: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China
\qquad
General Description
The MAX4601/MAX4602/MAX4603 quad analog switches feature low on-resistance of 2.5Ω max. On-resistance is matched between switches to 0.5Ω max and is flat (0.5Ω max) over the specified signal range. Each switch can handle Rail-to-Rail ${ }^{\circledR}$ analog signals. The offleakage current is only 2.5 nA maximum at $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$. These analog switches are ideal in low-distortion applications and are the preferred solution over mechanical relays in automatic test equipment or applications where current switching is required. They have low power requirements, require less board space, and are more reliable than mechanical relays.
The MAX4601 has four normally closed (NC) switches, the MAX4602 has four normally open (NO) switches, and the MAX4603 has two NC and two NO switches.

These switches operate from a single supply of +4.5 V to +36 V or from dual supplies of $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$. All digital inputs have +0.8 V and +2.4 V logic thresholds, ensuring TTL/CMOS-logic compatibility when using $\pm 15 \mathrm{~V}$ or a single +12 V supply.

Applications
Reed Relay Replacement
Test Equipment
Communication Systems
PBX, PABX Systems
Audio-Signal Routing
Avionics
Pin Configurations/Functional Diagrams/Truth Tables

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

2.5 Ω, Quad, SPST, CMOS Analog Switches

ABSOLUTE MAXIMUM RATINGS

Note 1: Signals on NC_ NO_ COM」 or IN_exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

$\left(\mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \mathrm{H}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \mathrm{L}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	$\begin{gathered} \text { TYP } \\ \text { (Note 2) } \end{gathered}$	MAX	UNITS
ANALOG SWITCH							
Input Voltage Range	VCOM, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$	(Note 3)		V-		V+	V
COM_to NO or NC_ On-Resistance	Ron	$\begin{aligned} & \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}_{-} \text {or }} \mathrm{V}_{\mathrm{NC}_{-}}= \pm 10 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.7	2.5	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			2.7	
COM_to NO_ or NC_ On-Resistance Match Between Channels (Note 4)	$\Delta \mathrm{RoN}$	$\begin{aligned} & \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}_{-}} \\ & \mathrm{or}=\overline{\mathrm{V}}_{\mathrm{NC}_{-}}= \pm 10 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.1		Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.5	
COM_to NO_ or NC_ On-Resistance Flatness (Note 5)	RFLAT(ON)	$\begin{aligned} & \mathrm{I}_{\mathrm{COM}}^{-}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{NO}} \\ & \text { or } \mathrm{V}_{\mathrm{NC}}= \\ & =-5 \mathrm{~V}, 0,5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.1	0.4	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.5	
Off-Leakage Current (NO_ or NC_) (Note 6)	${ }^{\prime} \mathrm{NO}_{\sim} \mathrm{I}^{\prime} \mathrm{NC}_{-}$	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}= \pm 10 \mathrm{~V}, \\ & \mathrm{~V}_{\text {NO_}} \text { or } \mathrm{V}_{\mathrm{NC}}=\mp 10 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	0.01	0.5	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-2.5		2.5	
COM Off-Leakage Current (Note 6)	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}= \pm 10 \mathrm{~V}, \\ & \mathrm{~V}_{\text {NO_- }} \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=\mp 10 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	0.01	0.5	nA
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-2.5		2.5	
COM On-Leakage Current (Note 6)	ICOM_(ON)	$\mathrm{V}_{\mathrm{COM}}= \pm 10 \mathrm{~V}$, $\mathrm{V}_{\mathrm{NO}} \mathrm{o}^{-} \mathrm{V}_{\mathrm{NC}}= \pm 10 \mathrm{~V}$ or floating	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.2	1	nA
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		10	
LOGIC INPUT							
Input Current with Input Voltage High	IIN_H	$1 \mathrm{~N}_{-}=2.4 \mathrm{~V}$, all others $=0.8 \mathrm{~V}$		-0.500	0.001	0.500	$\mu \mathrm{A}$
Input Current with Input Voltage Low	lin_L	$1 \mathrm{~N}_{-}=0.8 \mathrm{~V}$, all others $=2.4 \mathrm{~V}$		-0.500	0.001	0.500	$\mu \mathrm{A}$
Logic Input High Voltage	VIN_H			2.4	1.7		V
Logic Input Low Voltage	VIN_L				1.7	0.8	V

