: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Low-Voltage, Single-Supply, 10』 SPST CMOS Analog Switches

General Description
The MAX4594-MAX4597 single-pole/single-throw (SPST) analog switches operate from a single +2.0 V to +5.5 V supply. The MAX4594/MAX4596 switches are normally open (NO), and the MAX4595/MAX4597 are normally closed (NC). The MAX4596/MAX4597 pinouts are optimized for the highest SC70 package off-isolation available.
These switches have 10Ω max on-resistance (RON), with 1.5Ω max RON flatness over the analog signal range when powered from $\mathrm{a}+5 \mathrm{~V}$ supply. The MAX4594-MAX4597 offer low 0.5nA leakage currents and fast switching times less than 40ns. They are packaged in an ultra-small 5-pin SC70 and 6-pin μ DFN.
\section*{Applications}
Cellular Phones
Battery-Operated Equipment
Audio and Video Signal Routing
Communications Circuits
PCMCIA Cards
DSL Modems

Features
Available in 5-Pin SC70 and 6-Pin $\mu \mathrm{DFN}$ Packages
10Ω max On-Resistance
Fast max On-Resistance Flatness
toN = 35ns max
tOFF = 40ns max
Guaranteed 5pC max Charge Injection
+2.0V to +5.5V Single-Supply Operation
300MHz -3dB Bandwidth at +25${ }^{\circ} \mathrm{C}$
TTL/CMOS-Logic Compatible
-80dB Off-Isolation at 1MHz
0.5nA max Off-Leakage
0.05\% THD

Ordering Information

Pin Configurations/Functional Diagrams/Truth Table

Pin Configurations/Functional Diagrams/Truth Table continued at end of data sheet.

Low-Voltage, Single-Supply, 10Ω SPST CMOS Analog Switches

ABSOLUTE MAXIMUM RATINGS

(Voltages Referenced to GND)
V+.
Voltage into Any Terminal (Note 1).-... 0.3 V to +6 V Continuous Current into Any Terminal \qquad -0.3 V to (V++0.3V) Peak Current, NO, NC, or COM
(pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)................................. $\pm 40 \mathrm{~mA}$

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
5-Pin SC70 (derate $3.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)
247 mW
6-Pin μ DFN (derate $2.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 168 mW
Operating Temperature Range MAX459_EXK .$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Rang \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$

Note 1: Voltages exceeding V+ or GND on any signal terminal are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—+5V Supply

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{NO}}$, VNC			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \\ & \mathrm{V}_{\mathrm{NC}}=3.5 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		6.5	10	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			12	
On-Resistance Flatness (Note 4)	RFLAt(ON)	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, 2.5 \mathrm{~V} \text {, } \\ & 3.5 \mathrm{~V} ; \mathrm{V}_{+}=4.5 \mathrm{~V} ; \\ & \mathrm{ICOM}=10 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.5	1.5	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			2	
NO or NC Off-Leakage Current	INO(OFF) INC(OFF)	$\begin{aligned} & V_{+}=5.5 \mathrm{~V} ; \\ & V_{C O M}=1 \mathrm{~V}, 4.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	0.01	0.5	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-5		5	
COM Off-Leakage Current	ICOM(OFF)	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	0.01	0.5	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-5		5	
COM On-Leakage Current	ICOM(ON)	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V} \text {; } \\ & 4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V} \text {, } \\ & 4.5 \mathrm{~V} \text {, or floating } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.01	1	nA
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		10	
DIGITAL I/O							
Input Logic High	VIH			2.4			V
Input Logic Low	VIL					0.8	V
Input Logic Current	IIH, IIL	V IN $=\mathrm{V}+, 0$		-1	0.03	1	$\mu \mathrm{A}$
DYNAMIC							
Turn-On Time	ton	$\begin{aligned} & V_{N O} \text { or } V_{N C}=3 V \\ & R_{L}=300 \Omega, C_{L}=35 p F, \\ & \text { Figure } 3 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		20	35	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			45	
Turn-Off Time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{CL}=35 \mathrm{pF} \text {, } \\ & \text { Figure } 3 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		25	40	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			50	
On-Channel -3dB Bandwidth	BW	Signal $=0 \mathrm{dBm}, 50 \Omega$ in and out, Figure 4	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		300		MHz

Low-Voltage, Single-Supply, 10 Ω SPST CMOS Analog Switches

ELECTRICAL CHARACTERISTICS—+5V Supply (continued)

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Charge Injection (Note 5)	Q	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=0, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$, Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			2	5	pC
Off-Isolation (Note 6)	VISO	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}_{\mathrm{RMS}}$, $R_{L}=50 \Omega, C_{L}=5 p F$, $\mathrm{f}=1 \mathrm{MHz}$, Figure 4	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}= \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { MAX4594/ } \\ & \text { MAX4595 } \end{aligned}$	80			dB
				$\begin{aligned} & \text { MAX4596/ } \\ & \text { MAX4597 } \end{aligned}$	83			
NO or NC Off-Capacitance	$\mathrm{C}_{\mathrm{NO}(\mathrm{OFF}),}$ $\mathrm{C}_{\mathrm{NC}(\mathrm{OFF})}$	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=0, \mathrm{f}=1 \mathrm{MHz}$, Figure 5	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		8			pF
COM Off-Capacitance	ССом(OFF)	$V_{C O M}=0, f=1 M H z,$ Figure 5	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		8			pF
COM On-Capacitance	CCOM(ON)	$V_{C O M}=0, f=1 M H z,$ Figure 5	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		20			pF
Total Harmonic Distortion Plus Noise	THD	$\begin{aligned} & \mathrm{V}=5 \mathrm{Vp}-\mathrm{p}, R_{\mathrm{L}}=600 \Omega, \\ & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.05			\%
POWER SUPPLY								
Power-Supply Range	V+				2.0		5.5	V
V+ Supply Current	I+	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0$ or $\mathrm{V}+$	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{M}}$	vo TMAX	-1		1	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS—+3V Supply

