: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

High-Voltage, Single 8-to-1/ Dual 4-to-1 Cal-Multiplexers

Abstract

General Description The MAX4578/MAX4579 are high-voltage, 8-channel CMOS multiplexers. The MAX4578 and dual 4-channel MAX4579 are ideal for precision ADC calibration and system self-monitoring applications. These calibration multiplexers (cal-muxes) have precision resistordividers to generate accurate voltage ratios from an input reference voltage. The reference ratios include 15/4096 and 4081/4096 of the external reference voltage, accurate to 15 bits, and $1 / 2\left(\mathrm{~V}_{+}\right)$and $5 / 8\left(\mathrm{~V}_{+}-\mathrm{V}_{-}\right)$, accurate to 8 bits. The external reference voltage as well as ground can also be switched to the output. The MAX4578/MAX4579 have enable inputs and address latching. All digital inputs have 0.8 V and 2.4 V logic thresholds, ensuring both TTL- and CMOS-logic compatibility when using a single +12 V or dual $\pm 15 \mathrm{~V}$ supplies. Protection diodes at all inputs provide $>2 \mathrm{kV}$ ESD rating.

The MAX4578/MAX4579 operate from a single +4.5 V to +36 V supply or from dual supplies of $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$. On-resistance (350Ω max) is matched between switches to 15Ω max. Each switch can handle Rail-to-Rail ${ }^{\circledR}$ analog signals. The off-leakage current is 20 pA at $\mathrm{TA}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$ and 1.25 nA at $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$. The MAX4578/MAX4579 are available in small 20-pin SSOP, SO, and DIP packages.

Applications

Data-Acquisition Systems
Test Equipment
Avionics
Audio Signal Routing
Networking

- On-Chip Gain and Offset Divider Networks Provide 15-Bit Accurate Output Ratios
- On-Chip V+ to GND and V+ to V- Divider Networks Provide 8-Bit Accurate Output Ratios
- 350Ω (max) RoN
- 12Ω (max) Ron Matching Between Channels
- 10pC (max) Charge Injection
- Guaranteed 20pA Off-Leakage Current
- Rail-to-Rail Signal Handling
- Small 20-Pin SSOP, SO, DIP Packages

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX4578CAP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 SSOP
MAX4578CWP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Wide SO
MAX4578CPP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Plastic DIP
MAX4578EAP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 SSOP
MAX4578EWP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Wide SO
MAX4578EPP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Plastic DIP

Ordering Information continued at end of data sheet.
Pin Configurations/ Functional Diagrams

MAX4578 appears at end of data sheet.

High-Voltage, Single 8-to-1/ Dual 4-to-1 Cal-Multiplexers

ABSOLUTE MAXIMUM RATINGS

```
(Voltage Referenced to GND)
\begin{tabular}{|c|}
\hline \multirow[b]{7}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
```

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
SSOP (derate $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)
Wide SO (derate $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)................... 800 mW
Plastic DIP (derate $10.53 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 842 mW
Operating Temperature Ranges
MAX4578C_P/MAX4579C_P.
MAX4578E_P/MAX4579E_P $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10sec) 300

Note 1: Signals on NO_ COM_ EN, LATCH, CAL, A_ exceeding V+ or V- are clamped by internal diodes. Limit forward current to maximum current ratings.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual $\pm 15 \mathrm{~V}$ Supplies

$\left(\mathrm{V}+=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}-=-15 \mathrm{~V} \pm 10 \%\right.$, logic levels $=2.4 \mathrm{~V}$ and $0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
SWITCH								
Analog Signal Range	VCOM_, V_{NO}	(Note 3)			V-		V+	V
On-Resistance	RDS(ON)	$\begin{aligned} & \text { ICOM }_{-}=0.2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}_{-}}= \pm 10 \mathrm{~V}, \\ & \mathrm{~V}_{+}=13.5 \mathrm{~V}, \mathrm{~V}-=-13.5 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		220	350	Ω
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			475	
On-Resistance Matching Between Channels (Note 4)	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{ICOM}_{-}=0.2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}= \pm 10 \mathrm{~V}, \\ & \mathrm{~V}_{+}=13.5 \mathrm{~V}, \mathrm{~V}-=-13.5 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		4	12	Ω
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			15	
NO Off-Leakage Current (Note 5)	INO_(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{-}}=\mp 14 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}= \pm 14 \mathrm{~V}, \\ & \mathrm{~V}_{+}=16.5 \mathrm{~V}, \mathrm{~V}_{-}=-16.5 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.02	0.001	0.02	nA
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-1.25		1.25	
COM Off-Leakage Current (Note 5)	ICOM_(OFF)	$\begin{aligned} & \mathrm{VCOM}_{\text {com }}= \pm 14 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}}=\mp 14 \mathrm{~V}, \\ & \mathrm{~V}_{+}=16.5 \mathrm{~V}, \\ & \mathrm{~V}-=-16.5 \mathrm{~V} \end{aligned}$	MAX4578	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.05	0.005	0.05	nA
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-6.5		6.5	
			MAX4579	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.05	0.005	0.05	
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-3.25		3.25	
COM On-Leakage Current (Note 5)	ICOM_(ON)	$\begin{aligned} & \mathrm{V}_{\text {COM }}= \pm 14 \mathrm{~V}, \\ & \mathrm{~V}_{\text {NO_ }}= \pm 14 \mathrm{~V}, \\ & \mathrm{~V}_{+}=16.5 \mathrm{~V}, \\ & \mathrm{~V}-=-16.5 \mathrm{~V} \end{aligned}$	MAX4578	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.05	0.006	0.05	nA
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{TmAX}^{\text {m }}$	-6.5		6.5	
			MAX4579	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.05	0.008	0.05	
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-3.25		3.25	