2.5Ω, Quad, SPST, CMOS Analog Switches

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{I N} \mathrm{H}=2.4 \mathrm{~V}, \mathrm{~V}_{I N} \mathrm{~L}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
POWER SUPPLY							
Power-Supply Range				± 4.5		± 20.0	V
Positive Supply Current	I+	All channels on or off,$\mathrm{V}_{\mathrm{IN}}=0 \text { or } 5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	0.001	0.5	$\mu \mathrm{A}$
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-5		5	
Negative Supply Current	I-	All channels on or off,$\mathrm{V}_{\mathrm{IN}}=0 \text { or } 5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	0.001	0.5	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-5		5	
Logic Supply Current	I	All channels on or off,$\mathrm{V} \text { IN }=0 \text { or } 5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	0.001	0.5	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-5		5	
Ground Current	IGND	All channels on or off,$\mathrm{V}_{\mathrm{IN}}=0 \text { or } 5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	0.001	0.5	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-5		5	
SWITCH DYNAMIC CHARACTERISTICS							
Turn-On Time	ton	Figure 2, $\mathrm{V}_{\mathrm{COM}}= \pm 10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			160	250	ns
Turn-Off Time	toff	Figure 2, $\mathrm{V}_{\mathrm{COM}}= \pm 10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			190	350	ns
Charge Injection	Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0, \text { RGEN }=0, \text { Figure } 3, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$		120			pC
Off-Isolation (Note 7)	VISO	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {, Figure } 4, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$		-56			dB
Crosstalk (Note 8)	V_{CT}	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {, Figure } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$		-59			dB
NC_ or NO_Capacitance	$\mathrm{C}_{\text {(OFF) }}$	$f=1 \mathrm{MHz}$, Figure 6, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		55			pF
COM Off-Capacitance	$\mathrm{C}_{(\text {(СОм) }}$	$f=1 \mathrm{MHz}$, Figure $6, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C}$		55			pF
On-Capacitance	$\mathrm{C}_{\text {(COM }}$	$\mathrm{f}=1 \mathrm{MHz}$, Figure $7, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		250			pF

2.5 2, Quad, SPST, CMOS Analog Switches

ELECTRICAL CHARACTERISTICS—Single +12V Supply

$\left(\mathrm{V}_{+}=12 \mathrm{~V}, \mathrm{~V}-=0, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{I N _H}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \mathrm{L}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS
ANALOG SWITCH							
Input Voltage Range	$\underset{\substack{\mathrm{V}_{\mathrm{NC}}}}{\mathrm{~V}_{\mathrm{COM}}}$	(Note 3)		GND		V+	V
COM_to NO or NC On-Resistance	Ron	$\begin{aligned} & \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=10 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		3	4	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			5	
COM_ to NO_ or NC_ On-Resistance Match Between Channels (Note 4)	$\Delta \mathrm{RON}$	$\begin{aligned} & \mathrm{ICOM}_{\bar{V}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}_{-}} \\ & \text {or }=\mathrm{V}_{\mathrm{NC}}=10 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.03	0.4	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.5	
COM_to NO_ or NC_ On-Resistance Flatness (Note 5)	RFLAT(ON)	$\begin{aligned} & \mathrm{I}_{\mathrm{COM}}^{-}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{NO}} \\ & \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=3 \mathrm{~V}, 6 \mathrm{~V}, 9 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.1	0.4	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.5	
Off-Leakage Current (NO_ or NC_) (Notes 6, 9)	$\begin{aligned} & \mathrm{I}_{\mathrm{NO}}^{-} \\ & \mathrm{I}_{\mathrm{NC}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 10 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}_{-} \text {or }} \mathrm{V}_{\mathrm{NC}}=10 \\ & 1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	0.01	0.5	nA
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-2.5		2.5	
COM Off-Leakage Current (Notes 6, 9)	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=10 \mathrm{~V}, \\ & 1 \mathrm{~V} ; \overline{\mathrm{V}}_{\mathrm{COM}}=1 \mathrm{~V}, 10 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	0.01	0.5	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-2.5		2.5	
COM On-Leakage Current (Notes 6, 9)	ICOM_(ON)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 10 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V} \text {, } \\ & 10 \mathrm{~V} \text {, or floating } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.01	1	nA
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		10	

