imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

The MAX4530/MAX4531/MAX4532 are low-voltage, CMOS analog ICs configured as an 8-channel multiplexer (mux) (MAX4530), two 4-channel muxes (MAX4531), and three single-pole/double-throw switches (MAX4532). These devices are pin compatible with the industry-standard 74HC4351/74HC4352/ 74HC4353. All devices have two complementary switch-enable inputs and address latching.

The MAX4530/MAX4531/MAX4532 operate from a single supply of +2V to +12V, or from dual supplies of ±2V to ±6V. On-resistance (150 Ω max) is matched between switches to 8 Ω max. Each switch can handle rail-to-rail analog signals. Off-leakage current is only 1nA at T_A = +25°C and 50nA at T_A = +85°C.

All digital inputs have 0.8V and 2.4V logic thresholds, ensuring both TTL- and CMOS-logic compatibility when using $\pm 5V$ or a single $\pm 5V$ supply.

Applications

Battery-Operated Equipment Data Acquisition Test Equipment Avionics Networking ATE Equipment Audio-Signal Routing

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

Pin Compatible with 74HC4351/74HC4352/74HC4353

- ±2.0V to ±6V Dual Supplies
 +2.0V to +12V Single Supply
- 75Ω Signal Paths with ±5V Supplies
 150Ω Signal Paths with +5V Supply
- ♦ Rail-to-Rail[®] Signal Handling
- ton and toff = 150ns and 120ns at ±4.5V
- ♦ <1µW Power Consumption</p>
- >2kV ESD Protection per Method 3015.7
- TTL/CMOS-Compatible Inputs
- Small, 20-Pin SSOP/SO/DIP Packages

_Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX4530CPP	0°C to +70°C	20 Plastic DIP
MAX4530CWP	0°C to +70°C	20 SO
MAX4530CAP	0°C to +70°C	20 SSOP
MAX4530C/D	0°C to +70°C	Dice*

Ordering Information continued at end of data sheet. *Contact factory for availability.

Pin Configurations

_ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Features

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to V- V+0.3 to +13V	Continuous Power Dissipation (T _A = +70°C) 20-Pin Plastic DIP (derate 11.11mW/°C
Voltage into Any Terminal (Note 1)	above +70°C)889mW
0.3 to (V+ + 0.3V) or ±20mA (whichever occurs first)	20-Pin SO (derate 10.00mW/°C above +70°C)800mW
Continuous Current into Any Terminal±20mA	20-Pin SSOP (derate 8.00mW/°C above +70°C)640mW
Peak Current, NO, NC, or COM_	Operating Temperature Ranges
(pulsed at 1ms, 10% duty cycle)±40mA	MAX453_C_P0°C to +70°C
ESD per Method 3015.7>2000V	MAX453_E_P40°C to +85°C
	Storage Temperature Range65°C to +150°C

Note 1: Voltages exceeding V+ or V- on any signal terminal are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

