

Layout and Power-Supply Bypassing

The MAX4430-MAX4433 have wide bandwidth and consequently require careful board layout. To realize the full AC performance of these high-speed amplifiers, pay careful attention to power-supply bypassing and board layout. The PC board should have a large lowimpedance ground plane that is as free of voids as possible. Do not use commercial breadboards. Keep signal lines as short and straight as possible. Observe high-frequency bypassing techniques to maintain the

Figure 2b. Inverting Configuration

Dual-Supply, 180MHz, 16-Bit Accurate, Ultra-Low Distortion Op Amps

Figure 3. Capacitive-Load Driving Circuit
amplifier's accuracy and stability. In general, use sur-face-mount components since they have shorter bodies and lower parasitic reactance. This will result in improved performance over through-hole components. The bypass capacitors should include 1 nF and/or $0.1 \mu \mathrm{~F}$ surface-mount ceramic capacitors between each supply pin and the ground plane, located as close to the package as possible. Place a $10 \mu \mathrm{~F}$ tantalum capacitor at the power supply's point of entry to the PC board to ensure the integrity of the incoming supplies. Input termination resistors and output back-termination resistors, if used, should be surface-mount types and should be placed as close to the IC pins as possible.

Driving Capacitive Loads

MAX4430-MAX4433 can drive capacitive loads. However, excessive capacitive loads may cause ringing or instability at the output as phase margin is reduced. Adding a small isolation resistor in series with the output capacitive load helps reduce the ringing but slightly increases gain error (see Typical Operating Characteristics and Figure 3).

Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX4431EUK-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{SOT} 23-5$
MAX4431ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX4432EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX4432ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX4433EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX4433ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO

Pin Configurations (continued)

Chip Information
TRANSISTOR COUNT: MAX4430/MAX4431: 103
MAX4432/MAX4433: 248

Dual－Supply，180MHz，16－Bit Accurate， Ultra－Low Distortion Op Amps

Package Information

Dual-Supply, 180MHz, 16-Bit Accurate, Ultra-Low Distortion Op Amps

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

