: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Dual-Supply, Low-On-Resistance, SPST, CMOS Analog Switches

- Available in SOT23-5 Package - $\pm 1 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ Dual-Supply Operation - Guaranteed On-Resistance: 20Ω with $\pm 5 \mathrm{~V}$ Supplies - Guaranteed Low Off-Leakage Currents: 1 nA at $+25^{\circ} \mathrm{C}$ 20 nA at $+85^{\circ} \mathrm{C}$ - Guaranteed Low On-Leakage Currents: $2 n A$ at $+25^{\circ} \mathrm{C}$ 40 nA at $+85^{\circ} \mathrm{C}$ - Low Charge Injection: 20pC Max - Fast Switching Speed: toN $=100 \mathrm{~ns}$, toff $=75 \mathrm{~ns}$ - ton > toff at $\pm 5 \mathrm{~V}$	

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX4516CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX4516CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX4516CUK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	5 SOT23-5
MAX4516C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$

Ordering Information continued at end of data sheet. *Contact factory for dice specifications.

Pin Configurations

Dual-Supply, Low-On-Resistance, SPST, CMOS Analog Switches

ABSOLUTE MAXIMUM RATINGS

(Voltages Referenced to V-)

Note 1: Voltages exceeding $\mathrm{V}+$ or V - on any signal terminal are clamped by internal diodes. Limit forward-diode current to maximum current rating.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS— $\pm 5 \mathrm{~V}$ Supply
$\left(\mathrm{V}_{+}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V}$ to $-5.5 \mathrm{~V}, \mathrm{~V}_{I N H}=3.5 \mathrm{~V}, \mathrm{~V}_{I N L}=1.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

Dual-Supply, Low-On-Resistance, SPST, CMOS Analog Switches

ELECTRICAL CHARACTERISTICS— ± 5 V Supply (continued)

$\left(\mathrm{V}_{+}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V}$ to $-5.5 \mathrm{~V}, \mathrm{~V} I N H=3.5 \mathrm{~V}, \mathrm{~V} I N L=1.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{TMAX}_{\mathrm{M}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS			$\begin{aligned} & \text { TYP } \\ & \text { (Note 2) } \end{aligned}$	MAX	UNITS
SWITCH DYNAMIC CHARACTERISTICS							
Turn-On Time	ton	Figure 1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		40	100	ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			150	
Turn-Off Time	toff	Figure 1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		30	75	ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			125	
Charge Injection (Note 4)	Q	$\begin{aligned} & C_{L}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{NO}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \text { Figure } 2 \end{aligned}$			10	20	pC
Off Isolation	VISO	$\begin{aligned} & R_{L}=50 \Omega, C_{L}=15 \mathrm{pF}, \\ & V_{N O}=1 V_{R M S}, f=100 \mathrm{kHz}, T_{A}=+25^{\circ} \mathrm{C}, \text { Figure } 3 \end{aligned}$			-86		dB
NO or NC Off Capacitance	C_{NO} (OFF), $\mathrm{C}_{\mathrm{NO}(\mathrm{ON})}$	$f=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Figure 4			9		pF
COM Off Capacitance	CCOM(OFF)	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Figure 4			9		pF
COM On Capacitance	$\mathrm{CCOM}(\mathrm{ON})$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Figure 4			22		pF
POWER SUPPLY							
Power-Supply Range				± 1		± 6	V
V+ Supply Current	$1+$	V IN $=0 \mathrm{~V}$ or V_{+}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		40	125	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to TMAX			200	
V- Supply Current	I-	V IN $=0 \mathrm{~V}$ or V_{+}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-125	-30		$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	200			

Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
Note 3: Leakage parameters are 100% tested at maximum-rated hot operating temperature, and are guaranteed by correlation at $+25^{\circ} \mathrm{C}$.
Note 4: Guaranteed, not production tested.
Note 5: SOT packaged parts are 100% tested at $+25^{\circ} \mathrm{C}$. Limits at maximum and minimum rated temperature are guaranteed by design and correlation limits at $+25^{\circ} \mathrm{C}$.

