: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

General Description

The MAX4564 is a low-voltage, dual-supply, single-pole/double-throw (SPDT) analog switch designed to operate from dual $\pm 1.8 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ or single +1.8 V to +12 V supplies. The low on-resistance (RON $=40 \Omega$ at $\pm 5 \mathrm{~V}$) and low power consumption ($5 \mu \mathrm{~W}$) make this part ideal for audio, video, and battery-powered applications. This switch offers low leakage currents (1nA max) and fast switching speeds (tON $=60 \mathrm{~ns}$ and toFF $=40$ ns at $\pm 5 \mathrm{~V}$, max).
The MAX4564 is available in 8-pin SOT23 and μ MAX ${ }^{\circledR}$ packages.

Battery-Operated Systems
Audio and Video Switching
Test Equipment
Communications Circuits
Sample-and-Hold Circuits
Communications Systems
$\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.

- $60 \Omega \max (40 \Omega$, typ) On-Resistance (RoN)
- $3 \Omega \max (0.75 \Omega$, typ) Ron Matching Between Channels
- 10Ω (max) Ron Flatness
- Low Charge Injection: 3pC (typ)
- Low ± 1 nA Leakage Current at $+25^{\circ} \mathrm{C}$
- Fast Switching

$$
\begin{aligned}
& \text { toN }=60 \mathrm{~ns}(\max) \\
& \text { toFF }=40 \mathrm{~ns}(\max)
\end{aligned}
$$

- Guaranteed Break-Before-Make Switching
- TTL/CMOS-Logic Compatible
- Low Crosstalk: -72dB (1MHz)
- High Off-Isolation: -77dB (1MHz)
- Bandwidth -3dB: >450MHz (typ)
- Available in an 8-Pin SOT23 Package

Features

Ordering Information

PART	TEMP RANGE	PIN PACKAGE	TOP MARK
MAX4564EKA +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SOT23	AAEI
MAX4564EUA +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-

+Denotes a lead(Pb)-free/RoHS-compliant package.
$T=$ Tape and reel.

Functional Diagrams/Pin Configurations/Truth Table

$\overline{\mathbf{E N}}$	$\mathbf{I N}$	$\mathbf{N C}$	$\mathbf{N O}$
0	0	ON	OFF
0	1	OFF	ON
1	X	OFF	OFF

$X=$ Don't care

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

MAX4564

Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

ABSOLUTE MAXIMUM RATINGS

(Voltages Referenced to GND)

$-0.3 V$ to +13 V $-13 V$ to $+0.3 V$ 0.3 V to +13 V

EN, IN, COM, NC, NO (Note 1) (V--0.3V) to (V+ + 0.3V)
Continuous Current (any terminal).................................. $\pm 20 \mathrm{~mA}$

ESD per Method 3015.7
>2kVContinuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$SOT23 (derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)444.4 mW$\mu \mathrm{MAX}$ (derate $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)362 mW
Operating Temperature RangeMAX4564E_A$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature $+150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow) $+260^{\circ} \mathrm{C}$

Note 1: Signals on NO, NC, COM, IN, or $\overline{E N}$ exceeding $V+$ or V - are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS— $\pm 5 \mathrm{~V}$ Supply

