: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

High-Speed, Low-Voltage, 4 Ω, SPDT CMOS Analog Switch

General Description

The MAX4644 is a single-pole/double-throw (SPDT) switch that operates from a single supply ranging from +1.8 V to +5.5 V . It provides low 4Ω on-resistance (RON) as well as 1Ω RON flatness over the entire analog-signal range. The MAX4644 offers fast switching times of less than 20ns while ensuring break-before-make operation. It typically consumes only $0.01 \mu \mathrm{~W}$ of quiescent power, making it suitable for use in low-power, portable applications.
The MAX4644's features include low leakage currents over the entire temperature range, TTL/CMOS-compatible digital logic, and excellent AC characteristics. It is packaged in either a small 8-pin $\mu \mathrm{MAX}{ }^{\circledR}$ or a tiny 6-pin SOT23.
\qquad Applications
Battery-Operated Equipment
Audio and Video Signal Routing
Low-Voltage Data-Acquisition Systems
Sample-and-Hold Circuits
Communications Circuits
μ MAX is a registered trademark of Maxim Integrated
Products, Inc.

- +1.8 V to +5.5 V Single-Supply Operation
- Rail-to-Rail Analog-Signal Range
- Guaranteed RoN
$4 \Omega \max (+5 \mathrm{~V}$ Supply)
$8 \Omega \max$ (+3V Supply)
- +1.8V Operation

Ron 30Ω (typ) Over Temperature toN 18ns (typ), toff 12ns typ

- Guaranteed RoN Flatness: 0.75Ω (typ) (+5V Supply)
- Guaranteed Ron Match Between Channels: 0.1Ω typ (+5V Supply)
- Low Leakage (<0.35nA) Over Entire Temperature Range
- Excellent AC Characteristics

Low Crosstalk: -82dB at 1 MHz
High Off-Isolation: -80dB at 1 MHz
0.018\% Total Harmonic Distortion

- Low Power Consumption: < 0.01 $\mu \mathrm{W}$

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	TOP MARK
MAX4644EUT +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 SOT23	AAHQ
MAX4644EUA +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-

+Denotes a lead(Pb)-free/RoHS-compliant package.
$T=$ Tape and reel.

High-Speed, Low-Voltage, 4 Ω, SPDT CMOS Analog Switch

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)
V+ ..-0.3V to +6 V

IN, COM, NO, NC (Note 1)-0.3V to (V+ + 0.3V)
Continuous Current (any terminal)................................... $\pm 20 \mathrm{~mA}$
Continuous Current (NO, NC, and COM) $\pm 50 \mathrm{~mA}$
Peak Current (NO, NC, and COM, pulsed at 1 ms ,
10\% duty cycle) \qquad $\pm 100 \mathrm{~mA}$

Note 1: Signals on NO, NC, COM, or IN exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +5V Supply

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}$ INH $=2.4 \mathrm{~V}, \mathrm{~V}$ INL $=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog-Signal Range	$V_{\text {COM }}$, V_{NO}, V_{NC}			0		V+	V
On-Resistance	Ron	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{ICOM}=$ $10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=0$ to V_{+}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2.5	4	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			4.75	
On-Resistance Match Between Channels (Note 2)	$\triangle \mathrm{RoN}$	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{ICOM}=$ $10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=0$ to V_{+}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.1		Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.4	
On-Resistance Flatness (Note 3)	Rflat	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{ICOM}=$ $10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=0$ to $\mathrm{V}+$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.75	1	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			1.2	
NO, NC Off-Leakage Current (Note 4)	INO(OFF), INC(OFF)	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=$ 1 V or $4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V}$ or 1 V	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.25	0.01	0.25	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.35		0.35	
COM Off-Leakage Current (Note 4)	ICOM(OFF)	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=$ 1 V or $4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V}$ or 1 V	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.25	0.01	0.25	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.35		0.35	
COM On-Leakage Current (Notes 4, 5)	ICOM(ON)	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{VCOM}= \\ & 1 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.25	0.01	0.25	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.35		0.35	
DIGITAL INPUTS							
Input-Logic High	V_{IH}			2.4			V
Input-Logic Low	VIL					0.8	V
Input Current	IIN	V IN $=0.8 \mathrm{~V}$ or 2.4 V		-0.1	0.005	0.1	$\mu \mathrm{A}$

