

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China









### **General Description**

The MAX4604/MAX4605/MAX4606 guad analog switches feature  $5\Omega$  max on-resistance. On-resistance is matched between switches to  $0.5\Omega$  max and is flat  $(0.5\Omega$ max) over the specified signal range. Each switch can handle Rail-to-Rail® analog signals. The off-leakage current is only 2.5nA max at +85°C. These analog switches are ideal in low-distortion applications and are the preferred solution over mechanical relays in automatic test equipment or in applications where current switching is required. These switches have low power requirements, require less board space, and are more reliable than mechanical relays.

The MAX4604 has four normally closed (NC) switches, the MAX4605 has four normally open (NO) switches, and the MAX4606 has two NC and two NO switches.

These switches operate from a single supply of +4.5V to +36V or from dual supplies of ±4.5V to ±20V. All digital inputs have +0.8V and +2.4V logic thresholds, ensuring TTL/CMOS logic compatibility when using ±15V supplies or a single +12V supply.

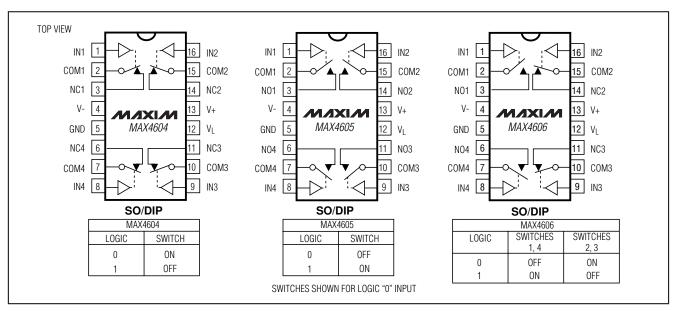
#### **Applications**

Reed Relay Replacement Test Equipment Communication Systems

PBX, PABX Systems Audio-Signal Routing **Avionics** 

#### **♦ Low On-Resistance (5**Ω max)

- **♦** Guaranteed Ron Match Between Channels  $(0.5\Omega \text{ max})$
- **♦** Guaranteed Ron Flatness over Specified Signal Range (0.5 $\Omega$  max)
- ♦ Rail-to-Rail Signal Handling
- ♦ Guaranteed ESD Protection > 2000V per Method 3015.7
- ♦ Single-Supply Operation: +4.5V to +36V Dual-Supply Operation: ±4.5V to ±20V
- **♦ TTL/CMOS-Compatible Control Inputs**


### **Ordering Information**

**Features** 

| PART       | TEMP. RANGE    | PIN-PACKAGE    |
|------------|----------------|----------------|
| MAX4604CSE | 0°C to +70°C   | 16 Narrow SO   |
| MAX4604CPE | 0°C to +70°C   | 16 Plastic DIP |
| MAX4604ESE | -40°C to +85°C | 16 Narrow SO   |
| MAX4604EPE | -40°C to +85°C | 16 Plastic DIP |

Ordering Information continued at end of data sheet.

### Pin Configurations/Functional Diagrams/Truth Tables



Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

Maxim Integrated Products 1

#### **ABSOLUTE MAXIMUM RATINGS**

| 0.3V to +44V<br>+0.3V to -44V |
|-------------------------------|
| 0.3V to +44V                  |
| SND - 0.3V) to $(V + + 0.3V)$ |
| (V 0.3V) to $(V+ + 0.3V)$     |
| _)±100mA                      |
|                               |
| ±300mA                        |
|                               |

| Continuous Power Dissipation (TA = +1 | 70°C)               |
|---------------------------------------|---------------------|
| 16-pin Narrow SO (derate 8.70mW/°C    | 2 above +70°C)696mW |
| 16-pin Plastic DIP (derate 10.53mW/°  | C above +70°C)842mW |
| Operating Temperature Ranges          |                     |
| MAX460_C_E                            | 0°C to +70°C        |
| MAX460_E_E                            | 40°C to +85°C       |
| Storage Temperature Range             | 65°C to +160°C      |
| Lead Temperature (soldering, 10sec).  | +300°C              |

**Note 1:** Signals on NC\_, NO\_, COM\_, or IN\_ exceeding V+ or V- are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