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+6 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V}$ to $-6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{GND}=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	Vcom, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$			V-		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}+=+4.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V} \\ & \mathrm{I} \mathrm{COM}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}= \pm 3.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		40	60	Ω
			E			100	
On-Resistance Match Between Channels (Note 4)	$\Delta \mathrm{RON}$	$\begin{aligned} & \mathrm{V}+=+4.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V} \\ & \mathrm{ICOM}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}= \pm 3.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.75	3	Ω
			E			4	
On-Resistance Flatness (Note 5)	RFLAT(ON)	$\begin{aligned} & \mathrm{V}+=+4.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V}, \mathrm{ICOM}= \\ & 1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=-3.5 \mathrm{~V}, 0,+3.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		6.5	10	Ω
			E			13	
NO or NC Off-Leakage Current	InC(OFF) or INO(OFF)	$\mathrm{V}+=+5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \text {; }$ $\mathrm{V}_{\mathrm{COM}}=+4.5 \mathrm{~V},-4.5 \mathrm{~V}$; $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=-4.5,+4.5 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	-1	0.05	1	nA
			E	-5		5	
COM Off-Leakage Current	ICOM(OFF)	$\begin{aligned} & \mathrm{V}_{+}=+5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {COM }}=+4.5 \mathrm{~V},-4.5 \mathrm{~V} \end{aligned}$$\mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=-4.5,+4.5 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	-1	0.05	1	nA
			E	-5		5	
COM On-Leakage Current	ICOM(ON)	$\begin{aligned} & \mathrm{V}+=+5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}= \\ & +4.5 \mathrm{~V},-4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=+4.5 \mathrm{~V} \text {, } \\ & -4.5 \mathrm{~V} \text {, or unconnected } \end{aligned}$	$+25^{\circ} \mathrm{C}$	-2	0.05	2	nA
			E	-10		10	

Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

ELECTRICAL CHARACTERISTICS— $\pm 5 \mathrm{~V}$ Supply (continued)

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+6 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V}$ to $-6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.4 \mathrm{~V}, \mathrm{~V}$ IL $=+0.8 \mathrm{~V}, \mathrm{GND}=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) $($ Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
SWITCH DYNAMIC CHARACTERISTICS							
Turn-On Time	ton	$\begin{aligned} & V_{N O}, V_{N C}=+3 V,-3 V \\ & R_{L}=1 \mathrm{k} \Omega, C_{L}=35 \mathrm{pF} \end{aligned}$	$+25^{\circ} \mathrm{C}$		40	60	ns
			E			75	
Turn-Off Time	tOFF	$\begin{aligned} & V_{N O}, V_{N C}=+3 \mathrm{~V},-3 \mathrm{~V}, \\ & R_{L}=1 \mathrm{k} \Omega, C_{L}=35 \mathrm{pF} \end{aligned}$	$+25^{\circ} \mathrm{C}$		28	40	ns
			E			50	
Transition Time	tTRANS	$\begin{aligned} & V_{N C}=+3 V, V_{N O}=-3 V, \\ & V_{N C}=-3 V, V_{N O}=+3 V \\ & R_{L}=1 \mathrm{k} \Omega, C_{L}=35 \mathrm{pF} \end{aligned}$	$+25^{\circ} \mathrm{C}$		50	70	ns
			E			85	
Break-Before-Make Time (Note 6)	tBBM	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=+3 \mathrm{~V},-3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ & C_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	$+25^{\circ} \mathrm{C}$	5	15		ns
Charge Injection	Q	$\begin{aligned} & V_{G E N}=0, \text { RGEN }=0, \\ & C_{L}=100 \mathrm{pF} \end{aligned}$	$+25^{\circ} \mathrm{C}$		3		pC
-3dB Bandwidth	$f-3 d B$	$\begin{aligned} & R_{L}=50 \Omega, C_{L}=10 \mathrm{pF}, \\ & \mathrm{f}_{\mathrm{OdB}}=1 \mathrm{MHz} \end{aligned}$	$+25^{\circ} \mathrm{C}$		450		MHz
Off-Isolation (Note 7)	VISO	$\begin{aligned} & R_{L}=50 \Omega, C_{L}=10 \mathrm{pF}, \\ & \mathrm{fIN}=1 \mathrm{MHz} \end{aligned}$	$+25^{\circ} \mathrm{C}$		-77		dB
Crosstalk (Control Input to Signal Output)		$\begin{aligned} & R_{L}=50 \Omega, C_{L}=10 \mathrm{pF}, \mathrm{~V}+=+4.5 \mathrm{~V}, \\ & \mathrm{~V}-=-4.5 \mathrm{~V}, \mathrm{fiN}_{\mathrm{IN}}=1 \mathrm{MHz}, \mathrm{~V} \overline{\mathrm{EN}}=\mathrm{V}_{\mathrm{H}} \end{aligned}$	$+25^{\circ} \mathrm{C}$		68		mV
Crosstalk (Between Switches)	V_{C} T	$\begin{aligned} & R_{L}=50 \Omega, C_{L}=10 \mathrm{pF}, \\ & \mathrm{fiN}_{\mathrm{IN}}=1 \mathrm{MHz} \end{aligned}$	$+25^{\circ} \mathrm{C}$		-72		dB
Total Harmonic Distortion	THD	$\begin{aligned} & R_{\mathrm{L}}=600 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{f} / \mathrm{N}=20 \mathrm{kHz} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.15		\%
Control Input Capacitance	CIN				3		pF
NO or NC Off-Capacitance	COFF	$\mathrm{f} / \mathrm{N}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$		6		pF
COM Off-Capacitance	CCOM(OFF)	$\mathrm{fin}^{\mathrm{N}}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$		8		pF
COM On-Capacitance	CCOM(ON)	$\mathrm{fin}^{\mathrm{N}}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$		14		pF
LOGIC INPUT							
Input Voltage Low	$\mathrm{V}_{\text {IL }}$					0.8	V
Input Voltage High	$\mathrm{V}_{\text {IH }}$			2.4			V
Input Leakage Current	IL	$\begin{aligned} & \mathrm{V}+=+5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V}, \\ & \mathrm{~V} \mathrm{IN}=\mathrm{V} \overline{\mathrm{EN}}=0 \text { or }+5.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1	0.0001	1	$\mu \mathrm{A}$
			E	-10		10	
POWER SUPPLY							
Power-Supply Range	V+			2		6	V
	V -			-2		-6	
Positive Supply Current	$1+$	$\begin{aligned} & \mathrm{V}_{+}=+5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V} \overline{\mathrm{EN}}=0 \text { or }+5.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1	0.0001	1	$\mu \mathrm{A}$
			E	-10		10	
Negative Supply Current	I-	$\begin{aligned} & \mathrm{V}+=+5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V}, \\ & \mathrm{~V} \mathrm{IN}=\mathrm{V} \overline{\mathrm{EN}}=0 \text { or }+5.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1	0.0001	1	$\mu \mathrm{A}$
			E	-10		10	

