: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Low-Cost, High-Slew-Rate, Rail-to-Rail I/O Op Amps in SC70

Abstract

General Description The MAX4490/MAX4491/MAX4492 single/dual/quad, low-cost CMOS op amps feature Rail-to-Rail ${ }^{\circledR}$ input and output capability from either a single 2.7 V to 5.5 V supply or dual $\pm 1.35 \mathrm{~V}$ to $\pm 2.75 \mathrm{~V}$ supplies. These amplifiers exhibit a high slew rate of $10 \mathrm{~V} / \mu \mathrm{s}$ and a gain-bandwidth product of 10 MHz . They can drive $2 \mathrm{k} \Omega$ resistive loads to within 55 mV of either supply rail and remain unitygain stable with capacitive loads up to 300pF. The MAX4490 is offered in the ultra-small, 5-pin SC70 package, which is 50% smaller than the standard 5 -pin SOT23 package. Specifications for all parts are guaranteed over the automotive $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ temperature range.

Applications
Battery-Powered Instruments
Portable Equipment
Audio Signal Conditioning
Low-Power/Low-Voltage Applications
Sensor Amplifiers
RF Power Amplifier Control
High-Side/Low-Side Current Sensors
\qquad Features

- 2.7V to 5.5V Single-Supply Operation
- 10V/ μ s Slew Rate
- Rail-to-Rail Input Common-Mode Voltage Range
- Rail-to-Rail Output Voltage Swing
- 10MHz Gain-Bandwidth Product
- Unity-Gain Stable with Capacitive Loads Up to 300pF
- 50pA Input Bias Current
- Ultra-Small, 5-Pin SC70 Package (MAX4490)

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4490AXK-T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	5 SC70-5	AAB
MAX4490AUK-T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	5 SOT23-5	ADKQ
MAX4491AKA-T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SOT23-5	AADB
MAX4491AUA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-
MAX4492AUD	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 TSSOP	-
MAX4492ASD	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 SO	-

Pin Configurations/ Functional Diagrams

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

Low-Cost, High-Slew-Rate, Rail-to-Rail I/O Op Amps in SC70

ABSOLUTE MAXIMUM RATINGS

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0, V_{C M}=0, V_{\text {OUT }}=V_{D D} / 2, R_{L}=100 \mathrm{k} \Omega\right.$ connected to $V_{D D} / 2, T_{A}=T_{M I N}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

Note 1: All units production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over temperature guaranteed by design.
Note 2: Guaranteed by the Power-Supply Rejection Ratio (PSRR) test.
Note 3: Input Offset Voltage, Input Bias Current, and Input Offset Current are all tested and guaranteed at both ends of the commonmode range.

Low-Cost, High-Slew-Rate, Rail-to-Rail I/O Op Amps in SC70

Typical Operating Characteristics
$\left(V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\right.$ to $\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

OUTPUT SWING HIGH vs. TEMPERATURE

GAIN AND PHASE vs. FREQUENCY (WITH Cload)

SUPPLY CURRENT PER AMPLIFIER
vs. SUPPLY VOLTAGE

OUTPUT SWING LOW
vs. TEMPERATURE

LARGE-SIGNAL GAIN
vs. TEMPERATURE

INPUT OFFSET VOLTAGE
vs. TEMPERATURE

OP AMP GAIN AND PHASE
vs. FREQUENCY

POWER-SUPPLY REJECTION RATIO vs. FREQUENCY

Low-Cost, High-Slew-Rate, Rail-to-Rail I/O Op Amps in SC70

LARGE-SIGNAL TRANSIENT RESPONSE (INVERTING)

POWER-UP TRANSIENT RESPONSE

 Typical Operating Characteristics (continued)
$\left(V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\right.$ to $\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

SMALL-SIGNAL TRANSIENT RESPONSE (NONINVERTING)

LARGE-SIGNAL TRANSIENT RESPONSE
(NONINVERTING)

SMALL-SIGNAL TRANSIENT RESPONSE (INVERTING)

MAX4491/MAX4492 CROSSTALK vs. FREQUENCY

Low-Cost, High-Slew-Rate, Rail-to-Rail I/O Op Amps in SC70

Pin Description

PIN			NAME	
MAX4490	MAX4491	MAX4492		
1	-	-	IN+	Noninverting Input
2	4	11	VSS	Negative Supply Input. Connect to ground for single-supply operation.
3	-	-	IN-	Inverting Input
4	-	-	OUT	Amplifier Output
5	8	4	VDD	Positive Supply Input
-	3	3	INA+	Noninverting Input to Amplifier A
-	2	2	INA-	Inverting Input to Amplifier A
-	1	1	OUTA	Amplifier A Output
-	5	5	INB+	Noninverting Input to Amplifier B
-	6	6	INB-	Inverting Input to Amplifier B
-	7	7	OUTB	Amplifier B Output
-	-	10,12	INC+, IND+	Noninverting Inputs to Amplifiers C and D
-	-	9,13	INC-, IND-	Inverting Inputs to Amplifiers C and D
-	-	8,14	OUTC, OUTD	Amplifiers C and D Outputs

Detailed Description

Rail-to-Rail Input Stage
The MAX4490/MAX4491/MAX4492 CMOS operational amplifiers have parallel-connected N - and P -channel differential input stages that combine to accept a com-mon-mode range extending to both supply rails. The Nchannel stage is active for common-mode input voltages typically greater than (VSS +1.2V), and the Pchannel stage is active for common-mode input voltages typically less than (VDD-1.2V).

