: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Low-Voltage, Quad, SPST CMOS Analog Switches

General Description

The MAX4610/MAX4611/MAX4612 are quad, low-voltage, single-pole/single-throw (SPST) analog switches. On-resistance (100Ω, max) is matched between switches to 4Ω, max and is flat ($4 \Omega, \max$) over the specified signal range. Each switch handles $\mathrm{V}+$ to GND analog signal levels. Maximum off-leakage current is only 1 nA at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and 2 nA at $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$.
The MAX4610 has four normally open (NO) switches, and the MAX4611 has four normally closed (NC) switches. The MAX4612 has two NO switches and two NC switches. These CMOS switches operate from a single +2 V to +12 V supply. All digital inputs have +0.8 V and +2.4 V logic thresholds, ensuring TTL/CMOS-logic compatibility when using a single +5 V supply.

Applications

Battery-Operated Equipment
Audio/Video Signal Routing
Low-Voltage Data-Acquisition Systems
Sample-and-Hold Circuits
Communication Circuits

Features

- Offered in Automotive Temperature Range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
- Guaranteed On-Resistance 100Ω max (5V Supply) $46 \Omega \max$ (12V Supply)
- Guaranteed Match Between Channels (4 Ω, max)
- Guaranteed Flatness Over Signal Range (18 Ω, max)
- Off-Leakage Current Over Temperature
$\angle 2 n A$ at TA $=+85^{\circ} \mathrm{C}$
- > 2kV ESD Protection per Method 3015.7
- Rail-to-Rail Signal Handling
- TTL/CMOS-Logic Compatible

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4610CUD +	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 TSSOP
MAX4610CSD +	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Narrow SO
MAX4610CPD +	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Plastic DIP
MAX4610C/D +	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{\star}$
MAX4610EGE +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QFN-EP**
MAX4610EUD +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 TSSOP
MAX4610ESD +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Narrow SO
MAX4610EPD +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Plastic DIP
MAX4610ASD +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Narrow SO

Ordering Information continued at end of data sheet.
*Contact factory for dice specifications.
${ }^{* *} E P=$ Exposed pad.
+Denotes a lead(Pb)-free/RoHS-compliant package.

Pin Configurations/Truth Tables

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Low-Voltage, Quad, SPST
 CMOS Analog Switches

ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to GND.)

V+	
IN , COM , NO_, NC_ (Note	0.3V to (V+ + 0.3V)
Continuous Current (any terminal) (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle) 20 mA
Peak Current (any terminal) (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)	
per Method 3015	

Note 1: Signals on NO_, NC_, COM_, or IN_ exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

ELECTRICAL CHARACTERISTICS—Single +5V Supply
($\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {IN_H }}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {IN }} \mathrm{L}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range (Note 3)	VCOM_ VNO_, VNC_			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V}, \\ & \mathrm{I}_{2} \mathrm{COM}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}}=\mathrm{V} \mathrm{~V}_{\mathrm{NC}} \\ & \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		70	100	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			150	
On-Resistance Match Between Channels (Note 4)	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}=}=\mathrm{V}_{\mathrm{NC}_{-}}=3 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.0	5	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			8	
On-Resistance Flatness (Note 5)	RFLAt(ON)	$\begin{aligned} & \hline \mathrm{V}_{+}=4.5 \mathrm{~V} ; \\ & \mathrm{ICOM}=1 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}}^{-}=\mathrm{V}_{\mathrm{NC}}^{-} \\ & 2 \mathrm{~V}, \\ & 2 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		12	22	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			28	
NO_ or NC_ Off-Leakage Current (Note 6)	INO(OFF)	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}_{-}}=4.5 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.1		+0.1	nA
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-2		+2	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-30		+30	
COM_ Off-Leakage Current (Note 6)	ICOM(OFF)	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V} ; \\ & \mathrm{V}_{\text {NO_ }}=\mathrm{V}_{\mathrm{NC}}^{-} \end{aligned}=4.5 \mathrm{~V}, 1 \mathrm{~V} .$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.1		+0.1	nA
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-2		+2	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-30		+30	
COM_ On-Leakage Current (Note 6)	ICOM(ON)	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}, 4.5 \mathrm{~V} \text {, } \\ & \text { or floating } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.2		+0.2	nA
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-4		+4	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-30		+30	

Low-Voltage, Quad, SPST
 CMOS Analog Switches

ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)