MAX4564

Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

ELECTRICAL CHARACTERISTICS—Single +5V Supply

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+6 \mathrm{~V}, \mathrm{~V}-=0, \mathrm{~V}_{\mathrm{IH}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{GND}=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$V_{\text {COM }}$, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=+4.5 \mathrm{~V}, \mathrm{~V}-=0, \\ & \mathrm{ICOM}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=+3.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		72	100	Ω
			E			125	
On-Resistance Match Between Channels (Note 4)	$\triangle \mathrm{RoN}$	$\begin{aligned} & \mathrm{V}_{+}=+4.5 \mathrm{~V}, \mathrm{~V}-=0 \\ & \mathrm{I}^{\mathrm{COM}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=+3.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.75	5	Ω
			E			7	

SWITCH DYNAMIC CHARACTERISTICS

Turn-On Time	ton	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=+3 \mathrm{~V}$,	$+25^{\circ} \mathrm{C}$		62	90	ns
		$R_{L}=1 \mathrm{k} \Omega, C_{L}=35 \mathrm{pF}$	E			125	
Turn-Off Time	toFF	$\begin{aligned} & V_{N O}, V_{N C}=+3 V, \\ & R_{L}=1 \mathrm{k} \Omega, C_{L}=35 \mathrm{pF} \end{aligned}$	$+25^{\circ} \mathrm{C}$		22	60	ns
			E			75	
Transition Time	ttrans	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=0, \\ & \mathrm{~V}_{\mathrm{NC}}=0, \mathrm{~V}_{\mathrm{NO}}=+3 \mathrm{~V}, \\ & R_{\mathrm{L}}=1 \mathrm{k} \Omega, C_{L}=35 \mathrm{pF} \end{aligned}$	$+25^{\circ} \mathrm{C}$		68	100	ns
			E			130	
Break-Before-Make Time (Note 6)	${ }_{\text {tBBM }}$	$\begin{array}{\|l} \\ V_{N O}, V_{N C}=+3 V, \\ R_{L}=300 \Omega, C_{L}=35 p F \\ \hline \end{array}$	E	10	35		ns