### **ELECTRICAL CHARACTERISTICS—Dual Supplies**

 $(V+=+15V,\,V-=-15V,\,V_L=5V,\,V_{IN\_H}=2.4V,\,V_{IN\_L}=0.8V,\,T_A=T_{MIN}\,to\,T_{MAX},\,unless\,otherwise\,noted.\,Typical\,values\,are\,at\,T_A=+25^{\circ}C.)$ 

| PARAMETER                                         | SYMBOL                                                      | CONDITIONS                                                      |                               | MIN    | TYP<br>(Note 2) | MAX   | UNITS |
|---------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------|--------|-----------------|-------|-------|
| ANALOG SWITCH                                     | 1                                                           |                                                                 |                               | 1.     |                 |       | 1.    |
| Input Voltage Range<br>(Note 3)                   | V <sub>COM</sub> _, V <sub>NO</sub> _,<br>V <sub>NC</sub> _ |                                                                 |                               | V-     |                 | V+    | V     |
| COM_ to NO_ or NC_                                | R <sub>ON</sub>                                             | I <sub>COM</sub> _ = 10mA,                                      | T <sub>A</sub> = +25°C        |        | 3               | 4     | Ω     |
| On-Resistance                                     | TION                                                        | $V_{NO}$ or $V_{NC} = \pm 10V$                                  | $T_A = T_{MIN}$ to $T_{MAX}$  |        |                 | 5     | 12    |
| COM_ to NO_ or NC_<br>On-Resistance Match Between | ΔR <sub>ON</sub>                                            | I <sub>COM</sub> = 10mA, V <sub>NO</sub>                        | T <sub>A</sub> = +25°C        |        | 0.2             | 0.5   | Ω     |
| Channels (Note 4)                                 | ΔιιΟΝ                                                       | or $V_{NC}=\pm 10V$                                             | $T_A = T_{MIN}$ to $T_{MAX}$  |        |                 | 0.7   | 72    |
| COM_ to NO_ or NC_<br>On-Resistance Flatness      | -                                                           | I <sub>COM</sub> = 10mA; V <sub>NO</sub> T <sub>A</sub> = +25°C |                               |        | 0.2             | 0.5   | Ω     |
| (Note 5)                                          | RFLAT(ON)                                                   | or $V_{NC} = -5V, 0, 5V$                                        | $T_A = T_{MIN}$ to $T_{MAX}$  |        |                 | 0.6   | 1 22  |
| Off-Leakage Current                               | I <sub>NO_</sub> , I <sub>NC_</sub>                         | $V_{COM} = \pm 10V$ , $T$                                       | $T_A = +25^{\circ}C$          | -0.5   | 0.01            | 0.5   | nA    |
| (NO_ or NC_) (Note 6)                             | INO_, INC_                                                  | $V_{NO}$ or $V_{NC} = \pm 10V$                                  | $T_A = T_{MIN}$ to $T_{MAX}$  | -2.5   |                 | 2.5   |       |
| COM Off-Leakage Current                           | ICOM (OFF)                                                  | $V_{COM} = \pm 10V$ ,                                           | $T_A = +25^{\circ}C$          | -0.5   | 0.01            | 0.5   | nA    |
| (Note 6)                                          | ICOM_(OFF)                                                  | $V_{NO}$ or $V_{NC} = \pm 10V$                                  | $T_A = T_{MIN}$ to $T_{MAX}$  | -2.5   |                 | 2.5   |       |
| COM On-Leakage Current                            | I <sub>COM_(ON)</sub>                                       | $V_{COM} = \pm 10V$ ,<br>$V_{NO}$ or $V_{NC} = \pm 10V$         | $T_A = +25^{\circ}C$          | -1     | 0.02            | 1     | nA    |
| (Note 6)                                          | ICOM_(ON)                                                   | or floating                                                     | $T_A = T_{MIN}$ to $T_{MAX}$  | -5     |                 | 5     | 117 ( |
| LOGIC INPUT                                       |                                                             |                                                                 |                               |        |                 |       |       |
| Input Current with Input Voltage High             | I <sub>IN_H</sub>                                           | IN_ = 2.4V, all others = 0.8V                                   |                               | -0.500 | 0.001           | 0.500 | μA    |
| Input Current with Input Voltage Low              | I <sub>IN_L</sub>                                           | IN_ = 0.8V, all others =                                        | IN_ = 0.8V, all others = 2.4V |        | 0.001           | 0.500 | μΑ    |
| Logic Input High Voltage                          | V <sub>IN_H</sub>                                           |                                                                 |                               | 2.4    | 1.7             |       | V     |
| Logic Input Low Voltage                           | V <sub>IN_L</sub>                                           |                                                                 |                               |        | 1.7             | 8.0   | V     |