Input Current with Input Voltage High	IIN_H	$1 \mathrm{~N}_{-}=2.4 \mathrm{~V}$, all others $=0.8 \mathrm{~V}$		-0.500	0.001	0.500	$\mu \mathrm{A}$
Input Current with Input Voltage Low	IIN_L	$\mathrm{IN} \mathrm{C}^{\text {a }} 0.8 \mathrm{~V}$, all others $=2.4 \mathrm{~V}$		-0.500	0.001	0.500	$\mu \mathrm{A}$
Logic Input High Voltage	VIN_H			2.4			V
Logic Input Low Voltage	VIN_L					0.8	V
POWER SUPPLY							
Power-Supply Range				4.5		36.0	V
Positive Supply Current	$1+$	All channels on or off,$\mathrm{V}_{\mathrm{IN}}=0 \text { or } 5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	0.001	0.5	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-5		5	
Logic Supply Current	IL	All channels on or off,$\mathrm{V}_{\mathrm{IN}}=0 \text { or } 5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	0.001	0.5	$\mu \mathrm{A}$
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-5		5	
Ground Current	IGND	$\mathrm{V}_{\mathrm{IN}}=0$ or 5 V	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	0.001	0.5	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-5		5	

2.5 Ω, Quad, SPST, CMOS Analog Switches

ELECTRICAL CHARACTERISTICS—Single +12V Supply (continued)

$\left(\mathrm{V}_{+}=12 \mathrm{~V}, \mathrm{~V}-=0, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{I N _H}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \mathrm{L}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	$\begin{aligned} & \text { TYP } \\ & \text { (Note 2) } \end{aligned}$	MAX	UNITS
SWITCH DYNAMIC CHARACTERISTICS						
Turn-On Time	ton	Figure 2, $\mathrm{V}_{\text {COM }}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		160		ns
Turn-Off Time	toff	Figure 2, $\mathrm{V}_{\text {COM }}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		170		ns
Charge Injection	Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0, \mathrm{R}_{\mathrm{GEN}}=0, \text { Figure } 3, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$		20		pC
Crosstalk (Note 8)	V_{CT}	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {, Figure } 5$ $\mathrm{T}_{\mathrm{A}}^{2}=+25^{\circ} \mathrm{C}$		-60		dB
NC_or NO_Capacitance	$\mathrm{C}_{\text {(OFF) }}$	$\mathrm{f}=1 \mathrm{MHz}$, Figure 6, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		85		pF
COM Off-Capacitance	$\mathrm{C}_{\text {(Сом) }}$	$f=1 \mathrm{MHz}$, Figure 6, $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$		85		pF
On-Capacitance	$\mathrm{C}_{\text {(COM) }}$	$\mathrm{f}=1 \mathrm{MHz}$, Figure $7, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		140		pF

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
Note 3: Guaranteed by design.
Note 4: $\Delta \operatorname{Ron}=\operatorname{Ron}(M A X)-\operatorname{Ron}(M I N)$.
Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.
Note 6: Leakage parameters are 100% tested at maximum-rated hot temperature and guaranteed by correlation at $+25^{\circ} \mathrm{C}$.
Note 7: Off-isolation $=20 \log _{10}\left[\mathrm{~V}_{\mathrm{COM}} /\left(\mathrm{V}_{\mathrm{NC}}\right.\right.$ or $\left.\left.\mathrm{V}_{\mathrm{NO}}\right)\right], \mathrm{V}_{\mathrm{COM}}=$ output, V_{NC} or $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.
Note 8: Between any two switches.
Note 9: Leakage testing at single supply is guaranteed by testing with dual supplies.

2.5 Ω, Quad, SPST, CMOS Analog Switches

Typical Operating Characteristics

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

CHARGE INJECTION
vs. $V_{\text {COM }}$

TURN-ON/OFF TIME
vs. SUPPLY VOLTAGE

POWER-SUPPLY CURRENT
vs. TEMPERATURE

TURN-ON/OFF TIME

ON/OFF-LEAKAGE CURRENT
vs. TEM PERATURE

TURN-ON/OFF TIME vs. TEM PERATURE

2.5 , Quad, SPST, CMOS Analog Switches

Typical Operating Characteristics (continued)
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PIN			NAME	FUNCTION
MAX4601	MAX4602	MAX4603		
1, 16, 9, 8	1, 16, 9, 8	1, 16, 9, 8	IN1, IN2, IN3, IN4	Logic-Control Digital Inputs
$\begin{aligned} & 2,15, \\ & 1077 \end{aligned}$	$\begin{aligned} & 2,15, \\ & 10.7 \end{aligned}$	$\begin{aligned} & 2,15, \\ & 10.7 \end{aligned}$	COM1, COM2, COM3, COM4	Analog Switch Common Terminals
3, 14, 11, 6	-	-	NC1, NC2, NC3, NC4	Analog Switch Normally Closed Terminals
-	3, 14, 11, 6	-	NO1, NO2, NO3, NO4	Analog Switch Normally Open Terminals
-	-	3, 6	NO1, NO4	Analog Switch Normally Open Terminals
-	-	14, 11	NC2, NC3	Analog Switch Normally Closed Terminals
4	4	4	V-	Negative Analog Supply-Voltage Input. Connect to GND for singlesupply operation.
5	5	5	GND	Ground
12	12	12	VL	Logic-Supply Input
13	13	13	V+	Positive Analog Supply Input