High-Voltage, Single 8-to-1/
 Dual 4-to-1 Cal-Multiplexers

ELECTRICAL CHARACTERISTICS—Dual $\pm 15 \mathrm{~V}$ Supplies (continued)

$\left(\mathrm{V}+=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}-=-15 \mathrm{~V} \pm 10 \%\right.$, logic levels $=2.4 \mathrm{~V}$ and $0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
LOGIC INPUTS							
Input High Voltage	V_{IH}			2.4	1.9		V
Input Low Voltage	VIL				1.9	0.8	V
Input Current with Input Voltage High	IIH	$\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{A}_{-}}=\mathrm{V}_{\text {LATCH }}=\mathrm{V}_{\text {CAL }}=\mathrm{V}_{+}$		-1	0.001	1	$\mu \mathrm{A}$
Input Current with Input Voltage Low	IIL	$\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{A}_{-}}=\mathrm{V}_{\text {LATCH }}=\mathrm{V}_{\text {cAL }}=0$		-1	0.001	1	$\mu \mathrm{A}$
SUPPLY							
Power-Supply Range				± 4.5		± 20	V
Positive Supply Current	$1+$	$\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{A}_{-}}=\mathrm{V}_{\mathrm{LATCH}}=\mathrm{V}_{\mathrm{CAL}}=0 \\ & \text { or } \mathrm{V}_{+}, \mathrm{V}_{+}=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \\ & \text { (Note 6) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		50	80	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			120	
Negative Supply Current	I-	$\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{A}_{-}}=\mathrm{V}_{\mathrm{LATCH}}=\mathrm{V}_{\mathrm{CAL}}=0 \\ & \text { or } \mathrm{V}_{+}, \mathrm{V}_{+}=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \\ & \text { (Note 6) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.001	1	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-5		5	
GND Supply Current	IGND	$\begin{aligned} & \mathrm{V}_{E N}=\mathrm{V}_{\mathrm{A}_{-}}=\mathrm{V}_{\mathrm{LATCH}}=\mathrm{V}_{\mathrm{CAL}}=0 \\ & \text { or } \mathrm{V}_{+}, \mathrm{V}_{+}=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \\ & \text { (Note 6) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		50	80	$\mu \mathrm{A}$
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{TMAX}^{\text {m }}$			120	
DYNAMIC CHARACTERISTICS							
Transition Time	ttrans	Figure 1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		320	450	ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			600	
Break-Before-Make Interval (Note 3)	topen	Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	50	180		ns
Enable Turn-On Time	ton	Figure 3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		260	400	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			500	
Enable Turn-Off Time	tofF	Figure 3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		130	220	ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {max }}$			300	
Charge Injection (Note 3)	Vcte	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{NO}_{-}}=0, \mathrm{R}_{\mathrm{S}}=0$ Figure 4	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		3.5	0	pC
Off-Isolation	VISO	$\mathrm{V}_{\mathrm{EN}}=0, \mathrm{R}_{\mathrm{L}}=50 \Omega$, Figure 5	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-75		dB
Crosstalk Between Channels (Note 8)	V_{CT}	$\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=2.4 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{GEN}}=1 \mathrm{Vp}-\mathrm{p}, \text { Figure } 5 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-70		dB
Logic Input Capacitance	CIN	$\mathrm{f}=1 \mathrm{MHz}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		3		pF
NO Off-Capacitance	Coff	$f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{EN}}=0 \text {, }$ Figure 6	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		3		pF
COM Off-Capacitance	Ccom_(Off)	$f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{EN}}=0,$ Figure 6	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		14		pF
COM On-Capacitance	Ccom_(ON)	$f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V},$ Figure 6	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		20		pF