. \_\_\_\_\_\_*NIXI/*N

### **ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)**

 $(V+=+15V,\,V-=-15V,\,V_L=5V,\,V_{IN\_H}=2.4V,\,V_{IN\_L}=0.8V,\,T_A=T_{MIN}\,to\,T_{MAX},\,unless\,otherwise\,noted.\,Typical\,values\,are\,T_A=+25^{\circ}C.)$ 

| PARAMETER                | SYMBOL             | CONDITIONS                                                                      |                                                                                 | MIN  | TYP   | MAX   | UNITS |
|--------------------------|--------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------|-------|-------|-------|
| POWER SUPPLY             |                    |                                                                                 |                                                                                 |      |       |       |       |
| Power-Supply Range       |                    |                                                                                 |                                                                                 | ±4.5 |       | ±20.0 | V     |
| Positive Supply Current  | l+                 | All channels on or off,                                                         | $T_A = +25^{\circ}C$                                                            | -0.5 | 0.001 | 0.5   | μA    |
| 1 Ositive Supply Current | I+                 | $V_{IN} = 0 \text{ or } 5V$                                                     | $T_A = T_{MIN}$ to $T_{MAX}$                                                    | 5    |       | 5     | μΑ    |
| Negative Supply Current  | -                  | All channels on or off,                                                         | $T_A = +25^{\circ}C$                                                            | -0.5 | 0.001 | 0.5   | μA    |
| rvegative Supply Current | 1-                 | $V_{IN} = 0 \text{ or } 5V$                                                     | $T_A = T_{MIN}$ to $T_{MAX}$                                                    | 5    |       | 5     | μΛ    |
| Logic Supply Current     | IL                 | All channels on or off,                                                         | $T_A = +25^{\circ}C$                                                            | -0.5 | 0.001 | 0.5   | μA    |
| Logic dupply durient     | 'L                 | $V_{IN} = 0 \text{ or } 5V$                                                     | $T_A = T_{MIN}$ to $T_{MAX}$                                                    | 5    |       | 5     | μπ    |
| Ground Current           | IGND               | All channels on or off,                                                         | $T_A = +25^{\circ}C$                                                            | -0.5 | 0.001 | 0.5   | μA    |
| Ground Current           | IGND               | $V_{IN} = 0 \text{ or } 5V$                                                     | $T_A = T_{MIN}$ to $T_{MAX}$                                                    | 5    |       | 5     | μΛ    |
| SWITCH DYNAMIC CHARACT   | ERISTICS           |                                                                                 |                                                                                 |      |       |       |       |
| Turn-On Time             | ton                | Figure 2,<br>V <sub>COM</sub> _ = ±10V                                          | $T_A = +25$ °C                                                                  |      | 120   |       | ns    |
| Turn-Off Time            | tOFF               | Figure 2,<br>V <sub>COM</sub> _ = ±10V                                          |                                                                                 |      | 130   |       | ns    |
| Charge Injection         | Q                  | $C_L = 1.0$ nF, $V_{GEN} = 0$ , $R_{GEN} = 0$ , Figure 3, $T_A$                 | Λ = +25°C                                                                       |      | 225   |       | рС    |
| Off-Isolation (Note 7)   | V <sub>ISO</sub>   | $R_L = 50\Omega$ , $C_L = 5pF$ , f<br>Figure 4, $T_A = +25$ °C                  | $R_L = 50\Omega$ , $C_L = 5pF$ , $f = 1MHz$ ,<br>Figure 4, $T_A = +25^{\circ}C$ |      | -62   |       | dB    |
| Crosstalk (Note 8)       | V <sub>CT</sub>    | $R_L = 50\Omega$ , $C_L = 5pF$ , $f = 1MHz$ ,<br>Figure 5, $T_A = +25^{\circ}C$ |                                                                                 |      | -60   |       | dB    |
| NC or NO Capacitance     | C <sub>(OFF)</sub> | f = 1MHz, Figure 6, TA                                                          | = +25°C                                                                         |      | 34    |       | рF    |
| COM Off-Capacitance      | C <sub>(COM)</sub> | f = 1MHz, Figure 6, TA                                                          | = +25°C                                                                         |      | 34    |       | pF    |
| On-Capacitance           | C <sub>(COM)</sub> | f = 1MHz, Figure 7, T <sub>A</sub>                                              | = +25°C                                                                         |      | 150   |       | рF    |