$\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {IN_H }}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {IN_L }}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2$)$	MAX	UNITS
LOGIC INPUT							
Input Current with InputVoltage High	IIN_H	$\mathrm{V}_{1 \mathrm{~N}_{-}}=2.4 \mathrm{~V}$, all others $=0.8 \mathrm{~V}$		-0.1	± 0.001	+0.1	$\mu \mathrm{A}$
Input Current with InputVoltage Low	IIN_L	$\mathrm{V}_{1 \mathrm{~N}_{-}}=0.8 \mathrm{~V}$, all others $=2.4 \mathrm{~V}$		-0.1	± 0.001	+0.1	$\mu \mathrm{A}$
Input High Voltage	VIN_H			2.4	1.5		V
Input Low Voltage	VIN_L				1.4	0.8	V
DYNAMIC (Note 3)							
Turn-On Time	ton	VCOM_ $=3 \mathrm{~V}$, Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		35	65	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			90	
Turn-Off Time	toFF	VCOM_ = 3V, Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		15	28	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			30	
On-Channel Bandwidth	BW	Signal $=0 \mathrm{dBm}$, Figure 4, 50Ω in and out	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		300		MHz
Charge Injection	Vcte	$\begin{aligned} & C_{L}=1.0 n F, V_{G E N}=0, \\ & \text { RGEN }=0, \text { Figure } 3 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1	5	pC
Off-Isolation (Note 7)	VISO	$\begin{aligned} & R L=50 \Omega, C L=5 p F, \\ & f=1 \mathrm{MHz}, \text { Figure } 4 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-60		dB
Crosstalk (Note 8)	$V_{C T}$	$\begin{aligned} & R L=50 \Omega, C L=5 p F, \\ & f=1 \mathrm{MHz}, \text { Figure } 5 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-80		dB
NO_ or NC_ Capacitance	C(OFF)	$f=1 \mathrm{MHz}$, Figure 6	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		16		pF
COM_ Off-Capacitance	CCOM(OFF)	$f=1 \mathrm{MHz}$, Figure 6	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		16		pF
COM_ On-Capacitance	CCOM(ON)	$f=1 \mathrm{MHz}$, Figure 6	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		23		pF
Total Harmonic Distortion	THD	600Ω IN and OUT, 20 Hz to $20 \mathrm{kHz}, 2 \mathrm{~V}_{\text {P-P }}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.009		\%
SUPPLY							
Power-Supply Range				2		12	V
Supply Current	I+	$\mathrm{V}_{\mathrm{IN}}=0 \text { or } \mathrm{V}+\text {, }$ all switches on or off		-1	± 0.001	+1	$\mu \mathrm{A}$

Low-Voltage, Quad, SPST
 CMOS Analog Switches

ELECTRICAL CHARACTERISTICS—Single +3V Supply
$\left(\mathrm{V}+=+3 \mathrm{~V}, \mathrm{~V}_{I N} \mathrm{H}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {IN_L }}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS		MIN	$\begin{gathered} \text { TYP } \\ (\text { Note } 2) \end{gathered}$	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range (Note 3)	VCOM_, $\mathrm{VNO}_{\mathrm{N}}$, V_{NC}			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}^{-}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}}^{-} \\ & =\mathrm{VNC}_{-}=1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		175	360	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			450	
On-Resistance Match Between Channels (Note 4)	$\Delta \mathrm{RON}$	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}^{-}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{NO}_{-}}=\mathrm{V}_{\mathrm{NC}_{-}}=1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2	10	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			20	
NO_ or NC_ Off-Leakage Current (Notes 3, 6)	INO(OFF)	$\begin{aligned} & \mathrm{V}_{+}=3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=0.5 \mathrm{~V}, 3 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}}^{-}=\mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, \\ & 0.5 \mathrm{~V}^{-} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.1		+0.1	nA
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-2		+2	
			$\mathrm{T}_{A}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-30		+30	
COM_ Off-Leakage Current (Notes 3, 6)	ICOM(OFF)	$\begin{aligned} & \mathrm{V}_{+}=3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=0.5 \mathrm{~V}, 3 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}}^{-}=\mathrm{V}_{\mathrm{NC}_{-}}=3 \mathrm{~V}, \\ & 0.5 \mathrm{~V}^{2} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.1		+0.1	nA
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-2		+2	
			$\mathrm{T}_{A}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-30		+30	
COM_ On-Leakage Current (Notes 3, 6)	ICOM(ON)	$\begin{aligned} & \mathrm{V}+=3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}^{-}=0.5 \mathrm{~V}, 3 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{\mathrm{NC}}=0.5 \mathrm{~V}, \\ & 3 \mathrm{~V}, \text { or floating } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.2		+0.2	nA
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-4		+4	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-30		+30	
LOGIC INPUTS							
Input High Voltage	VIN_H			2.4	1.0		V
Input Low Voltage	VIN_L				1.0	0.5	V
DYNAMIC (Note 3)							
Turn-On Time	ton	$\mathrm{V}_{\mathrm{COM}}^{-}=1.5 \mathrm{~V},$ Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		50	100	ns
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			120	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			140	
Turn-Off Time	toff	$\mathrm{V}_{\mathrm{COM}}^{-}=1.5 \mathrm{~V},$ Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		30	47	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to TMAX			60	