2.5 , Quad, SPST, CMOS Analog Switches

Applications Information

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence $\mathrm{V}+$ on first, then V -, followed by the logic inputs, NO, or COM. If power-supply sequencing is not possible, add two small signal diodes (D1, D2) in series with the supply pins for overvoltage protection (Figure 1). Adding diodes reduces the analog signal range to one diode drop below V_{+}and one diode drop above V-, but does not affect the devices' low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between V+ and V- should not exceed 44 V . These protection diodes are not recommended when using a single supply.

Off-Isolation at High Frequencies

In 50Ω systems, the high-frequency on-response of these parts extends from DC to above 100 MHz with a typical loss of -2dB. When the switch is turned off, however, it behaves like a capacitor, and off-isolation decreases with increasing frequency. (Above 300 MHz , the switch actually passes more signal turned off than turned on.) This effect is more pronounced with higher source and load impedances.
Above 5 MHz , circuit board layout becomes critical, and it becomes difficult to characterize the response of the
switch independent of the circuit. The graphs shown in the Typical Operating Characteristics were taken using a 50Ω source and load connected with BNC connectors to a circuit board deemed "average;" that is, designed with isolation in mind, but not using strip-line or other special RF circuit techniques. For critical applications above 5 MHz , use the MAX440, MAX441, and MAX442, which are fully characterized up to 160 MHz .

Figure 1. Overvoltage Protection Using External Blocking Diodes

Timing Diagrams/Test Circuits

Figure 2. Switching-Time Test Circuit

2.5Ω, Quad, SPST, CMOS Analog Switches

Timing Diagrams/Test Circuits (continued)

MAXI/V

$\varlimsup_{V_{I N}=+3 \mathrm{~V}}$

$V_{I N}$ DEPENDS ON SWITCH CONFIGURATION; INPUT POLARITY DETERM INED BY SENSE OF SWITCH.

Figure 3. Charge-Injection Test Circuit

Figure 4. Off-Isolation Test Circuit

Figure 5. Crosstalk Test Circuit
2.5 Ω, Quad, SPST, CMOS Analog Switches

Figure 6. Switch Off-Capacitance Test Circuit
__Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX4602CAE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 SSOP
MAX4602CWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Wide SO
MAX4602CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
MAX4602EAE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 SSOP
MAX4602EWE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Wide SO
MAX4602EPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
MAX4603CAE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 SSOP
MAX4603CWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Wide SO
MAX4603CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
MAX4603EAE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 SSOP
MAX4603EWE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Wide SO
MAX4603EPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP

Figure 7. Switch On-Capacitance Test Circuit Chip Information TRANSISTOR COUNT: 100

2.5 Ω, Quad, SPST, CMOS Analog Switches

2.5 Ω, Quad, SPST, CMOS Analog Switches

	INCHES		MILLIME TERS	
	MIN	MAX	MIN	MAX
A	0.093	0.104	2.35	2.65
A1	0.004	0.012	0.10	0.30
B	0.014	0.019	0.35	0.49
C	0.009	0.013	0.23	0.32
e	0.050		1.27	
E	0.291	0.299	7.40	7.60
H	0.394	0.419	10.00	10.65
h	0.010	0.030	0.25	0.75
L	0.016	0.050	0.40	1.27

	INCHES		MILLIMETERS				
	MIN	MAX	MIN	MAX	N	MSO13	
D	0.398	0.413	10.10	10.50	16	AA	
D	0.447	0.463	11.35	11.75	18	$A B$	
D	0.496	0.512	12.60	13.00	20	$A C$	
D	0.598	0.614	15.20	15.60	24	$A D$	
D	0.697	0.713	17.70	18.10	28	$A E$	

NDTES:

1. D\&E DI NDT INCLUDE MULD FLASH
2. MOLD FLASH IR PRUTRUSIUNS NUT TO EXCEED .15 mm (.006")
3. LEADS TI BE CDPLANAR WITHIN .102mm (.004")
4. CDNTRDLLING DIMENSIDN: MILLIMETER
5. MEETS JEDEC MSO13-XX AS SHOWN

IN ABCVE TABLE
6. $N=$ NUMBER $\square F$ PINS