LOGIC INPUT

Input Voltage Low	VIL					0.8	V
Input Voltage High	V_{IH}			2.4			V
Input Leakage Current	IL	$\begin{aligned} & \mathrm{V}+=+5.5 \mathrm{~V}, \mathrm{~V}-=0, \\ & \mathrm{~V} \mathrm{IN}=\mathrm{V} \overline{\mathrm{EN}}=0 \text { or }+5.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1	0.0001	1	$\mu \mathrm{A}$
			E	-10		10	

POWER SUPPLY

Power-Supply Range	V+			1.8		12	V
Positive Supply Current	$1+$	$\begin{aligned} & \mathrm{V}+=+5.5 \mathrm{~V}, \mathrm{~V}-=0, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V} \overline{\mathrm{EN}}=0 \text { or }+5.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1	0.0001	1	$\mu \mathrm{A}$
			E	-10		10	
Negative Supply Current	\|-	$\begin{aligned} & \mathrm{V}+=+5.5 \mathrm{~V}, \mathrm{~V}-=0, \\ & \mathrm{~V} \mathrm{IN}=\mathrm{V} \overline{\mathrm{EN}}=0 \text { or }+5.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1	0.0001	1	$\mu \mathrm{A}$
			E	-10		10	

Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

ELECTRICAL CHARACTERISTICS—Single +3V Supply

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.3 \mathrm{~V}, \mathrm{~V}-=0, \mathrm{~V}_{\mathrm{IH}}=+2.4 \mathrm{~V}, \mathrm{VIL}=+0.8 \mathrm{~V}, \mathrm{GND}=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	VCOM, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}+=+2.7 \mathrm{~V}, \mathrm{~V}-=0, \\ & \mathrm{ICOM}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=+1.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		160	275	Ω
			E			300	
On-Resistance Match Between Channels (Note 4)	$\Delta \mathrm{RON}$	$\begin{aligned} & \mathrm{V}+=+2.7 \mathrm{~V}, \mathrm{~V}-=0, \\ & \mathrm{ICOM}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=+1.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		1.5	10	Ω
			E			12	
SWITCH DYNAMIC CHARACTERISTICS							
Turn-On Time	ton	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=+1.5 \mathrm{~V}$, $R L=2 k \Omega, C L=35 p F$	$+25^{\circ} \mathrm{C}$		120	250	ns
			E			275	
Turn-Off Time	tOFF	$\begin{aligned} & V_{N O}, V_{N C}=+1.5 \mathrm{~V}, \\ & R_{L}=2 \mathrm{k} \Omega, C_{L}=35 \mathrm{pF} \end{aligned}$	$+25^{\circ} \mathrm{C}$		40	110	ns
			E			125	
Break-Before-Make Time (Note 6)	tBBM	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=+1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \hline \end{aligned}$	E	10			ns
LOGIC INPUT							
Input Voltage Low	$\mathrm{V}_{\text {IL }}$					0.8	V
Input Voltage High	V_{IH}			2.4			V
Input Leakage Current	IL	$\begin{aligned} & \mathrm{V}+=+3.3 \mathrm{~V}, \mathrm{~V}-=0, \\ & \mathrm{~V} \text { IN }=\mathrm{V} \overline{\mathrm{EN}}=0 \text { or }+3.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1	0.0001	1	$\mu \mathrm{A}$
			E	-10		10	

Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
Note 3: SOT-packaged products are 100% tested at $+25^{\circ} \mathrm{C}$ and guaranteed by design at the full-rated temperature.
Note 4: $\Delta \operatorname{RON}=\operatorname{RON}(M A X)-\operatorname{RON}(M I N)$.
Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges
Note 6: Guaranteed by design.
Note 7: Off-Isolation = 20log $10\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}}\right), \mathrm{V}_{\mathrm{NO}}=$ input to off switch.