(V+ = +5V ±10%, V- = -5V ±10%, GND = 0, VADD_H = VEN_H = $V_{\overline{LE}}$ = 2.4V, VADD_L = VEN_L = 0.8V, TA = TMIN to TMAX, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS				TYP (Note 2)	MAX	UNITS
SWITCH								
Analog-Signal Range	V _{COM} , V _{NO} , V _{NC} _	(Note 3)			V-		V+	V
Channel On-Resistance	BON	$I_{NO} = 2mA, V_{COM} =$	±3.5V,	$T_A = +25^{\circ}C$		45	75	0
	HON	V + = +4.5V, V - = -4.5V	ōV	$T_A = T_{MIN}$ to T_{MAX}			100	32
On-Resistance Matching	ABON	$I_{NO} = 2mA, V_{COM} =$	±4.5V,	$T_A = +25^{\circ}C$		1	8	0
Between Channels (Note 4)		V + = +4.5V, V - = -4.5V	5V	$T_A = T_{MIN}$ to T_{MAX}			12	22
On-Resistance Flatness		$I_{NO} = 2mA; V_{COM} = -3$	V, 0V, +3V;	$T_A = +25^{\circ}C$		4	10	0
(Note 5)	FLAT(UN)	$V_{+} = 5V; V_{-} = -5V$ $T_{A} = T_{MIN} \text{ to } T_{MAX}$	$T_A = T_{MIN}$ to T_{MAX}			13	32	
NO-Off Leakage Current		$V_{NO} = \pm 4.5 V, V_{COM}$	$V_{NO} = \pm 4.5V, V_{COM} = 4.5V, T_{A} = +25^{\circ}C$ V+ = 5.5V, V- = -5.5V T_{A} = T_{MIN} to T_{MAX}	$T_A = +25^{\circ}C$	-1	0.01	1	nΑ
(Note 6)	INO(OFF)	V+ = 5.5V, V- = -5.5V		$T_A = T_{MIN}$ to T_{MAX}	-10		10	
		$V_{COM} = \pm 4.5V,$ $V_{NO} = \pm 4.5V$	MAX4530	$T_A = +25^{\circ}C$	-2	0.01	2	
COM-Off Leakage Current		$V_{\rm HO} = -4.5V,$ V+ = 5.5V, V- = -5.5V		$T_A = T_{MIN}$ to T_{MAX}	-100		100	nA
(Note 6)		$V_{COM} = \pm 4.5V,$ $V_{NO} = \pm 4.5V$	MAX4531/	$T_A = +25^{\circ}C$	-1	0.01	1	
		V+ = 5.5V, V- = -5.5V	MAX4532	$T_A = T_{MIN}$ to T_{MAX}	-50		50	
		$V_{COM} = \pm 4.5 V_{\odot}$	MAX/530	$T_A = +25^{\circ}C$	-2	0.01	2	
COM-On Leakage Current		V + = 5.5V,	101/00-000	$T_A = T_{MIN}$ to T_{MAX}	-100		100	nΔ
(Note 6)	ICOIVI(ON)	V- = -5.5V	MAX4531/	$T_A = +25^{\circ}C$	-1	0.01	1	
			MAX4532	$T_A = T_{MIN}$ to T_{MAX}	-50		50	

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

 $(V_{+} = +5V \pm 10\%, V_{-} = -5V \pm 10\%, GND = 0, V_{ADD_H} = V_{EN_H} = V_{\overline{LE}} = 2.4V, V_{ADD_L} = V_{EN_L} = 0.8V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS			
DIGITAL LOGIC INPUT										
Logic High Threshold	V _{ADD_H} , V _{EN_H} , V <u>LE</u>		$T_A = T_{MIN}$ to T_{MAX}		1.5	2.4	V			
Logic Low Threshold	VADD_L, VEN_L, VEE		$T_A = T_{MIN}$ to T_{MAX}	0.8	1.5		V			
Input Current with Input Voltage High	IADD_H, IEN_H, ITE	$V_{ADD_H} = 2.4V, V_{ADD_L} = 0.8V$		-0.1	0.01	0.1	μA			
Input Current with Input Voltage Low	I _{ADD_L} , I _{EN_L} , I <u>TE</u>	$V_{ADD_H} = 2.4V, V_{ADD_L} = 0.8V$		-0.1		0.1	μΑ			
SUPPLY										
Power-Supply Range	V+, V-		-	±2.0		±6	V			
Positive Supply Current	14	$V_{EN_{-}} = V_{ADD_{-}} = V_{\overline{LE}} = 0V/V+,$	$T_A = +25^{\circ}C$	-1	0.001	1				
	I T	V+ = 5.5V, V- = -5.5V	$T_A = T_{MIN}$ to T_{MAX}	-10		10	μ/ (
Negative Supply	I-	$V_{EN} = V_{ADD} = V_{\overline{LE}} = 0V/V+,$	$T_A = +25^{\circ}C$	-1	0.001	1	μA			
Current	•	V + = 5.5V, V - = -5.5V	$T_A = T_{MIN}$ to T_{MAX}	-10		10	μ/ (
LOND Supply Current		$V_{EN_{-}} = V_{ADD_{-}} = V_{\overline{LE}} = 0V/V+,$	T _A = +25°C	-1		1	114			
	IGND	V+ = 5.5V, V- = -5.5V	$T_A = T_{MIN}$ to T_{MAX}	-10		10	μπ			
DYNAMIC										
Transition Time	trouvo	Figure 1	$T_A = +25^{\circ}C$		60	150	20			
	URANS		$T_A = T_{MIN}$ to T_{MAX}			250	- 115			
Break-Before-Make Interval	t _{BBM}	Figure 3	T _A = +25°C	4	10		ns			
		Firme 0	T _A = +25°C		10	150				
Enable rum-On rime	LON(EN)	Figure 2	$T_A = T_{MIN}$ to T_{MAX}			250	ns			
	1	Firmer O	$T_{A} = +25^{\circ}C$		40	100				
Enable Turn-Off Time	^t OFF(EN)	Figure 2	$T_A = T_{MIN}$ to T_{MAX}			150	ns			
Setup Time, Channel			T _A = +25°C	50						
Select to Latch Enable	ts	Figure 4	$T_A = T_{MIN}$ to T_{MAX}	60			ns			
Hold Time. Latch Enable			T _A = +25°C	0						
to Channel Select	tH	Figure 6	$T_A = T_{MIN}$ to T_{MAX}	0			ns			
Pulse Width.			T _A = +25°C	60						
Latch Enable	tMPW	Figure 5	$T_A = T_{MIN}$ to T_{MAX}	70			ns			
Charge Injection (Note 3)	Q	$C_L = 1nF$, $V_{NO} = 0V$, Figure 6	T _A = +25°C		1.5	5	рС			
Off Isolation (Note 7)	VISO	$V_{EN2} = 0V, R_L = 1k\Omega,$ f = 1MHz	T _A = +25°C		-65		dB			
Crosstalk Between Channels	VCT	$ \begin{array}{l} V\overline{\text{EN1}}=0\text{V}, \text{V}_{\text{EN2}}=2.4\text{V}, \\ f=1\text{MHz}, \text{V}_{\text{GEN}}=1\text{V}_{\text{P}\text{-P}}, \\ \text{R}_{\text{L}}=1\text{k}\Omega \end{array} $	T _A = +25°C		-92		dB			