### **ELECTRICAL CHARACTERISTICS—Single Supply**

 $(V+=+12V,\,V-=0,\,V_L=5V,\,V_{IN\_H}=2.4V,\,V_{IN\_L}=0.8V,\,T_A=T_{MIN}\,to\,T_{MAX},\,unless\,otherwise\,noted.\,Typical\,values\,are\,at\,T_A=+25^{\circ}C.)$ 

| PARAMETER                                         | SYMBOL                                                      | CONDITIONS                                                            |                               | MIN    | TYP<br>(Note 2) | MAX   | UNITS |
|---------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------|--------|-----------------|-------|-------|
| ANALOG SWITCH                                     |                                                             |                                                                       |                               |        |                 |       |       |
| Input Voltage Range<br>(Note 3)                   | V <sub>COM</sub> _, V <sub>NO</sub> _,<br>V <sub>NC</sub> _ |                                                                       |                               | GND    |                 | V+    | V     |
| COM_ to NO_ or NC_                                | D                                                           | I <sub>COM</sub> _ = 10mA,                                            | T <sub>A</sub> = +25°C        |        | 5.5             | 8     | Ω     |
| On-Resistance                                     | R <sub>ON</sub>                                             | $V_{NO}$ or $V_{NC}$ = 10V                                            | $T_A = T_{MIN}$ to $T_{MAX}$  |        |                 | 10    | 22    |
| COM_ to NO_ or NC_<br>On-Resistance Match Between | ΔR <sub>ON</sub>                                            | I <sub>COM</sub> _ = 10mA, V <sub>NO</sub> _                          | $T_A = +25^{\circ}C$          |        | 0.05            | 0.5   | Ω     |
| Channels (Note 4)                                 | <u> </u>                                                    | or V <sub>NC</sub> _ = 10V                                            | $T_A = T_{MIN}$ to $T_{MAX}$  |        |                 | 0.7   | -     |
| COM_ to NO_ or NC_<br>On-Resistance Flatness      | D=: .=:(0.1)                                                | I <sub>COM</sub> _ = 10mA; V <sub>NO</sub> _                          | T <sub>A</sub> = +25°C        |        | 0.25            | 0.6   | Ω     |
| (Note 5)                                          | R <sub>FLAT</sub> (ON)                                      | or V <sub>NC</sub> _ = 3V, 6V, 9V                                     | $T_A = T_{MIN}$ to $T_{MAX}$  |        |                 | 0.8   | 22    |
| Off-Leakage Current                               | 1                                                           | V <sub>COM</sub> = 1V, 10V;                                           | T <sub>A</sub> = +25°C        | -0.5   | 0.01            | 0.5   |       |
| (NO_ or NC_) (Notes 6, 9)                         | I <sub>NO_</sub> , I <sub>NC_</sub>                         | V <sub>NO_</sub> or V <sub>NC_</sub> = 10V,<br>1V                     | $T_A = T_{MIN}$ to $T_{MAX}$  | -2.5   | 2.5             |       | nA    |
| COM_ Off-Leakage Current                          | loon (OFF)                                                  | V <sub>COM</sub> _ = 1V, 10V;                                         | $T_A = +25^{\circ}C$          | -0.5   | 0.01            | 0.5   | nA    |
| (Notes 6, 9)                                      | ICOM_(OFF)                                                  | $V_{NO}$ or $V_{NC}$ = 10V                                            | $T_A = T_{MIN}$ to $T_{MAX}$  | -2.5   |                 | 2.5   |       |
| COM_ On-Leakage Current (Notes 6, 9)              | ICOM_(ON)                                                   | $V_{COM}$ = 1V, 10V;<br>$V_{NO}$ or $V_{NC}$ = 1V,<br>10V or floating | $T_A = +25^{\circ}C$          | -1     | 0.02            | 1     | nA    |
|                                                   |                                                             |                                                                       | $T_A = T_{MIN}$ to $T_{MAX}$  | -5     |                 | 5     |       |
| LOGIC INPUT                                       |                                                             |                                                                       |                               |        |                 |       |       |
| Input Current with Input Voltage High             | I <sub>IN_</sub> H                                          | IN_ = 2.4V, all others =                                              | IN_ = 2.4V, all others = 0.8V |        | 0.001           | 0.500 | μΑ    |
| Input Current with Input Voltage Low              | I <sub>IN_L</sub>                                           | IN_ = 0.8V, all others =                                              | : 2.4V                        | -0.500 | 0.001           | 0.500 | μΑ    |
| Logic Input High Voltage                          | V <sub>IN_H</sub>                                           |                                                                       |                               | 2.4    | 1.7             |       | V     |
| Logic Input Low Voltage                           | V <sub>IN_L</sub>                                           |                                                                       |                               |        | 1.7             | 0.8   | V     |
| POWER SUPPLY                                      |                                                             |                                                                       |                               |        |                 |       |       |
| Power-Supply Range                                |                                                             |                                                                       |                               | 4.5    |                 | 36.0  | V     |
| Positive Supply Current                           | l+                                                          | All channels on or off,                                               | $T_A = +25$ °C                | -0.5   | 0.001           | 0.5   | μΑ    |
|                                                   |                                                             | $V_{IN} = 0 \text{ or } 5V$                                           | $T_A = T_{MIN}$ to $T_{MAX}$  | 5      |                 | 5     | F" (  |
| Logic Supply Current                              | Į.                                                          | All channels on or off,                                               | T <sub>A</sub> = +25°C        | -0.5   | 0.001           | 0.5   | - μΑ  |
| Logic Supply Current                              | IL.                                                         | V <sub>IN</sub> = 0 or 5V                                             | $T_A = T_{MIN}$ to $T_{MAX}$  | 5      |                 | 5     |       |
| Ground Current                                    | love                                                        | V <sub>IN</sub> = 0 or 5V                                             | T <sub>A</sub> = +25°C        | -0.5   | 0.001           | 0.5   | μ.Λ   |
| Ground Current                                    | I <sub>GND</sub>                                            | AIN — O OI OA                                                         | $T_A = T_{MIN}$ to $T_{MAX}$  | 5      |                 | 5     | μΑ    |