High-Voltage, Single 8-to-1/
 Dual 4-to-1 Cal-Multiplexers

ELECTRICAL CHARACTERISTICS—Dual $\pm 15 \mathrm{~V}$ Supplies (continued)

$\left(\mathrm{V}_{+}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}-=-15 \mathrm{~V} \pm 10 \%\right.$, logic levels $=2.4 \mathrm{~V}$ and $0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
LATCH TIMING (Note 3)							
Setup Time	ts	Figure 7	$\mathrm{T}_{\text {A }}=+25^{\circ} \mathrm{C}$		70	200	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			250	
Hold Time	th	Figure 7	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-10	0		ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10			
Enable Setup Time	tes	Figure 8	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		22	40	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			60	
Pulse Width, LATCH Enable	tMPW	Figure 7	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	120	72		ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	180			
INTERNAL DIVIDERS							
Offset Divider Output		$\begin{aligned} & V_{\text {REFHI }}=10 \mathrm{~V}, \\ & \text { REFLO }=\text { GND } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\begin{aligned} & 14.9 / \\ & 4096 \end{aligned}$	$\begin{gathered} 15 / \\ 4096 \end{gathered}$	$\begin{aligned} & 15.1 / \\ & 4096 \end{aligned}$	LSB
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	$\begin{aligned} & \hline 14.9 / \\ & 4096 \end{aligned}$	$\begin{gathered} 15 / \\ 4096 \end{gathered}$	$\begin{aligned} & 15.1 / \\ & 4096 \end{aligned}$	
Gain Divider Output		$\begin{aligned} & \mathrm{V} \text { REFHI }=10 \mathrm{~V}, \\ & \text { REFLO }=\text { GND } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\begin{gathered} 4080.9 / \\ 4096 \end{gathered}$	$\begin{gathered} 4081 / \\ 4096 \end{gathered}$	$\begin{gathered} 4081.1 / \\ 4096 \end{gathered}$	LSB
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$	$\begin{gathered} 4080.9 / \\ 4096 \end{gathered}$	$\begin{gathered} 4081 / 1 \\ 4096 \end{gathered}$	$\begin{gathered} 4081.1 / \\ 4096 \end{gathered}$	
(V+ / 2) Divider Output		Referenced to GND	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\begin{gathered} 2032 / \\ 4096 \end{gathered}$	$\begin{gathered} 2048 / \\ 4096 \end{gathered}$	$\begin{gathered} 2064 / \\ 4096 \end{gathered}$	LSB
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	$\begin{gathered} 2032 / 1 \\ 4096 \end{gathered}$	$\begin{gathered} 2048 / \\ 4096 \end{gathered}$	$\begin{gathered} 2064 / \\ 4096 \end{gathered}$	
(V_{+}- V-) Divider Output		Referenced to V-	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\begin{gathered} 2544 / \\ 4096 \end{gathered}$	$\begin{gathered} 2560 / 1 \\ 4096 \end{gathered}$	$\begin{gathered} 2576 / \\ 4096 \end{gathered}$	LSB
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	$\begin{gathered} 2544 / \\ 4096 \end{gathered}$	$\begin{gathered} 2560 / \\ 4096 \end{gathered}$	$\begin{gathered} 2576 / \\ 4096 \end{gathered}$	
Output Resistance Offset Divider		(Note 3)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		400	800	Ω
Output Resistance Gain Divider		(Note 3)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		400	800	Ω
Output Resistance (V+ / 2) Divider		(Note 3)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		6	9	k Ω
Output Resistance (V+ - V-) Divider		(Note 3)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		6	9	k ת
Output Resistance (REFHI, REFLO, GND)		(Note 3)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		400	800	Ω
Additional Positive Supply Current (Note 3)		($\mathrm{V}+/ 2$) divider active, $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{+}, \mathrm{V}_{\mathrm{IL}}=0$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\begin{aligned} & \mathrm{V}+\mathrm{I} \\ & 24 \mathrm{k} \end{aligned}$	$\begin{aligned} & V_{+} / \\ & 13 k \end{aligned}$	mA

High-Voltage, Single 8-to-1/
 Dual 4-to-1 Cal-Multiplexers

ELECTRICAL CHARACTERISTICS—Dual $\pm 15 \mathrm{~V}$ Supplies (continued)