Rail-to-Rail Output Stage The MAX4490/MAX4491/MAX4492 CMOS operational amplifiers feature class-AB push-pull output stages that can drive a $100 \mathrm{k} \Omega$ load to within 1.5 mV of either supply rail. Short-circuit output current is typically $\pm 50 \mathrm{~mA}$.
Figures 1a and 1b show the typical temperature dependence of output source and sink currents, respectively, for three fixed values of (VDD - $\mathrm{VOH}_{\mathrm{O}}$) and ($\mathrm{VOL}-\mathrm{V}_{\mathrm{SS}}$). For example, at $\mathrm{VDD}=5.0 \mathrm{~V}$, the load currents that maintain $(\mathrm{VDD}-\mathrm{VOH})=100 \mathrm{mV}$ and $(\mathrm{VOL}-\mathrm{VSS})=100 \mathrm{mV}$ at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ are 2.2 mA and 3.3 mA , respectively, when
the load is connected to $\mathrm{VDD} / 2$. Consistent resistivedrive capability is $(2.5-0.1) / 2.2=1.1 \mathrm{k} \Omega$. For the same application, resistive-drive capability is $2.2 \mathrm{k} \Omega$ when the load is connected to V_{DD} or V_{SS}.

Applications Information

Power-Supply Considerations
The MAX4490/MAX4491/MAX4492 operate from a single 2.7 V to 5.5 V supply or from dual $\pm 1.35 \mathrm{~V}$ to $\pm 2.75 \mathrm{~V}$ supplies with typically $800 \mu \mathrm{~A}$ supply current per amplifier. A high power-supply rejection ratio of 100 dB allows for extended operation from a decaying battery voltage, thereby simplifying designs for portable applications. For single-supply operation, bypass the power supply with a $0.1 \mu \mathrm{~F}$ ceramic capacitor placed close to the VDD pin. For dual-supply operation, bypass each supply to ground.

Input Capacitance
One consequence of the parallel-connected differential input stages for rail-to-rail operation is a relatively large input capacitance CIN (typically 5pF). This introduces a

Low-Cost, High-Slew-Rate, Rail-to-Rail I/O Op Amps in SC70

pole at frequency $\left(2 \pi R^{\prime} C\right.$ IN $)-1$, where R^{\prime} is the parallel combination of the gain-setting resistors for the inverting or noninverting amplifier configuration (Figure 2). If the pole frequency is less than or comparable to the unity-gain bandwidth $(10 \mathrm{MHz})$, the phase margin will be reduced, and the amplifier will exhibit degraded AC performance through either ringing in the step response or sustained oscillations. The pole frequency is 10 MHz when $\mathrm{R}^{\prime}=3.2 \mathrm{k} \Omega$. To maximize stability, $\mathrm{R}^{\prime}<3 \mathrm{k} \Omega$ is recommended.
Applications that require rail-to-rail operation with minimal loading (for small VDD - VOH and VOL - VSS) will typically require R^{\prime} values $>3 k \Omega$. To improve step response under these conditions, connect a small

Figure 1a. Output Source Current vs. Temperature

Figure 1b. Output Sink Current vs. Temperature
capacitor Cf between the inverting input and output. Choose Cf as follows:

$$
\mathrm{C}_{\mathrm{f}}=5\left(\mathrm{R} / \mathrm{Rf}_{\mathrm{f}}\right)[\mathrm{pf}]
$$

where R_{f} is the feedback resistor and R is the gain-setting resistor (Figure 2).

Figure 3 shows the step response for a noninverting amplifier subject to $R^{\prime}=4 k \Omega$ with and without the $C f$ feedback capacitor.

NONINVERTING

Figure 2. Inverting and Noninverting Amplifier with Feedback Compensation

Low-Cost, High-Slew-Rate, Rail-to-Rail I/O Op Amps in SC70

Driving Capacitive Loads
In conjunction with op amp output resistance, capacitive loads introduce a pole frequency that can reduce phase margin and lead to unstable operation. The MAX4490/MAX4491/MAX4492 drive capacitive loads up to 300 pF without significant degradation of step response and slew rate (Figure 4). Capacitive-Load Stability (page 1) shows regions of stable and marginally stable (step overshoot <10\%) operation for different combinations of capacitive and resistive loads.

Figure 3. Step Response With and Without Feedback Compensation

Improve stability for large capacitive loads by adding an isolation resistor (typically 10Ω) in series with the output (Figure 5). Note that the isolation resistor forms a voltage divider with potential for gain error.

Chip Information

MAX4490 TRANSISTOR COUNT: 60 MAX4491 TRANSISTOR COUNT: 120 MAX4492 TRANSISTOR COUNT: 240 SUBSTRATE CONNECTED TO VSS

Figure 4. Step Response With and Without Capacitive Loading

Figure 5. Isolation Resistor for Large Capacitive Loads

Functional Diagrams (continued)

Pin Configurations/

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