High-Speed, Low-Voltage, 4 Ω, SPDT CMOS Analog Switch

ELECTRICAL CHARACTERISTICS -Single +5V Supply (continued)

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V} I N H=2.4 \mathrm{~V}, \mathrm{~V} I N L=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DYNAMIC							
Turn-On Time (Note 4)	ton	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega ; C_{L}= \\ & 35 \mathrm{pF} ; \mathrm{V}_{\mathrm{NO}}, V_{N C}=3 \mathrm{~V} \text {; } \\ & \text { Figure } 2 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		11	15	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			18	
Turn-Off Time (Note 4)	toff	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega ; \mathrm{C}_{\mathrm{L}}= \\ & 35 \mathrm{pF} ; \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=3 \mathrm{~V} \text {; } \\ & \text { Figure 2 } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		3	5	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			6	
Break-Before-Make (Note 4)	tBBM	$\begin{aligned} & R_{L}=300 \Omega ; \\ & C_{L}=35 p F ; V_{N O} \text { or } \\ & V_{N C}=+3 V \text {; Figure } 2 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		8		ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	1			
Charge Injection	Q	VGEN $=0 \mathrm{~V}, \mathrm{RGEN}=0 \mathrm{~V}, \mathrm{CL}_{\mathrm{L}}=1 \mathrm{nF}$, Figure 4		5			pC
NO, NC Off-Capacitance	$\mathrm{C}_{\mathrm{NO}}(\mathrm{OFF}),$ CNC(OFF)	NO or $\mathrm{NC}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$, Figure 5		12			pF
Switch On-Capacitance	C(ON)	$f=1 \mathrm{MHz}$, Figure 5			34		pF
Off-Isolation (Note 6)	VISO	$C_{L}=5 p F, R_{L}=50 \Omega,$ Figure 3	$\mathrm{f}=10 \mathrm{MHz}$		-55		dB
			$\mathrm{f}=1 \mathrm{MHz}$		-80		
Crosstalk (Note 7)	VCT	$C_{L}=5 p F, R_{L}=50 \Omega,$ Figure 3	$\mathrm{f}=10 \mathrm{MHz}$		-62		dB
			$\mathrm{f}=1 \mathrm{MHz}$		-82		
Total Harmonic Distortion	THD	$\mathrm{RL}=600 \Omega, 0.5 \mathrm{Vp}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz			0.018		\%
SUPPLY							
Positive Supply Current	I+	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ or			0.001	1.0	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS—Single +3V Supply

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.3 \mathrm{~V}, \mathrm{~V} I N H=2.0 \mathrm{~V}, \mathrm{~V}_{I N L}=0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog-Signal Range	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}, \\ & \mathrm{~V}_{\mathrm{NO}}, \\ & \mathrm{~V}_{\mathrm{NC}} \end{aligned}$			0		V+	V
On-Resistance	Ron	$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{ICOM}=$ $10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=0$ to V_{+}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		6	8	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			9	
On-Resistance Match Between Channels (Note 2)	$\triangle \mathrm{RON}$	$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{ICOM}=$ $10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=0$ to V_{+}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.1		Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.4	
On-Resistance Flatness (Note 3)	Rflat	$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{ICOM}=$ $10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=0$ to V_{+}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.5	3	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			3.5	

High-Speed, Low-Voltage, 4Ω, SPDT CMOS Analog Switch

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.3 \mathrm{~V}, \mathrm{~V} I N H=2.0 \mathrm{~V}, \mathrm{~V} \operatorname{VLL}=0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$

Note 2: $\Delta \operatorname{RON}=\operatorname{RON}(M A X)-\operatorname{RON}(M I N)$.
Note 3: Ron flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog-signal range.
Note 4: Guaranteed by design.
Note 5: On-Leakage performed with voltage applied to COM, with NO and NC left unconnected
Note 6: Off-Isolation = $20 \log _{10}\left(\mathrm{~V}_{\mathrm{O}} / \mathrm{V}_{\mathrm{I}}\right)$, where V_{O} is $\mathrm{V}_{\mathrm{COM}}$ and V_{I} is either V_{NC} or V_{NO} from the network analyzer.
Note 7: Crosstalk is measured between the two switches.