($\mathrm{V}+=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}-=-15 \mathrm{~V} \pm 10 \%$, logic levels $=2.4 \mathrm{~V}$ and $0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP MAX	UNITS
Additional Positive Supply Current (Note 3)		($\mathrm{V}_{+}-\mathrm{V}_{-}$) divider active, $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{+}, \mathrm{V}_{\mathrm{IL}}=0$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			mA
Additional Negative Supply Current (Note 3)		(V_{+}- V -) divider active, $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{+}, \mathrm{V}_{\mathrm{IL}}=0$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\begin{gathered} \left(\mathrm{V}_{+}-\mathrm{V}-\right) /(\mathrm{V}+\mathrm{V}-\mathrm{V}) / \\ 24 \mathrm{k} \quad 13 \mathrm{k} \end{gathered}$	mA
REFHI, REFLO Input Range (Note 3)				$\begin{gathered} \mathrm{V}- \\ -0.3 \end{gathered}$	$\begin{gathered} V_{+} \\ +0.3 \end{gathered}$	V
Input Resistance (REFHI, REFLO) (Note 3)		Offset divider active, gain divider active	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	17	32	k Ω

ELECTRICAL CHARACTERISTICS—Dual $\pm 5 \mathrm{~V}$ Supplies

($\mathrm{V}_{+}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}-=-5 \mathrm{~V} \pm 10 \%$, logic levels $=2.4 \mathrm{~V}$ and $0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
SWITCH								
Analog Signal Range	VNO, VCOM	(Note 3)			V-		V+	V
On-Resistance	RDS(ON)	$\begin{aligned} & \mathrm{ICOM}_{-}=0.2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}= \pm 3 \mathrm{~V} \\ & \mathrm{~V}_{+}=4.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		660	900	Ω
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			1100	
On-Resistance Matching Between Channels (Note 4)	$\Delta \mathrm{RDS}(\mathrm{ON})$	$\begin{aligned} & \mathrm{ICOM}_{-}=0.2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{+}=4.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	10			Ω
NO Off-Leakage Current (Note 5)	INO(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=\mp 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}= \pm 4.5 \mathrm{~V}, \\ & \mathrm{~V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.02	0.001	0.02	nA
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-1.25		1.25	
COM Off-Leakage Current (Note 5)	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}= \pm 4.5 \mathrm{~V}, \\ & 1 \mathrm{~V} ; \mathrm{V}_{\mathrm{NO}}=\mp 4.5 \mathrm{~V}, \\ & \mathrm{~V}+=5.5 \mathrm{~V} \\ & \mathrm{~V}-=-5.5 \mathrm{~V} \end{aligned}$	MAX4578	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.05	0.005	0.05	nA
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-6.5		6.5	
			MAX4579	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	0.005	0.5	
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-6.5		6.5	
COM On-Leakage Current (Note 5)	ICOM_(ON)	$\mathrm{V}_{\mathrm{COM}}= \pm 4.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{NO}}= \pm 4.5 \mathrm{~V}$ or floating, $\mathrm{V}_{+}=5.5 \mathrm{~V}$, $\mathrm{V}-=-5.5 \mathrm{~V}$	MAX4578	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.05	0.008	0.05	nA
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-6.5		6.5	
			MAX4579	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.05		0.05	
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-3.25		3.25	

High-Voltage, Single 8-to-1/
 Dual 4-to-1 Cal-Multiplexers

ELECTRICAL CHARACTERISTICS—Dual $\pm 5 \mathrm{~V}$ Supplies (continued)

($\mathrm{V}_{+}=+5 \mathrm{~V} \pm 10 \%$, $\mathrm{V}-=-5 \mathrm{~V} \pm 10 \%$, logic levels $=2.4 \mathrm{~V}$ and $0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
LOGIC INPUTS (Note 3)							
Input High Voltage	V_{IH}			2.4	1.4		V
Input Low Voltage	VIL				1.4	0.5	V
Input Current with Input Voltage High	IIH	$\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\text {LATCH }}=\mathrm{V}_{\text {CAL }}=\mathrm{V}_{+}$		-1.0	0.001	1.0	$\mu \mathrm{A}$
Input Current with Input Voltage Low	IIL	$\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{A}_{-}}=\mathrm{V}_{\text {LATCH }}=\mathrm{V}_{\text {cAL }}=0$		-1.0	0.001	1.0	$\mu \mathrm{A}$
DYNAMIC CHARACTERISTICS (Note 3)							
Transition Time	ttrans	$\mathrm{V}_{\mathrm{NO} 1}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=0$, Figure 1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.0	1.8	$\mu \mathrm{s}$
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			2.2	
Break-Before-Make Interval	topen	Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	200	440		ns
Enable Turn-On Time	ton	$\mathrm{V}_{\text {NO1 }}=3 \mathrm{~V}$, Figure 3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.675	1.2	$\mu \mathrm{s}$
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			1.5	
Enable Turn-Off Time	toff	$\mathrm{V}_{\mathrm{NO} 1}=3 \mathrm{~V}$, Figure 3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.5	1.0	$\mu \mathrm{s}$
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			1.3	