Low－Voltage，Quad，SPST
 CMOS Analog Switches

ELECTRICAL CHARACTERISTICS—Single＋12V Supply

（ $\mathrm{V}+=+12 \mathrm{~V}, \mathrm{~V}$ IN＿H $=4 \mathrm{~V}, \mathrm{~V}$ IN＿L $=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$ ，unless otherwise noted．）

PARAMETER	SYMBOL	CONDITIONS		MIN	$\begin{aligned} & \text { TYP } \\ & \text { (Note 2) } \end{aligned}$	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range （Note 3）	$\mathrm{V}_{\mathrm{COM}}$ ， $\mathrm{VNO}_{\mathrm{N}}$ ， V_{NC} ，			0		V＋	V
On－Resistance	RON	$\begin{aligned} & \mathrm{V}+=12 \mathrm{~V}, \\ & \mathrm{I}_{+} \mathrm{COM}=2 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}}=\mathrm{V}_{\mathrm{NC}_{-}}=10 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		30	45	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			60	
LOGIC INPUTS							
Input High Voltage	VIN＿H			4.0	2.8		V
Input Low Voltage	$\mathrm{V}_{\text {IN＿L }}$				2.5	0.8	V
SUPPLY							
Positive Supply Current	I＋	$\mathrm{VIN}_{-}=0$ or $\mathrm{V}+$ ，all sw	es on or off	－1	± 0.001	＋1	$\mu \mathrm{A}$

Note 2：The algebraic convention，where the most negative value is a minimum and the most positive value a maximum，is used in this data sheet．
Note 3：Guaranteed by design．
Note 4：Δ RON＝RON（max）－RON（min）．
Note 5：Flatness is defined as the difference between the maximum and minimum value of on－resistance as measured over the specified analog signal range．
Note 6：Leakage parameters are 100% tested at maximum－rated hot temperature and guaranteed by correlation at $+25^{\circ} \mathrm{C}$ ．
Note 7：Off－Isolation＝20log10（VCOM＿／VNO＿），VCOM＿＝output， $\mathrm{V}_{\text {NO＿}}=$ input to off switch．
Note 8：Between any two switches．

Low-Voltage, Quad, SPST CMOS Analog Switches

/ИIXIN

Low-Voltage, Quad, SPST CMOS Analog Switches

Pin Description

PIN						NAME	FUNCTION
MAX4610		MAX4611		MAX4612			
TSSOP/SO/ DIP	QFN	TSSOP/SO/DIP	QFN	TSSOP/SO/DIP	QFN		
1, 3, 8, 11	$\begin{aligned} & 1,3, \\ & 8,11 \end{aligned}$	-	-	-	-	NO1-NO4	Analog Switch Normally Open Terminals
-	-	1, 3, 8, 11	$\begin{aligned} & 1,3, \\ & 8,11 \end{aligned}$	-	-	NC1-NC4	Analog Switch Normally Closed Terminals
-	-	-	-	1, 8	1, 8	NO1, NO3	Analog Switch Normally Open Terminals
-	-	-	-	3, 11	3,11	NC2, NC4	Analog Switch Normally Closed Terminals
$2,4,9,10$	$\begin{aligned} & 2,4, \\ & 9,10 \end{aligned}$	2, 4, 9, 10	$\begin{aligned} & \hline 2,4, \\ & 9,10 \end{aligned}$	2, 4, 9, 10	$\begin{aligned} & 2,4, \\ & 9,10 \end{aligned}$	COM1-COM4	Analog Switch Common Terminals
13, 5, 6, 12	$\begin{aligned} & \hline 14,5, \\ & 6,13 \end{aligned}$	13, 5, 6, 12	$\begin{aligned} & 14,5, \\ & 6,13 \end{aligned}$	13, 5, 6, 12	$\begin{aligned} & \hline 14,5, \\ & 6,13 \end{aligned}$	IN1-IN4	Logic-Control Digital Input
7	7	7	7	7	7	GND	Ground. Connect to digital ground.
-	12, 15	-	12, 15	-	12, 15	N.C.	No Connection. Not internally connected.
14	16	14	16	14	16	V+	Positive Analog and DigitalSupply Voltage Input. Internally connected to substrate.
-	-	-	-	-	-	EP	Exposed Pad (QFN only). Connect to V+.