High-Speed, Low-Voltage, 4 Ω, SPDT CMOS Analog Switch

Typical Operating Characteristics
$\left(\mathrm{V}+=+5 \mathrm{~V}\right.$ or $+3 \mathrm{~V}, \mathrm{~V}$ INH $=\mathrm{V}+, \mathrm{INL}=\mathrm{GND}, \mathrm{TA}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

CHARGE INJECTION vs. VCOM

LOGIC THRESHOLD vs.

ON-RESISTANCE vs. TEMPERATURE

SUPPLY CURRENT vs. SUPPLY VOLTAGE

SWITCHING TIMES vs. SUPPLY VOLTAGE

ON-/OFF-LEAKAGE CURRENT
vs. TEMPERATURE

SUPPLY CURRENT vs. TEMPERATURE

SWITCHING TIMES vs. TEMPERATURE

High-Speed, Low-Voltage, 4 Ω, SPDT CMOS Analog Switch

Typical Operating Characteristics (continued)

$\left(\mathrm{V}+=+5 \mathrm{~V}\right.$ or $+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=\mathrm{V}+, \mathrm{INL}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Pin Description

MAX4644		NAME	
SOT23	$\boldsymbol{\mu M A X}$		
1	6	FUNCTION	
2	4	V+	Positive Supply Voltage Input. Bypass with a 0.1 μ F capacitor to GND.
3	3	GND	Ground
-	5,7	N.C.	No Connection. Not internally connected.
4	2	NC	Analog-Switch Normally Closed Terminal
5	1	COM	Analog-Switch Common Terminal
6	8	NO	Analog-Switch Normally Open Terminal

Note: The switches are bidirectional, which means that a signal can be passed through either side of the on switch. However, the typical off-capacitances differ as shown in the Electrical Characteristics.
\qquad

High-Speed, Low-Voltage, 4 Ω, SPDT CMOS Analog Switch

Figure 1. Overvoltage Protection Using External Blocking Diodes

Applications Information

The MAX4644 operates from a single supply ranging from +1.8 V to +5.5 V . The device is guaranteed to be functional over that supply range, but TTL/CMOS compatibility is only valid for operation using a +5 V supply. All voltage levels are referenced to GND. Positive and negative DC analog inputs or AC signals can be accommodated by shifting $\mathrm{V}+$ and GND.
ESD-protection diodes are internally connected between each analog-signal pin and both V+ and GND. One of these diodes conducts if any analog signal exceeds V+ or GND (Figure 1). Virtually all of the analog leakage current comes from the ESD diodes to V_{+}
or GND. Although the ESD diodes on a given signal pin are identical, and therefore fairly well balanced, they are reverse biased differently. Each is biased by either V+ or GND and the analog signal. This means their leakages will vary as the signal varies. The difference in the two diode leakages to the $V+$ and GND pins constitutes the analog-signal-path leakage current. All analog leakage current flows between each pin and one of the supply terminals, not to the other switch terminal. This is why both sides of a given switch can show leakage currents of the same or opposite polarity.
There is no normal current path between the analogsignal paths and $\mathrm{V}+$ or GND. $\mathrm{V}+$ and GND also power the internal logic and logic-level translators. The logiclevel translators convert the logic level into switched V_{+} and GND signals to drive the analog signal gates.

Chip Information
PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
6 SOT 23	$\mathrm{U6+4}$	$\underline{\mathbf{2 1 - 0 0 5 8}}$	$\underline{\underline{90-0175}}$
$8 \mu \mathrm{MAX}$	$\mathrm{U} 8+1$	$\underline{\underline{21-0036}}$	$\underline{\underline{90-0092}}$

High-Speed, Low-Voltage, 4 Ω, SPDT CMOS Analog Switch

Figure 2. Switching Times

High-Speed, Low-Voltage, 4 Ω, SPDT CMOS Analog Switch

Figure 3. Off-Isolation and On-Loss

Figure 5. NO, NC, and COM Capacitance

Figure 4. Charge Injection

High-Speed, Low-Voltage, 4Ω, SPDT CMOS Analog Switch

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$3 / 00$	Initial release	-
1	$1 / 11$	Added lead-free parts to the Ordering Information table	1