ELECTRICAL CHARACTERISTICS—Single +12V Supply

$\left(\mathrm{V}_{+}=+12 \mathrm{~V}, \mathrm{~V}-=0\right.$, logic levels $=2.4 \mathrm{~V}$ and $0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
SWITCH							
Analog Signal Range	VNO, Vcom	(Note 3)		0		V+	V
On-Resistance	RDS(ON)	$\mathrm{ICOM}_{-}=0.2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}^{-}=3 \mathrm{~V}, 10 \mathrm{~V}$	$\mathrm{T}_{\text {A }}=+25^{\circ} \mathrm{C}$		470	750	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {max }}$			850	
On-Resistance Matching Between Channels (Note 4)	$\Delta \mathrm{R}_{(0 \mathrm{ON})}$	$\mathrm{ICOM}=0.2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}^{-}=3 \mathrm{~V}, 10 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		8		Ω
NO Off-Leakage Current (Notes 5, 9)	INO(OFF)	$\begin{aligned} & \mathrm{V}_{\text {COM }}=1 \mathrm{~V}, 11 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}}=11 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.02	0.001	0.02	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-1.25		1.25	

High-Voltage, Single 8-to-1/ Dual 4-to-1 Cal-Multiplexers

ELECTRICAL CHARACTERISTICS—Single +12V Supply (continued)

$\left(\mathrm{V}_{+}=+12 \mathrm{~V}, \mathrm{~V}-=0\right.$, logic levels $=2.4 \mathrm{~V}$ and $0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are $\mathrm{at}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 2)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
SWITCH (continued)								
COM Off-Leakage Current (Notes 5, 9)	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}_{\text {COM_ }}=11 \mathrm{~V}, 1 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}, 11 \mathrm{~V} \end{aligned}$	MAX4578	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.05	0.005	0.05	nA
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-6.5		6.5	
			MAX4579	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.05	0.005	0.05	
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-3.25		3.25	
COM On-Leakage Current (Notes 5, 9)	ICOM_(ON)	$\begin{aligned} & \mathrm{V}_{\text {COM_ }}=11 \mathrm{~V}, 1 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{NO}}=11 \mathrm{~V}, 1 \mathrm{~V} \text {, } \\ & \text { or floating } \end{aligned}$	MAX4578	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.05	0.006	0.05	nA
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-6.5		6.5	
			MAX4579	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.05		0.05	
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-3.25		3.25	
LOGIC INPUTS								
Input High Voltage	VIH				2.4	1.8		V
Input Low Voltage	VIL					1.8	0.8	V
Input Current with Input Voltage High	$\mathrm{IIH}^{\text {H }}$	$\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{A}_{-}}=\mathrm{V}_{\text {LATCH }}=\mathrm{V}_{\text {CAL }}=\mathrm{V}_{+}$			-1	0.001	1	$\mu \mathrm{A}$
Input Current with Input Voltage Low	IIL	$\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{A}_{-}}=\mathrm{V}_{\text {LATCH }}=\mathrm{V}_{\text {cAL }}=0$			-1	0.001	1	$\mu \mathrm{A}$
DYNAMIC CHARACTERISTICS (Note 3)								
Transition Time	ttrans	$\mathrm{V}_{\mathrm{NO1}}=8 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO8}}=0$, Figure 1		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		600	850	ns
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			1100	
Break-Before-Make Interval	topen	Figure 2		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	120	400		ns
Enable Turn-On Time	ton	Figure 3		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		540	800	ns
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			1100	
Enable Turn-Off Time	toff	Figure 3		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		150	315	ns
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {max }}$			450	

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
Note 3: Guaranteed by design.
Note 4: $\Delta \operatorname{Ron}=\operatorname{RoN}(M A X)-\operatorname{Ron}(M I N)$.
Note 5: Leakage parameters are 100% tested at maximum-rated hot temperature and guaranteed by correlation at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
Note 6: If the logic inputs can float during power-on, connect a $1 \mathrm{M} \Omega$ pull-up from LATCH to V+. See Applications Information section.
Note 7: Off-Isolation = 20log $10\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}}\right), \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.
Note 8: Between any two switches.
Note 9: Leakage parameters testing at single supply are guaranteed by correlation with dual supplies.