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

(V+ = +5V ±10%, V- = -5V ±10%, GND = 0, V_{ADD_H} = V_{EN_H} = V_{LE} = 2.4V, V_{ADD_L} = V_{EN_L} = 0.8V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted.)

PARAMETER	SYMBOL	CC	ONDITIONS		MIN TYP MAX (Note 2)	UNITS	
Distortion, Total Harmonic	THD			$T_A = +25^{\circ}C$	0.025	0/0	
Logic Input Capacitance	C _{IN}	f = 1MHz		T _A = +25°C	3		
NO-Off Capacitance	C _{NO(OFF)}	$f = 1MHz, V_{EN} = V_{COM} = 0V$		$T_A = +25^{\circ}C$	3	рF	
		f 1ML	MAX4530		15		
COM-Off Capacitance	CCOM(OFF)	V = V = V = V = 0V	$TMHZ,$ MAX4531 $T_A = +25^{\circ}C$	1 $T_A = +25^{\circ}C$ 9		pF	
			MAX4532		6		
		f = 1MHz,	MAX4530		26		
COM-On Capacitance	CCOM(ON)	$V_{EN1} = V_{COM} = 0V,$	MAX4531	T _A = +25°C	20	рF	
		$V_{EN2} = 2.4V$	MAX4532		17		