### **ELECTRICAL CHARACTERISTICS—Single Supply (continued)**

(V+ = +12V, V- = 0, VL = 5V, VIN\_H = 2.4V, VIN\_L = 0.8V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)

| PARAMETER               | SYMBOL             | CONDITIONS                                                                                                                   |                        | MIN | TYP<br>(Note 2) | MAX | UNITS |
|-------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------|-----|-----------------|-----|-------|
| SWITCH DYNAMIC CHARACTE | RISTICS            | 1                                                                                                                            |                        |     |                 |     |       |
| Turn-On Time            | ton                | Figure 2,<br>VCOM_ = 10V,<br>V+ = 12V                                                                                        | T <sub>A</sub> = +25°C |     | 160             | 220 | ns    |
| Turn-Off Time           | tOFF               | Figure 2,<br>V <sub>COM</sub> _ = 10V,<br>V+ = 12V                                                                           | T <sub>A</sub> = +25°C |     | 120             | 160 | ns    |
| Charge Injection        | Q                  | C <sub>L</sub> = 1.0nF, V <sub>GEN</sub> = 0,<br>R <sub>GEN</sub> = 0, Figure 3,<br>V+ = 12V, V- = 0, T <sub>A</sub> = +25°C |                        |     | 10              |     | рС    |
| Crosstalk (Note 8)      | V <sub>CT</sub>    | $R_L = 50\Omega$ , $C_L = 5pF$ ,<br>$f = 1MHz$ , Figure 5, $T_A = +25^{\circ}C$                                              |                        |     | -60             |     | dB    |
| NC_ or NO_ Capacitance  | C <sub>(OFF)</sub> | f = 1MHz, Figure 6, T <sub>A</sub> = +25°C                                                                                   |                        |     | 52              |     | pF    |
| COM_Off-Capacitance     | C <sub>(COM)</sub> | f = 1MHz, Figure 6, T <sub>A</sub> = +25°C                                                                                   |                        |     | 52              |     | pF    |
| On-Capacitance          | C <sub>(COM)</sub> | f = 1MHz, Figure 7, TA                                                                                                       | . = +25°C              |     | 100             |     | pF    |