High-Voltage, Single 8-to-1/ Dual 4-to-1 Cal-Multiplexers

ON-RESISTANCE vs. Vcom (SINGLE SUPPLY)

LEAKAGE CURRENT vs. TEMPERATURE

ON-RESISTANCE vs. Vcom AND TEMPERATURE ($\pm 5 \mathrm{~V}$ DUAL SUPPLIES)

ON-RESISTANCE vs. Vcom AND TEM PERATURE (12V SINGLE SUPPLY)

High-Voltage, Single 8-to-1/
 Dual 4-to-1 Cal-Multiplexers

Typical Operating Characteristics (continued)
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

GAIN DIVIDER OUTPUT
vs. VREFHI

TURN-ON/TURN-OFF TIME vs. TEM PERATURE ($\pm 5 \mathrm{~V}$)

OFFSET DIVIDER OUTPUT
vs. VREFHI

GAIN DIVIDER OUTPUT
vs. TEMPERATURE

TURN-ON/TURN-OFF TIME vs. TEM PERATURE (12V)

OFFSET DIVIDER OUTPUT vs. TEM PERATURE

($\mathrm{V}+\mathrm{l}$ 2) DIVIDER OUTPUT
vs. SUPPLY VOLTAGE

High-Voltage, Single 8-to-1/ Dual 4-to-1 Cal-Multiplexers

Typical Operating Characteristics (continued)

Rout vs. TEMPERATURE (OFFSET DIVIDER AND GAIN DIVIDER)

(V+-V-) DIVIDER OUTPUT
vs. SUPPLY VOLTAGE

Rout vs. TEM PERATURE
(V+ / 2 DIVIDER AND V_{+}- V- DIVIDER)

High-Voltage, Single 8-to-1/ Dual 4-to-1 Cal-Multiplexers

Pin Descriptions					
MAX4578 (Single 8-to-1 Cal-Mux)			MAX4579 (Dual 4-to-1 Cal-Mux)		
PIN	NAME	FUNCTION	PIN	NAME	FUNCTION
1	V+	Positive Supply Voltage	1	V+	Positive Supply Voltage
2	GND	Ground	2	GND	Ground
3	V-	Negative Supply Voltage	3	V-	Negative Supply Voltage
4	REFHI	Reference High Voltage Input	4	REFHI	Reference High Voltage Input
5	REFLO	Reference Low Voltage Input	5	REFLO	Reference Low Voltage Input
6	COM	Output	6	COMA	Multiplexer Output A
7	NO1	Channel Input 1	7	NO1A	Channel Input 1A
8	NO2	Channel Input 2	8	NO2A	Channel Input 2A
9	NO3	Channel Input 3	9	NO3A	Channel Input 3A
10	NO4	Channel Input 4	10	NO4A	Channel Input 4A
11	NO5	Channel Input 5	11	NO1B	Channel Input 1B
12	NO6	Channel Input 6	12	NO2B	Channel Input 2B
13	NO7	Channel Input 7	13	NO3B	Channel Input 3B
14	NO8	Channel Input 8	14	NO4B	Channel Input 4B
15	A2	Address Bit 2	15	COMB	Multiplexer Output B
16	A1	Address Bit 1	16	A1	Address Bit 1
17	A0	Address Bit 0	17	A0	Address Bit 0
18	CAL	Calibration Control Input	18	CAL	Calibration Control Input
19	EN	Multiplexer Enable	19	EN	Multiplexer Enable
20	LATCH	Address Latch Control Input	20	LATCH	Address Latch Control Input