ELECTRICAL CHARACTERISTICS—Single +5V Supply

 $(V + = +5V \pm 10\%, V - = 0, GND = 0, V_{ADD_H} = V_{EN_H} = V_{\overline{LE}} = 2.4V, V_{ADD_L} = V_{EN_L} = 0.8V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP (Note 2)	MAX	UNITS
SWITCH								
Analog Signal Range	V _{COM} , V _{NO}	(Note 3)			0		V+	V
On-Besistance	Bon	$I_{NO} = 1$ mA, $V_{COM} = 3$.	5V,	$T_A = +25^{\circ}C$		80	150	0
On-nesistance	HON	V + = 4.5V		$T_A = T_{MIN}$ to T_{MAX}			200	22
On-Resistance Matching Between	ABON	I _{NO} = 1mA, V _{COM} = 3.	5V,	$T_A = +25^{\circ}C$		2	15	0
Channels (Notes 3, 4)		V+ = 4.5V		$T_A = T_{MIN}$ to T_{MAX}			20	
On-Resistance Flatness	R _{FLAT}	$I_{NO} = 1mA; V_{COM} = 3V, 2V, 1V;$ V+ = 5V		$T_A = +25^{\circ}C$		10		Ω
NO-Off Leakage		V _{NO} = 4.5V; V _{COM} = 4	.5V, 1V;	T _A = +25°C	-1		1	n۸
Current (Note 8)	INO(OFF)	$V_{+} = 5.5V$		$T_A = T_{MIN}$ to T_{MAX}	-10		10	ПА
			MAX4530	$T_A = +25^{\circ}C$	-2		2	
COM-Off Leakage		$V_{COM} = 4.5V, 1V;$	1017774000	$T_A = T_{MIN}$ to T_{MAX}	-100		100	nΔ
Current (Note 8)	ICOM(OFF)	$V_{\rm NO} = 10, 4.00,$ V+ = 5.5V	MAX4531/	$T_A = +25^{\circ}C$	-1		1	
			MAX4532		-50		50	
			MAY4530	T _A = +25°C	-2		2	
COM-On Leakage	loowow		IVIAA4330	$T_A = T_{MIN}$ to T_{MAX}	-100		100	n۸
Current (Note 8)	COM(ON)		MAX4531/	$T_A = +25^{\circ}C$	-1		1	
			MAX4532	$T_A = T_{MIN}$ to T_{MAX}	-50		50	

ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)

 $(V + = +5V \pm 10\%, V = 0, GND = 0, V_{ADD_H} = V_{EN_H} = V_{\overline{LE}} = 2.4V, V_{ADD_L} = V_{EN_L} = 0.8V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	МАХ	UNITS
DIGITAL LOGIC INPUT		-					
Logic-High Threshold	V _{ADD_H} , V _{EN_H} , V _{LE}		$T_A = T_{MIN}$ to T_{MAX}		1.5	2.4	V
Logic-Low Threshold	V _{ADD_L} , V _{EN_L} , V <u>LE</u>		$T_A = T_{MIN}$ to T_{MAX}	0.8	1.5		V
Input Current with Input Voltage High	I _{ADD_H} , I _{EN_H} , I <u>LE</u>	$V_{H} = 2.4V, V_{L} = 0.8V$		-0.1		0.1	μA
Input Current with Input Voltage Low	I _{ADD_L} , I _{EN_L} , I <u>LE</u>	$V_{H} = 2.4V, V_{L} = 0.8V$		-0.1		0.1	μA
SUPPLY	I	1					
Power-Supply Range				2.0		12	V
Positivo Supply Current	L.	$V_{EN} = V_{ADD} = V_{LE} = 0V, V+;$	$T_A = +25^{\circ}C$	-1.0		1.0	
	1+	V + = 5.5V; V - = 0V	$T_A = T_{MIN}$ to T_{MAX}	-10		10	
Negative Supply	I_	$V_{EN} = V_{ADD} = V_{\overline{LE}} = 0V, V+;$	$T_A = +25^{\circ}C$	-1.0		1.0	
Current	1-	V + = 5.5V; V - = 0V	$T_A = T_{MIN}$ to T_{MAX}	-10		10	μΑ
LOND Supply Current		$V_{EN} = V_{ADD} = V_{\overline{LE}} = 0V, V+;$	$T_A = +25^{\circ}C$	-1.0		1.0	
	IGND	V + = 5.5V; V - = 0V	$T_A = T_{MIN}$ to T_{MAX}	-10		10	μ/ (
DYNAMIC	1						
Transition Time	TRANS	Figure 1. VNO = 3V	$T_A = +25^{\circ}C$		90	200	ns
			$T_A = T_{MIN}$ to T_{MAX}			250	
Break-Before-Make Interval	t _{BBM}	Figure 3 (Note 3)	$T_A = +25^{\circ}C$	10	20		ns
Enable Turn-On Time	tonurnu	Eiguro 2	$T_A = +25^{\circ}C$		100	200	D 0
(Note 3)	UN(EN)		$T_A = T_{MIN}$ to T_{MAX}			250	115
Enable Turn-Off Time		Figure 3	$T_A = +25^{\circ}C$		40	100	ne
(Note 3)	UFF(EN)		$T_A = T_{MIN}$ to T_{MAX}			125	115
Set-Up Time, Channel	te	Figure 7	$T_A = +25^{\circ}C$	50			ns
Select to Latch Enable	13		$T_A = T_{MIN}$ to T_{MAX}	60			113
Hold Time, Latch Enable	tu	Figure 7	$T_A = +25^{\circ}C$	0			ns
to Channel Select	41		$T_A = T_{MIN}$ to T_{MAX}	0			
Pulse Width, Latch	tMPW	Figure 7	$T_A = +25^{\circ}C$	60			ns
Enable	-1411 VV		$T_A = T_{MIN}$ to T_{MAX}	70			
Charge Injection (Note 3)	Q	Figure 7, C_L = 1nF, V_{NO} = 0V	$T_A = +25^{\circ}C$		1.5	5	рC