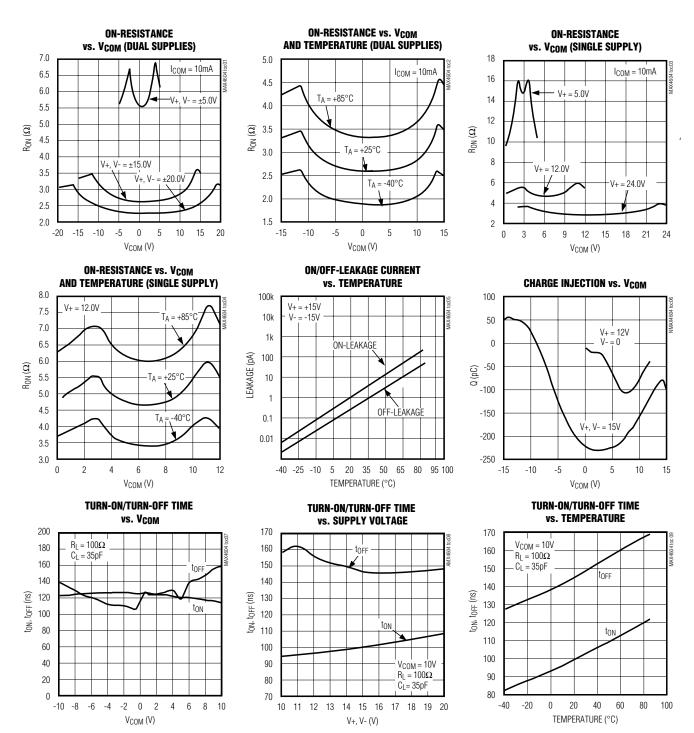
**Note 2:** The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.

Note 3: Guaranteed by design.

**Note 4:**  $\Delta R_{ON} = R_{ON(MAX)} - R_{ON(MIN)}$ .

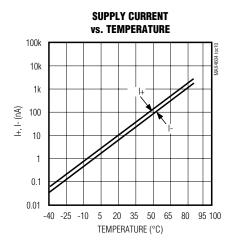
**Note 5:** Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.

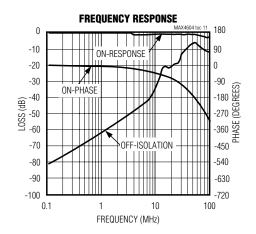
Note 6: Leakage parameters are 100% tested at maximum-rated hot temperature and guaranteed by correlation at +25°C.


Note 7: Off-isolation =  $20log10 [V_{COM_{-}} (V_{NC_{-}} or V_{NO_{-}})], V_{COM_{-}} = output, V_{NC_{-}} or V_{NO_{-}} = input to off switch.$ 

Note 8: Between any two switches.

Note 9: Leakage testing at single supply is guaranteed by testing with dual supplies.


### **Typical Operating Characteristics**


 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ 



### Typical Operating Characteristics (continued)

 $\overline{\text{(TA = +25°C, unless otherwise noted.)}}$ 





### **Pin Description**

|                 | PIN             |                 | NAME                      | FUNCTION                                                                          |  |  |
|-----------------|-----------------|-----------------|---------------------------|-----------------------------------------------------------------------------------|--|--|
| MAX4604         | MAX4605         | MAX4606         | NAME                      | FUNCTION                                                                          |  |  |
| 1, 16, 9, 8     | 1, 16, 9, 8     | 1, 16, 9, 8     | IN1, IN2,<br>IN3, IN4     | Logic-Control Digital Inputs                                                      |  |  |
| 2, 15,<br>10, 7 | 2, 15,<br>10, 7 | 2, 15,<br>10, 7 | COM1, COM2,<br>COM3, COM4 | Analog Switch, Common Terminals                                                   |  |  |
| 3,14, 11, 6     | -               | _               | NC1, NC2,<br>NC3, NC4     | Analog Switch, Normally Closed Terminals                                          |  |  |
| _               | 3,14, 11, 6     | _               | NO1, NO2,<br>NO3, NO4     | Analog Switch, Normally Open Terminals                                            |  |  |
| _               | -               | 3, 6            | NO1, NO4                  | Analog Switch, Normally Open Terminal                                             |  |  |
| _               | -               | 14, 11          | NC2, NC3                  | Analog Switch, Normally Closed Terminal                                           |  |  |
| 4               | 4               | 4               | V-                        | Negative Analog Supply-Voltage Input. Connect to GND for single-supply operation. |  |  |
| 5               | 5               | 5               | GND                       | Ground                                                                            |  |  |
| 12              | 12              | 12              | VL                        | Logic-Supply Input                                                                |  |  |
| 13              | 13              | 13              | V+                        | Positive Analog Supply Input                                                      |  |  |

### Applications Information

#### **Overvoltage Protection**

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence V+ on first, then V-, followed by the logic inputs, NO, or COM. If power-supply sequencing is not possible, add two small signal diodes (D1, D2) in series with supply pins for overvoltage protection (Figure 1). Adding diodes reduces the analog signal range to one diode drop below V+ and one diode drop above V-, but does not affect the devices' low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between V+ and V- should not exceed 44V. These protection diodes are not recommended when using a single supply.