High-Voltage, Single 8-to-1/
 Dual 4-to-1 Cal-Multiplexers

__Truth Tables
MAX4578 (Single 8-to-1 Cal-Mux)

CAL	A2	A1	A0	EN	LATCH	COM
x	x	x	x	0	x	All switches and dividers open. COM is high-Z. Latch contents set to all 1 s .
x	x	x	x	1	1	State is latched when LATCH is high.
0	0	0	0	1	0	NO1
0	0	0	1	1	0	NO2
0	0	1	0	1	0	NO3
0	0	1	1	1	0	NO4
0	1	0	0	1	0	NO5
0	1	0	1	1	0	NO6
0	1	1	0	1	0	NO7
0	1	1	1	1	0	NO8
1	0	0	0	1	0	(V+ / 2) Divider, $\mathrm{V}_{\text {COM }}=2048$ / 4096 (V+)
1	0	0	1	1	0	REFHI
1	0	1	0	1	0	REFLO
1	0	1	1	1	0	(V+ - V-) Divider, $\mathrm{V}_{\text {COM }}=2560$ / 4096 (V+ - V-)
1	1	0	0	1	0	GND
1	1	0	1	1	0	Gain Divider Mode $\mathrm{V}_{\text {COM }}=(4081 / 4096)\left(\mathrm{V}_{\text {REFHI }}-\mathrm{V}_{\text {REFLO }}\right)$
1	1	1	0	1	0	Offset Divider Mode $\mathrm{V}_{\text {COM }}=(15 / 4096)\left(\mathrm{V}_{\text {REFHI }}-\mathrm{V}_{\text {REFLO }}\right)$
1	1	1	1	1	0	All switches and dividers open. COM is high-Z.

[^0]MAX4579 (Dual 4-to-1 Cal-Mux)

CAL	A1	AO	EN	LATCH	COMA	COMB
x	x	x	0	x	All switches and dividers open. COMA is high-Z.	All switches and dividers open. COMB is high-Z.
x	x	x	1	1	State is latched	State is latched
0	0	0	1	0	NO1A	NO1B
0	0	1	1	0	NO2A	NO2B
0	1	0	1	0	NO3A	NO3B
0	1	1	1	0	NO4A	NO4B
1	0	0	1	0	GND	GND
1	0	1	1	0	Gain Divider Mode	REFLO
1	1	0	1	0	Offset Divider Mode	REFLO
1	1	1	1	0	All switches and dividers open. COMA is high-Z.	All switches and dividers open. COMB is high-Z.

$x=$ Don't Care

High-Voltage, Single 8-to-1/ Dual 4-to-1 Cal-Multiplexers

Detailed Description

The MAX4578/MAX4579 are multiplexers with additional calibration features. Internal resistor-dividers generate accurate voltage ratios from an external voltage reference, allowing zero and full-scale calibration of ADC systems, as well as facilitation of system self-monitoring. To access the resistor-dividers, assert the CAL pin. When CAL and ENABLE are asserted, the three address pins select one of the various resistor-divider or external reference outputs. The MAX4578/ MAX4579 also contain a LATCH input that allows the state of the CAL and address signals to be captured.

Calibration Functions

The gain-divider, offset-divider, REFHI, and REFLO modes allow calibration of offset and gain errors in ADC systems. The gain-divider mode outputs a voltage ratio that is $4081 / 4096$ of $V_{\text {REFHI }}$ - VREFLO, accurate to 0.1/4096 or better than 15 bits. The offset-divider mode outputs a voltage ratio that is 15/4096 of VREFHI VREFLO, also accurate to $0.1 / 4096$. The REFHI mode allows the voltage on the REFHI pin to be switched to the output. The REFLO mode allows the voltage on the REFLO pin to be switched to the output.

Self-Monitoring Functions
The self-monitoring functions are intended to allow an ADC to measure its own supply voltage. The MAX4578 has an internal divide-by-two resistor string between V_{+} and GND that is accurate to 8 bits. It also has a $5 / 8$ resistor string between V_{+}and V - that is accurate to 8 bits. This divider string allows measurement of the negative supply with a unipolar ADC. GND can also be switched to the output, eliminating the need for an additional multiplexer channel.

Applications Information

The MAX4578/MAX4579's construction is typical of most CMOS analog switches. There are three supply pins: $\mathrm{V}_{+}, \mathrm{V}_{-}$, and GND. The positive and negative power supplies provide drive to the internal CMOS switches and set the limits of the analog voltage on any switch. Reverse-biased ESD protection diodes are internally connected between each analog signal pin and both $\mathrm{V}+$ and V -. If the voltage on any pin exceeds $\mathrm{V}+$ or V -, one of these diodes will conduct. During normal operation, these reverse-biased ESD diodes leak, forming the only current drawn from V-.
Virtually all the analog leakage current is through the ESD diodes. Although the ESD diodes on a given signal pin are identical, and therefore fairly well balanced,
they are reverse-biased differently. Each is biased by either V_{+}or V - and the analog signal. This means their leakage varies as the signal varies. The difference in the two-diode leakage from the signal path to the V_{+} and V - pins constitutes the analog signal-path leakage current. All analog-leakage current flows to the supply terminals, not to the other switch terminal, which explains how both sides of a given switch can show leakage currents of either the same or opposite polarity.
There is no connection between the analog-signal paths and GND. The analog-signal paths consist of an N -channel and P-channel MOSFET with their sources and drains paralleled and their gates driven out of phase with V_{+}and V - by the logic-level translators.
V_{+}and GND power the internal logic and logic-level translators and set the input-logic thresholds. The logiclevel translators convert the logic levels to switched V_{+} and V - signals to drive the gates of the analog switches. This drive signal is the only connection between the logic supplies and the analog supplies. All pins have ESD protection to $\mathrm{V}+$ and to V -
Increasing V - has no effect on the logic-level thresholds, but it does increase the drive to the P-channel switches, which reduces their on-resistance. V- also sets the negative limit of the analog-signal voltage.
The logic-level thresholds are CMOS- and TTLcompatible when V_{+}is greater than +4.5 V .