MAX4564

Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

Typical Operating Characteristics
$\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

CHARGE INJECTION vs. VCOM

ON-RESISTANCE vs. Vcom AND TEMPERATURE (DUAL SUPPLIES)

SUPPLY CURRENT vs. TEMPERATURE

TURN-ON/TURN-OFF TIME vs. SUPPLY VOLTAGE (DUAL SUPPLIES)

SWITCH LEAKAGE CURRENT vs. TEMPERATURE

SUPPLY CURRENT vs. SUPPLY VOLTAGE

TURN-ON/TURN-OFF TIME vs. TEMPERATURE (DUAL SUPPLIES)

Typical Operating Characteristics (continued)

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

TURN-ON/TURN-OFF TIME
vs. TEMPERATURE (SINGLE SUPPLY)

TOTAL HARMONIC DISTORTION
vs. FREQUENCY

ON-RESPONSE, OFF-ISOLATION, CROSSTALK vs. FREQUENCY

LOGIC-LEVEL THRESHOLD VOLTAGE vs. SUPPLY VOLTAGE

MAX4564

Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

Pin Description

μ MAX	SOT23	NAME	FUNCTION
1	8	COM	Analog Switch Common
2	7	$\overline{E N}$	Device Enable. Drive $\overline{\text { EN }}$ low for normal SPDT switch operation. If $\overline{\text { EN }}$ is high, both NO and NC are disconnected.
3	6	V-	Negative Supply Voltage
4	5	GND	Ground
5	3	IN	Digital Control Input
6	4	NO	Analog Switch Normally Open
7	1	NC	Analog Switch Normally Closed
8	2	V+	Positive Supply Voltage

Detailed Description

The MAX4564 is a dual-supply SPDT CMOS analog switch. The MAX4564 has break-before-make switching. The CMOS switch construction provides Rail-toRail ${ }^{\circledR}$ signal handling while consuming virtually no power. Each of the two switches is independently controlled by a TTL/CMOS-level-compatible digital input.

Applications Information

Overvoltage Protection
Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the device. Proper power-supply sequencing is recommended for all CMOS devices. Always sequence $V+$ on first, then V-, followed by the logic inputs NO, NC, or COM. If power-supply sequencing is not possible, add two small-signal diodes (D1, D2) in series with supply pins. Adding diodes reduces the analog signal range to one diode drop below $\mathrm{V}+$ and one diode drop above V -, but does not affect the device's low switch resistance and low leakage characteristics.

Test Circuits/ Timing Diagrams

Figure 1. Overvoltage Protection Using Two External Blocking Diodes

Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

Test Circuits/Timing Diagrams (continued)

Figure 2. Switching Time

Figure 3. Break-Before-Make Interval

Figure 4. Charge Injection

Figure 5. On-Loss, Off-Isolation, and Crosstalk

Figure 6. Channel Off/On-Capacitance

Chip Information

PROCESS: CMOS

Package Information
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
8 SOT 23	$\mathrm{~K} 8 \mathrm{SN}+1$	$\underline{21-0078}$	$\underline{90-0176}$
8 SO	$\mathrm{U} 8+1$	$\underline{21-0036}$	$\underline{90-0092}$

| REVISION
 NUMBER | REVISION
 DATE | DESCRIPTION | PAGES
 CHANGED |
| :---: | :---: | :---: | :---: | :---: |
| 2 | $10 / 12$ | Added lead-free designation to the part numbers in the Ordering Information | 1 |