ELECTRICAL CHARACTERISTICS—Single +3V Supply

 $(V+ = +5V \pm 10\%, V- = 0, GND = 0, V_{ADD_H} = V_{EN_H} = V_{\overline{LE}} = 2.4V, V_{ADD_L} = V_{EN_L} = 0.8V, T_A = T_{MIN}$ to T_MAX, unless otherwise noted.)

		1					
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	МАХ	UNITS
SWITCH							
Analog Signal Range	Vanalog	(Note 3)		0		V+	V
On-Besistance	Box	I _{NO} = 1mA, V _{COM} = 1.5V,	$T_A = +25^{\circ}C$		220	500	0
On-mesistance	TON	V + = 2.7V	$T_A = T_{MIN}$ to T_{MAX}			600	22
DYNAMIC				-			
Transition Time (Note 3)	t TRANS	Figure 1, V _{IN} = 2.4V, V _{NO1} = 1.5V, V _{NO8} = 0V	$T_A = +25^{\circ}C$		150	350	ns
Enable Turn-On Time (Note 3)	ton(en)	Figure 3, V_{INH} = 2.4V, V_{INL} = 0V, V_{NO1} = 1.5V	$T_A = +25^{\circ}C$		150	350	ns
Enable Turn-Off Time (Note 3)	t _{OFF(EN)}	Figure 3, V_{INH} = 2.4V, V_{INL} = 0V, V_{NO1} = 1.5V	$T_A = +25^{\circ}C$		60	150	ns
Set-Up Time, Channel Select to Latch Enable)	ts	(Note 3)	T _A = +25°C	100			ns
Hold Time, Latch Enable to Channel Select	t _H	(Note 3)	$T_A = +25^{\circ}C$	0			ns
Pulse Width, Latch Enable	t _{MPW}	(Note 3)	$T_A = +25^{\circ}C$	120			ns

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.

Note 3: Guaranteed by design.

Note 4: $\Delta R_{ON} = R_{ON}(max) - R_{ON}(min)$.

Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges, i.e., V_{NO} = 3V to 0V and 0V to -3V.

Note 6: Leakage parameters are 100% tested at maximum-rated hot-operating temperature, and guaranteed by correlation at $T_A = +25^{\circ}C$.

Note 7: Worst-case isolation is on channel 4 because of its proximity to the COM pin. Off isolation = 20log V_{COM} / V_{NO}, V_{COM} = output, V_{NO} = input to off switch.

Note 8: Leakage testing at single supply is guaranteed by correlation testing with dual supplies.