#### Off-Isolation at High Frequencies

In  $50\Omega$  systems, the high-frequency on-response of these parts extends from DC to above 100MHz with a typical loss of -2dB. When the switch is turned off, however, it behaves like a capacitor, and off isolation decreases with increasing frequency. (Above 300MHz, the switch actually passes more signal turned off than turned on.) This effect is more pronounced with higher source and load impedances.

Above 5MHz, circuit board layout becomes critical, and it becomes difficult to characterize the response of the

switch independent of the circuit. The graphs shown in the *Typical Operating Characteristics* were taken using a  $50\Omega$  source and load connected with BNC connectors to a circuit board deemed "average;" that is, designed with isolation in mind, but not using strip-line or other special RF circuit techniques. For critical applications above 5MHz, use the MAX440, MAX441, and MAX442, which are fully characterized up to 160MHz.

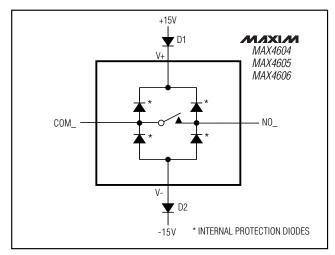



Figure 1. Overvoltage Protection Using External Blocking Diodes

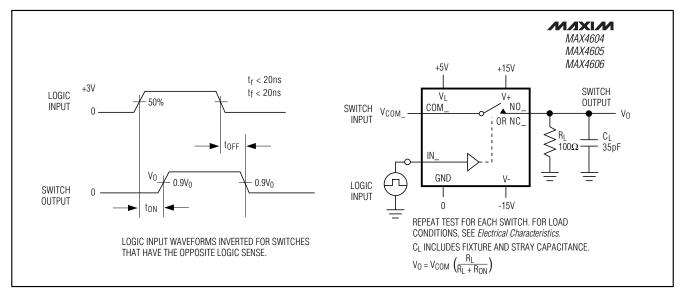



Figure 2. Switching-Time Test Circuit

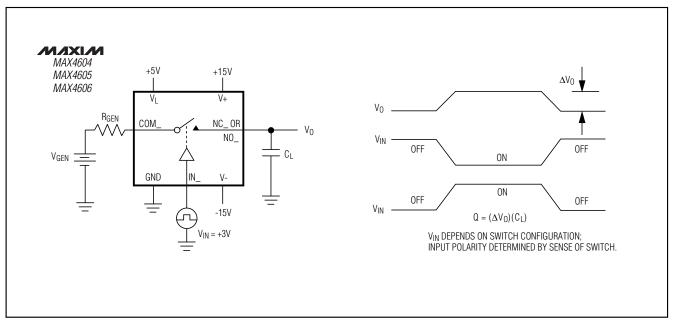



Figure 3. Charge-Injection Test Circuit

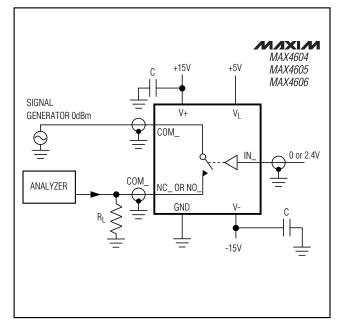



Figure 4. Off-Isolation Test Circuit

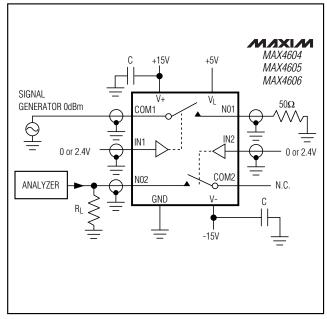



Figure 5. Crosstalk Test Circuit

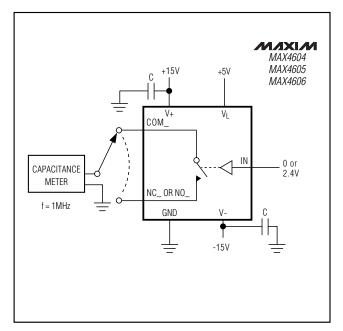
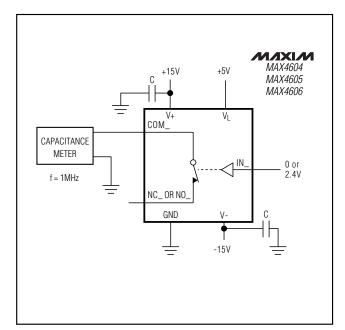
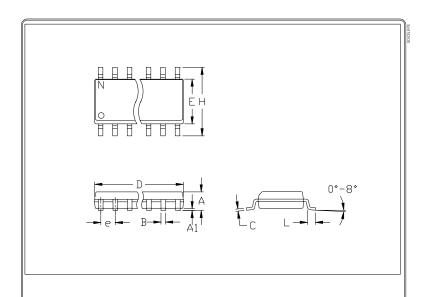



Figure 6. Switch Off-Capacitance Test Circuit





Figure 7. Switch On-Capacitance Test Circuit

### **Ordering Information (continued)**

| PART       | TEMP. RANGE    | PIN-PACKAGE    |
|------------|----------------|----------------|