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3.0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{NO}}$, VNC			0		V+	V
On-Resistance	Ron	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}$, $\mathrm{ICOM}=$ $10 \mathrm{~mA}, \mathrm{~V}+=2.7 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		10	20	Ω
			$\mathrm{T}_{\text {A }}=$ TMIN to TMAX			25	
DIGITAL I/O							
Input Logic High	V_{IH}			2.0			V
Input Logic Low	VIL					0.8	V
Input Logic Current	IIH, IIL	V IN $=\mathrm{V}+$, 0		-1	0.03	1	$\mu \mathrm{A}$
DYNAMIC							
Turn-On Time	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ $300 \Omega, C L=35 p F$, Figure 3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		25	45	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			55	
Turn-Off Time	toff	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ $300 \Omega, C_{L}=35 p F$, Figure 3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		30	50	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			60	
Charge Injection (Note 5)	Q	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=0, C_{L}=1 \mathrm{nF}$, Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2	4	pC

Low-Voltage, Single-Supply, 10

ELECTRICAL CHARACTERISTICS—+3V Supply (continued)

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3.0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
POWER SUPPLY							
V+ Supply Current	I+	$\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}$ IN $=0$ or $\mathrm{V}+$	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-1		1	$\mu \mathrm{A}$

Note 2: Parameters are 100% tested at $+25^{\circ} \mathrm{C}$ only, and guaranteed by correlation at the full-rated temperature.
Note 3: Algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
Note 4: Flatness is defined as the difference between the maximum and minimum values of on-resistance as measured over the specified analog signal ranges.
Note 5: Guaranteed by design.
Note 6: Off-Isolation = $20 \log _{10}\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}}\right), \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.

Typical Operating Characteristics
$\left(\mathrm{V}+=+5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Low-Voltage, Single-Supply, 10 Ω SPST CMOS Analog Switches

Typical Operating Characteristics (continued)

 $\left(\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Pin Description

PIN								NAME	FUNCTION
MAX4594		MAX4595		MAX4596		MAX4597			
SC70	$\mu \mathrm{DFN}$								
1	1	1	1	2	2	2	2	COM	Analog Switch, Common
2	2	-	-	4	4	-	-	NO	Analog Switch, Normally Open
3	3	3	3	3	3	3	3	GND	Ground
4	4	4	4	1	1	1	1	IN	Digital Control Input
5	6	5	6	5	6	5	6	V+	Positive Supply Voltage
-	-	2	2	-	-	4	4	NC	Analog Switch, Normally Closed
-	5	-	5	-	5	-	5	N.C.	No Connection. Not internally connected.
EP	PAD	Exposed Pad. Connect to GND (μ DFN only.)							

Note: NO, NC, and COM pins are identical and interchangeable. Any pin may be considered as an input or an output; signals pass equally well in both directions.

Low-Voltage, Single-Supply, 10

Figure 1. Overvoltage Protection Using Two External Blocking Diodes

Power-Supply Sequencing and

 Overvoltage Protection Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals or logic inputs, especially if the analog or logic signals are not current limited. If this sequencing is not possible, and if the analog or logic inputs are not current limited to $<20 \mathrm{~mA}$, add a small-signal diode (D1) as shown in Figure 1. If the analog signal can dip below GND, add D2. Adding protection diodes reduces the analog signal range to a diode drop (about 0.7 V) below V + for D 1 or to a diode drop above ground for D2. The addition of diodes does not affect leakage. On-resistance increases by a small amount at low supply voltages. Maximum supply voltage ($\mathrm{V}+$) must not exceed 6V.Protection diodes D1 and D2 also protect against some overvoltage situations. A fault voltage up to the absolute maximum rating at an analog signal input does not damage the device, even if the supply voltage is below the signal voltage.

Test Circuits/Timing Diagrams

$\Delta V_{\text {OUt }}$ IS THE MEASURED VOLTAGE DUE TO CHARGE TRANSFER ERROR Q WHEN THE CHANNEL TURNS OFF.
$Q=\Delta V_{\text {OUT }} \times C_{L}$

Figure 2. Charge Injection

Low-Voltage, Single-Supply, 10』 SPST CMOS Analog Switches

Test Circuits/Timing Diagrams (continued)

Figure 3. Switching Times

Low-Voltage, Single-Supply, 10 Ω SPST CMOS Analog Switches

Chip Information
TRANSISTOR COUNT: 50
\qquad

Low-Voltage, Single-Supply, 10』 SPST CMOS Analog Switches

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Low-Voltage, Single-Supply, 10, SPST CMOS Analog Switches

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