Typical Operating Characteristics

 $(T_A = +25^{\circ}C, unless otherwise noted.)$

Pin Description

	PIN		NAME	FUNCTION
MAX4530	MAX4531	MAX4532		FUNCTION
1, 2, 5, 6, 16, 17, 18, 19	_	—	NO0-NO7	Analog Switch Inputs 0–7
	1, 2, 5, 6		NO0B-NO3B	Analog Switch "B" Inputs 0-3
—		1	NOB	Analog Switch "B" Normally Open Input
—		2	NCB	Analog Switch "B" Normally Closed Input
3, 14	3, 14	3, 14	N.C.	Not Internally Connected
4		—	COM	Analog Switch Common
—	4	19	COMB	Analog Switch "B" Common
—		4	NOA	Analog Switch "A" Normally Open Input
—	17	5	COMA	Analog Switch "A" Common
_		6	NCA	Analog Switch "A" Normally Closed Input
7	7	7	EN1	Enable Logic Input #1 (see Truth Table).
8	8	8	EN2	Enable Logic Input #2 (see Truth Table).
9	9	9	V-	Negative Analog Supply Voltage Input. Connect to GND for single supply operation.
10	10	10	GND	Negative Digital Supply Voltage Input. Connect to digital ground. (Analog signals have no ground
11	11	11	LE	Address Latch Logic Input (see Truth Table).
12	12	12	ADDA	Address "A" Logic Input (see Truth Table).
13	13	13	ADDB	Address "B" Logic Input (see Truth Table).
15		15	ADDC	Address "C" Logic Input (see Truth Table).
—	15, 16, 18, 19	_	NO0A-NO3A	Analog Switch "A" Inputs 0–3
—		16	NCC	Analog Switch "C" Normally Closed Input
—	—	17	NOC	Analog Switch "C" Normally Open Input
_	—	18	COMC	Analog Switch "C" Common
20	20	20	V+	Positive Analog and Digital Supply-Voltage Input

NO_, NC_, and COM_ pins are identical and interchangeable. Either may be considered as an input or output; signals pass equally well in both directions.

Applications Information

Power-Supply Considerations

Overview

The MAX4530/MAX4531/MAX4532 construction is typical of most CMOS analog switches. They have three supply pins: V+, V-, and GND. V+ and V- drive the internal CMOS switches and set the limits of the analog voltage on any switch. Reverse ESD-protection diodes are internally connected between each analog-signal pin and both V+ and V-. One of these diodes conducts if any analog signal exceeds V+ or V-. During normal operation, these and other reverse-biased ESD diodes leak, forming the only current drawn from V+ or V-.

Virtually all of the analog leakage current comes from the ESD diodes. Although the ESD diodes on a given signal pin are identical and therefore fairly well balanced, they are reverse-biased differently. Each is biased by either V+ or V- and the analog signal. This means their leakages vary as the signal varies. The difference in the two diode leakages to the V+ and Vpins constitutes the analog-signal-path leakage current. All analog leakage current flows between each pin and one of the supply terminals, not to the other switch terminal. For this reason, both sides of a given switch can show leakage currents of either the same or opposite polarity.

The analog-signal paths and GND are not connected.

V+ and GND power the internal logic and logic-level translators, and set both the input and output logic limits. The logic-level translators convert the logic levels into switched V+ and V- signals to drive the analog signals' gates. This drive signal is the only connection between the logic supplies and signals and the analog supplies. V+ and V- have ESD-protection diodes to GND.

The logic-level thresholds are TTL/CMOS compatible when V+ = +5V. As V+ rises, the threshold increases slightly, so when V+ reaches +12V, the threshold is about 3.1V—above the TTL guaranteed, high-level minimum of 2.8V, but still compatible with CMOS outputs.

Bipolar Supplies

The MAX4530/MAX4531/MAX4532 operate with bipolar supplies between $\pm 2.0V$ and $\pm 6V$. The V+ and V- supplies need not be symmetrical, but their sum cannot exceed the $\pm 13V$ absolute maximum rating.

Single Supply

The MAX4530/MAX4531/MAX4532 operate from a single supply between +2V and +12V when V- is connected to GND. All of the bipolar precautions must be observed. At room temperature, they actually work with a single supply at, near, or below +1.7V, although as supply voltage decreases, switch on-resistance and switching times become very high.