| MAX4605CSE | 0°C to +70°C   | 16 Narrow SO   |
| MAX4605CPE | 0°C to +70°C   | 16 Plastic DIP |
| MAX4605ESE | -40°C to +85°C | 16 Narrow SO   |
| MAX4605EPE | -40°C to +85°C | 16 Plastic DIP |
| MAX4606CSE | 0°C to +70°C   | 16 Narrow SO   |
| MAX4606CPE | 0°C to +70°C   | 16 Plastic DIP |
| MAX4606ESE | -40°C to +85°C | 16 Narrow SO   |
| MAX4606FPF | -40°C to +85°C | 16 Plastic DIP |

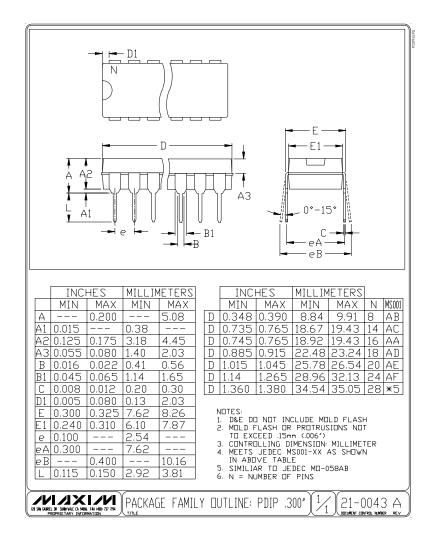
**Chip Information** TRANSISTOR COUNT: 100

### **Package Information**



|    | TAIC  | IEC   | MATE I TA | ETEDO |
|----|-------|-------|-----------|-------|
|    | INC   | HES   | MILLIM    |       |
|    | MIN   | MAX   | MIN       | MAX   |
| Α  | 0.053 | 0.069 | 1.35      | 1.75  |
| A1 | 0.004 | 0.010 | 0.10      | 0.25  |
| В  | 0.014 | 0.019 | 0.35      | 0.49  |
| С  | 0.007 | 0.010 | 0.19      | 0.25  |
| 6  | 0.0   | 0.050 |           | 27    |
| Ε  | 0.150 | 0.157 | 3.80      | 4.00  |
| Н  | 0.228 | 0.244 | 5.80      | 6.20  |
| h  | 0.010 | 0.020 | 0.25      | 0.50  |
| L  | 0.016 | 0.050 | 0.40      | 1.27  |

|        | 2110110  |      | MILLIMETERS |    |       |
|--------|----------|------|-------------|----|-------|
| 1IM    | V MAX    | MIN  | MAX         | Ν  | MS012 |
| D 0.18 | 39 0.197 | 4.80 | 5.00        | 8  | Α     |
| D 0.3  | 37 0.344 | 8.55 | 8.75        | 14 | В     |
| D 0.3  | 86 0.394 | 9.80 | 10.00       | 16 | С     |


- NOTES:

  1. D&E DO NOT INCLUDE MOLD FLASH
  2. MOLD FLASH DR PROTRUSIONS NOT
  TO EXCEED 15mm (006')

  3. LEADS TO BE COPLANAR WITHIN
  102mm (004')
  4. CONTROLLING DIMENSION: MILLIMETER
  5. MEETS JODEC MSOI2-XX AS SHOWN
  IN ABOVE TABLE
  6. N = NUMBER OF PINS

PACKAGE FAMILY DUTLINE: SDIC .150" 21-0041 A

### Package Information (continued)



Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12