Applications Information

Power-Supply Sequencing

 and Overvoltage ProtectionDo not exceed the absolute maximum ratings, because stresses beyond the listed ratings may cause permanent damage to the devices.
Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals or logic inputs, especially if the analog or logic signals are not current limited. If this sequencing is not possible, and if the analog or logic inputs are not current limited to 20mA, add a small-signal diode (D1) as shown in Figure 1. If the analog signal can dip below GND, add D2. Adding protection diodes reduces the analog signal range to a diode drop (about 0.7 V) below $\mathrm{V}+$ (for D1), and to a diode drop above ground (for D2). Leakage is unaffected by adding the diodes. On-resistance increases by a small amount at low supply voltages. Maximum supply voltage (V+) must not exceed 13 V .
Adding protection diodes causes the logic thresholds to be shifted relative to the power-supply rails. This can be

Figure 1. Overvoltage Protection Using Two External Blocking Diodes
significant when low supply voltages (+5V or less) are used. With a +5 V supply, TTL compatibility is not guaranteed when protection diodes are added. Driving IN1 and IN2 all the way to the supply rails (i.e., to a diode drop higher than the $\mathrm{V}+\mathrm{pin}$, or to a diode drop lower than the GND pin) is always acceptable

Low-Voltage, Quad, SPST CMOS Analog Switches

Protection diodes D1 and D2 also protect against some overvoltage situations. With Figure 1's circuit, if the supply voltage is below the absolute maximum rating, and if a fault voltage up to the absolute maximum rating is applied to an analog signal pin, no damage will result.

Operating Considerations for High-Voltage Supply

The MAX4610/MAX4611/MAX4612 are pin-compatible with the industry-standard 74 HC 4066 and the MAX4066, and are optimized for +5 V single-supply operation. The MAX4610 family is capable of +12 V
single-supply operation with some precautions. The absolute maximum rating for $\mathrm{V}+$ is +13.2 V (referenced to GND). When operating near this region, bypass V_{+} with a minimum $0.1 \mu \mathrm{~F}$ capacitor to ground as close to the IC as possible.

Caution: The absolute maximum V+ to V- differential voltage is 13.0 V . Typical $\pm 6 \mathrm{~V}$ or 12 V supplies with $\pm 10 \%$ tolerances can be as high as 13.2 V . This voltage can damage the MAX4610/MAX4611/MAX4612. Even $\pm 5 \%$ tolerance supplies may have overshoot or noise spikes that exceed 13.0V.

Test Circuits/Timing Diagrams

MAXIM

CL INCLUDES FIXTURE AND STRAY CAPACITANCE.

$$
V_{\text {OUT }}=V_{\text {COM }}\left(\frac{R_{L}}{R_{L}+R_{\text {ON }}}\right)
$$

Figure 2. Switching Time

Figure 3. Charge Injection
\qquad

Low-Voltage, Quad, SPST CMOS Analog Switches

Test Circuits/Timing Diagrams (continued)

Figure 4. Off-Isolation/On-Channel Bandwidth

Figure 6. Channel Off/On-Capacitance

Figure 5. Crosstalk
_Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
MAX4611CUD+	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 TSSOP
MAX4611CSD+	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Narrow SO
MAX4611CPD+	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Plastic DIP
MAX4611C/D+	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX4611EGE+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QFN-EP**
MAX4611EUD+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 TSSOP
MAX4611ESD+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Narrow SO
MAX4611EPD+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Plastic DIP
MAX4611AUD+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 TSSOP
MAX4611ASD+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Narrow SO
MAX4612CUD+	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 TSSOP
MAX4612CSD+	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Narrow SO
MAX4612CPD+	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Plastic DIP
MAX4612C/D+	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX4612EUD+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 TSSOP
MAX4612ESD+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Narrow SO
MAX4612EGE+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QFN-EP**
MAX4612EPD+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Plastic DIP
MAX4612AUD+	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 TSSOP
MAX4612ASD+	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Narrow SO

*Contact factory for dice specifications.
**EP = Exposed pad.
+Denotes a lead(Pb)-free/RoHS-compliant package.

Low-Voltage, Quad, SPST
 CMOS Analog Switches

Package Information
For the latest package outline information, go to www.maxim-ic.com/packages

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
14 TSSOP	U14+1	$\underline{\mathbf{2 1 - 0 0 6 6}}$
14 Narrow SO	$\mathrm{S} 14+2$	$\underline{\mathbf{2 1 - 0 0 4 1}}$
14 PDIP	$\mathrm{P} 14+6$	$\underline{\mathbf{2 1 - 0 0 4 3}}$
16 QFN	G1644-1	$\underline{\mathbf{2 1 - 0 0 9 1}}$

Low-Voltage, Quad, SPST
 CMOS Analog Switches

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$1 / 99$	-	-
6	$5 / 09$	Added lead-free packaging and added changes to EC table	$1-4,7,9-13$