High-Frequency Performance

In 50 Ω systems, signal response is reasonably flat up to 50MHz (see *Typical Operating Characteristics*). Above 20MHz, the on response has several minor peaks that are highly layout-dependent. The problem is not in turning the switch on, but in turning it off. The off-state switch acts like a capacitor and passes higher frequencies with less attenuation. At 10MHz, off isolation is about -65dB in 50 Ω systems, becoming worse (approximately 20dB per decade) as frequency increases. Higher circuit impedances also make off isolation worse. Adjacent channel attenuation is about 3dB above that of a bare IC socket, and is due entirely to capacitive coupling.

Test Circuits/Timing Diagrams

Figure 1. Address Transition Time

Test Circuits/Timing Diagrams (continued)

Figure 2. Enable Switching Time

Test Circuits/Timing Diagrams (continued)

Test Circuits/Timing Diagrams (continued)

Figure 4. Charge Injection

Figure 6. NO/COM Capacitance

Test Circuits/Timing Diagrams (continued)

Figure 7. Setup and Hold Times, Minimum LE Width

TE	ENO		AI	ADDRESS BITS			ON SWITCHES	
	ENZ	ENI	ADDC*	ADDB	ADDA	MAX4530	MAX4531	MAX4532
0	1	0	Х	Х	Х	Last address	Last address	Last address
Х	0	Х	Х	Х	Х	All switches open	All switches open	All switches open
Х	Х	1	Х	Х	Х	All switches open	All switches open	All switches open
1	1	0	0	0	0	COM-NO0	COMA–NO0A, COMB–NO0B	COMA–NCA, COMB–NCB, COMC–NCC
1	1	0	0	0	1	COM-NO1	COMA–NO1A, COMB–NO1B	COMA–NOA, COMB–NCB, COMC–NCC
1	1	0	0	1	0	COM-NO2	COMA–NO2A, COMB–NO2B	COMA–NCA, COMB–NOB, COMC–NCC
1	1	0	0	1	1	COM-NO3	COMA–NO3A, COMB–NO3B	COMA–NOA, COMB–NOB, COMC–NCC
1	1	0	1	0	0	COM-NO4	COMA–NO0A, COMB–NO0B	COMA–NCA, COMB–NCB, COMC–NOC
1	1	0	1	0	1	COM-NO5	COMA-NO1A, COMB-NO1B	COMA–NOA, COMB–NCB, COMC–NOC
1	1	0	1	1	0	COM-NO6	COMA–NO2A, COMB–NO2B	COMA–NCA, COMB–NOB, COMC–NOC
1	1	0	1	1	1	COM-NO7	COMA–NO3A, COMB–NO3B	COMA–NOA, COMB–NOB, COMC–NOC

Truth Table/Switch Programming

X = Don't Care *ADDC not present on MAX4531.

Note: NO_ and COM_ pins are identical and interchangeable. Either may be considered an input or an output; signals pass equally well in either direction. LE is independent of EN1 and EN2.

PART	TEMP. RANGE	PIN-PACKAGE
MAX4530EPP	-40°C to +85°C	20 Plastic DIP
MAX4530EWP	-40°C to +85°C	20 SO
MAX4530EAP	-40°C to +85°C	20 SSOP
MAX4531CPP	0°C to +70°C	20 Plastic DIP
MAX4531CWP	0°C to +70°C	20 SO
MAX4531CAP	0°C to +70°C	20 SSOP
MAX4531C/D	0°C to +70°C	Dice*
MAX4531EPP	-40°C to +85°C	20 Plastic DIP
MAX4531EWP	-40°C to +85°C	20 SO
MAX4531EAP	-40°C to +85°C	20 SSOP

Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX4532CPP	0°C to +70°C	20 Plastic DIP
MAX4532CWP	0°C to +70°C	20 SO
MAX4532CAP	0°C to +70°C	20 SSOP
MAX4532C/D	0°C to +70°C	Dice*
MAX4532EPP	-40°C to +85°C	20 Plastic DIP
MAX4532EWP	-40°C to +85°C	20 SO
MAX4532EAP	-40°C to +85°C	20 SSOP

* Contact factory for availability.

MAX4530/MAX4532

TRANSISTOR COUNT: 255 SUBSTRATE CONNECTED TO V+

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

16

© 1996 Maxim Integrated Products

Printed USA

MAXIM is a registered trademark of Maxim Integrated Products.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

MAX4531