Bipolar-Supply Operation The MAX4578/MAX4579 operate with bipolar supplies between $\pm 4.5 \mathrm{~V}$ and $\pm 20 \mathrm{~V}$. The $\mathrm{V}+$ and V - supplies need not be symmetrical, but their sum cannot exceed the absolute maximum rating of 44 V . Note: Do not connect the MAX4578/MAX4579 $\mathrm{V}+$ pin to +3 V AND connect logic-level input pins to TTL logic-level signals. TTL logic-level outputs can exceed the absolute maximum ratings, which will cause damage to the part and/or external circuits.

Single-Supply Operation

The MAX4578/MAX4579 operate from a single supply between +4.5 V and +36 V when V - is connected to GND. All of the bipolar precautions must be observed (see Bipolar Supply Operation section). However these parts are optimized for $\pm 15 \mathrm{~V}$ operation, and most AC and DC characteristics are degraded significantly when departing from $\pm 15 \mathrm{~V}$. As the overall supply voltage ($\mathrm{V}+$ to V -) is lowered, switching speed, on-resistance, off-isolation, and distortion will degrade, and supply current will decrease (see the Typical Operating Characteristics section).

High-Voltage, Single 8-to-1/ Dual 4-to-1 Cal-Multiplexers

Single-supply operation also limits signal levels and interferes with ground referenced signals. When V - $=0$, AC signals are limited to -0.3 V . Voltages below -0.3 V can be clipped by the internal ESD-protection diodes, and the parts can be damaged if excessive current flows.

Power Up
During power up, on-chip latches will strobe whatever addresses are present if EN goes high before LATCH reaches a logic high. When this condition occurs, one of the internal dividers connected between the supplies may immediately turn on, causing higher supply current (1.4 mA) when the enable input is toggled. Avoid this condition by ensuring that EN stays low until the remaining logic inputs are valid. To accomplish this, connect a resistor from EN to ground or apply a low voltage to EN before the other logic inputs go high.

Power Off
When power to the MAX4578/MAX4579 is off (i.e., $\mathrm{V}_{+}=$ V- = 0), the Absolute Maximum Ratings still apply. This means that neither logic-level inputs on NO_ nor signals on $C O M \quad$ can exceed $\pm 0.3 \mathrm{~V}$. Voltage \bar{s} beyond $\pm 0.3 \mathrm{~V}$ cause the internal ESD-protection diodes to conduct, and the parts can be damaged if excessive current flows.

Figure 1. Transition Time

Figure 2. Break-Before-Make Interval

Figure 3. Enable Switching Time

High-Voltage, Single 8-to-1/
Dual 4-to-1 Cal-Multiplexers

Figure 4. Charge Injection

High-Voltage, Single 8-to-1/
 Dual 4-to-1 Cal-Multiplexers

Test Circuits/Timing Diagrams (continued)

Figure 5. Off-Isolation/Crosstalk

Figure 6. NO_/COM_ Capacitance

High-Voltage, Single 8-to-1/
Dual 4-to-1 Cal-Multiplexers
Test Circuits/Timing Diagrams (continued)

Figure 7. Setup Time, Hold Time, Latch Pulse Width

Figure 8. Enable Setup Time

High-Voltage, Single 8-to-1/ Dual 4-to-1 Cal-Multiplexers

Pin Configurations/

Functional Diagrams (continued)

High-Voltage, Single 8-to-1/
 Dual 4-to-1 Cal-Multiplexers

_Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX4579CAP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 SSOP
MAX4579CWP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 SO Wide
MAX4579CPP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Plastic DIP
MAX4579EAP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 SSOP
MAX4579EWP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 SO Wide
MAX4579EPP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Plastic DIP

Chip Information
TRANSISTOR COUNT: 520

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

20 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

[^1]Printed USA
MAXINI is a registered trademark of Maxim Integrated Products.

[^0]: $x=$ Don't Care

[^1]: © 1998 Maxim Integrated Products