Dual-Supply, Low-On-Resistance, SPST, CMOS Analog Switches

MAX4516/MAX4517

Dual-Supply, Low-On-Resistance, SPST, CMOS Analog Switches

Pin Description					
PIN				NAME	FUNCTION
MAX4516		MAX4517			
DIP/SO	SOT23-5	DIP/SO	SOT23-5		
1	1	1	1	COM	Analog Switch Common Terminal
2, 3, 5	-	2, 3, 5	-	N.C.	No Connect (not internally connected)
4	5	4	5	V_{+}	Positive Supply-Voltage Input (analog and digital)
6	4	6	4	IN	Digital Control Input
7	3	7	3	V-	Negative Supply-Voltage Input (analog and digital)
8	2	-	-	NO	Analog Switch (normally open)
-	-	8	2	NC	Analog Switch (normally closed)

Note: NO, NC, and COM pins are identical and interchangeable. Any may be considered as an input or an output; signals pass equally well in both directions.

Applications Information

Power-Supply Considerations
The MAX4516/MAX4517 operate with power-supply voltages from $\pm 1 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$, but are tested and guaranteed only with $\pm 5 \mathrm{~V}$ supplies. Similarly, they will operate with a single +2 V to +12 V supply, but logic-level inputs can shift with higher voltages. The pin-compatible MAX4514/MAX4515 are recommended for use with a single supply.
The MAX4516/MAX4517 construction is typical of most CMOS analog switches, except that they have only two supply pins: V_{+}and V -. V_{+}and V - drive the internal CMOS switches and set their analog voltage limits. Reverse ESD-protection diodes are internally connected between each analog-signal pin and both V_{+}and V_{-}. One of these diodes conducts if any analog signal exceeds $\mathrm{V}+$ or V -.
Virtually all the analog leakage current comes from the ESD diodes to $\mathrm{V}+$ or V -. Although the ESD diodes on a given signal pin are identical and therefore fairly well balanced, they are reverse biased differently. Each is biased by either $\mathrm{V}+$ or V - and the analog signal. This means their leakages will vary as the signal varies. The difference in the two diode leakages to the V_{+}and V pins constitutes the analog-signal-path leakage current. All analog leakage current flows between each pin and one of the supply terminals, not to the other switch terminal. This is why both sides of a given switch can show leakage currents of the same or opposite polarity.
There is no connection between the analog-signal paths and $\mathrm{V}+$ or V -.

V+ and V - also power the internal logic and logic-level translators. The logic-level translators convert the logic levels to switched $V+$ and V - signals to drive the analog signal gates.

Logic-Level Thresholds
The logic-level thresholds are CMOS-compatible but not TTL-compatible. Since these parts have no ground pin, the logic-level threshold is referenced to $\mathrm{V}+$. The threshold limits are $\mathrm{V}_{+}=-1.5 \mathrm{~V}$ and $\mathrm{V}_{+}=-3.5 \mathrm{~V}$ for $\mathrm{V}+$ levels between +6 V and +3 V . When $\mathrm{V}+=+2 \mathrm{~V}$, the logic threshold is approximately 0.6 V .
Do not connect the MAX4516/MAX4517's V+ to +3V and then connect the logic-level pins to logic-level signals that operate from a +5 V supply. TTL levels can exceed +3 V and violate the absolute maximum ratings, damaging the part and/or external circuits.

High-Frequency Performance In 50Ω systems, signal response is reasonably flat up to 250 MHz (see Typical Operating Characteristics). Above 20 MHz , the on response has several minor peaks that are highly layout dependent. The problem is not in turning the switch on; it's in turning it off. The offstate switch acts like a capacitor and passes higher frequencies with less attenuation. At 10 MHz , off isolation is about -48 dB in 50Ω systems, decreasing (approximately 20 dB per decade) as frequency increases. Higher circuit impedances also cause off isolation to decrease. Off isolation is about 3dB above that of a bare IC socket, and is due entirely to capacitive coupling.

Dual-Supply, Low-On-Resistance, SPST, CMOS Analog Switches

Figure 1. Switching Times

Figure 2. Charge Injection

Dual-Supply, Low-On-Resistance, SPST, CMOS Analog Switches

Figure 3. Off Isolation, On Loss, and Crosstalk

_Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX4516EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX4516ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX4516EUK	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23-5
MAX4516MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP**
MAX4517CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX4517CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX4517CUK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	5 SOT23-5
MAX4517C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
MAX4517EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX4517ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX4517EUK	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23-5
MAX4517MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP**

*Contact factory for dice specifications.
**Contact factory for availability.

Figure 4. NO, NC, and COM Capacitance
\qquad

TRANSISTOR COUNT: 36 SUBSTRATE IS INTERNALLY CONNECTED TO V+

Dual-Supply, Low-On-Resistance, SPST, CMOS Analog Switches

MAX4516/MAX4517

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
8 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

