: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

AMAXIN Fast, Low-Voltage, 2.5 Ω, SPST, CMOS Analog Switches

```
* +1.8V to +5V Single-Supply Operation
- Guaranteed RoN
        2.5\Omega max (5V supply)
        3.5\Omega max (3V supply)
- 1.8V Operation
        Ron 30\Omega typ Over Temperature
        toN 40ns typ, tofF 20ns typ
* Low RoN Flatness: 0.4\Omega max
* Guaranteed Low Leakage Currents
        \pm0.25nA at +25*
- Rail-to-Rail Output Capability
* TTL/CMOS-Logic Compatible
* -75dB Off-Isolation at 1MHz
* Low Distortion: 0.014% typ
```

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4645EUK-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23-5	ADOB
MAX4645EUT-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$6 \mathrm{SOT} 23-6$	AAHL
MAX4645EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-
MAX4646EUK-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{SOT} 23-5$	ADOC
MAX4646EUT-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$6 \mathrm{SOT} 23-6$	AAHM
MAX4646EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-

Pin Configurations/Functional Diagrams/Truth Tables

Fast, Low-Voltage, 2.5 Ω, SPST, CMOS Analog Switches

ABSOLUTE MAXIMUM RATINGS

$V_{+}, V_{\text {IN }}$ to GND \qquad-0.3 to +6V
COM, NO, NC to GND (Note 1)....................-0.3V to (V+ + 0.3V)
Continuous Current (any terminal) \qquad +50 mA
Peak Current COM, NO, NC
(pulsed at $1 \mathrm{~ms} 10 \%$ duty cycle)................................ $\pm 100 \mathrm{~mA}$

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
5 -Pin SOT23 (derate $7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	571 mW
6 -Pin SOT23 (derate $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	696 mW
8 -Pin $\mu \mathrm{MAX}$ (derate $4.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	330 mW
Operating Temperature Range	+ $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$+150^{\circ} \mathrm{C}$

Note 1: Signals on NO, NC, or COM, exceeding V+ or GND are clamped by internal diodes. Limit forward current to maximum current rating

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +5V Supply

($\mathrm{V}+=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise specified.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Input Voltage Range	$V_{C O M}$, VNo, V_{NC}			0		V+	V
COM to NO or NC On-Resistance	Ron	$\begin{aligned} & \text { ICOM }=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0 \text { to } \mathrm{V}+ \\ & \mathrm{V}+=4.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.5	2.5	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			3	
On-Resistance Flatness (Note 4)	RFLAT(ON)	$\begin{aligned} & \text { ICOM }=10 \mathrm{~mA}, \\ & V_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0 \text { to } \mathrm{V}+, \\ & \mathrm{V}_{+}=4.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.1	0.4	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.6	
Off-Leakage Current (NO or NC) (Notes 5, 6)	INO(OFF), InC(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V}, 1 \mathrm{~V} \text {; } \\ & \mathrm{V}+=5.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.25	0.01	0.25	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.35		0.35	
COM Off-Leakage Current (Notes 5, 6)	ICOM(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V}, 1 \mathrm{~V} \text {; } \\ & \mathrm{V}+=5.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.25	0.01	0.25	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.35		0.35	
COM On-Leakage Current (Notes 5, 6)	$\mathrm{ICOM}(\mathrm{ON})$	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=4.5 \mathrm{~V} \text {, } \\ & 1 \mathrm{~V} ; \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V} \text {, } \\ & 1 \mathrm{~V} \text {, or floating } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.25	0.01	0.25	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.35		0.35	

LOGIC INPUT

Input Logic High	V_{IH}		2.4	V
Input Logic Low	V_{IL}			0.8
Logic Input Current	I_{IN}	$\mathrm{V}_{I N_{-}=}=0.8 \mathrm{~V}$ or 2.4 V	-0.1	V

SWITCH DYNAMIC CHARACTERISTICS

Turn-On Time (Note 5)	ton	$\mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega \text {, }$ $C L=35 p F$, Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	12	15	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		18	
Turn-Off Time (Note 5)	toff	$\begin{aligned} & V_{N O}, V_{N C}=3 V, R_{L}=300 \Omega, \\ & C_{L}=35 p F, \text { Figure } 2 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	8	10	ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		12	

Fast, Low-Voltage, 2.5 Ω, SPST, CMOS Analog Switches

ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)
($\mathrm{V}+=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise specified.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Charge Injection	Q	$\begin{aligned} & V_{G E N}=2 V, C_{L}=1.0 n F, \\ & R_{G E N}=0, \text { Figure } 3 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		5		pC
NO or NC Capacitance	Coff	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{GND}$, $\mathrm{f}=1 \mathrm{MHz}$, Figure 5	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		17		pF
COM Off-Capacitance	Ссом	$\mathrm{V}_{\mathrm{COM}}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz},$ Figure 5	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		17		pF
COM On-Capacitance	Ссом	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=\mathrm{GND} \\ & \mathrm{f}=1 \mathrm{MHz} \text {, Figure } 5 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		38		pF
Off-Isolation (Note 7)	VISO	$\begin{aligned} & V_{N O}=V_{N C}=1 V_{R M S}, \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \\ & f=10 \mathrm{MHz}, \text { Figure } 4 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-55		dB
		$\begin{aligned} & V_{N O}=V_{N C}=1 V_{R M S}, \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \\ & f=1 \mathrm{MHz}, \text { Figure } 4 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-75		dB
Total Harmonic Distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, 5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.014		\%
POWER SUPPLY							
Positive Supply Current	$1+$	$\mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \text { or } \mathrm{V}+\text {, }$ all channels on or off	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.0001		$\mu \mathrm{A}$
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			1.0	

ELECTRICAL CHARACTERISTICS—Single +3V Supply

($\mathrm{V}+=2.7 \mathrm{~V}$ to $3.3 \mathrm{~V}, \mathrm{~V}_{I H}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise specified.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Input Voltage Range	$\begin{gathered} \mathrm{V}_{\mathrm{COM}}, \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \end{gathered}$			0		V+	V
COM to NO or NC On-Resistance	Ron	$\begin{aligned} & \text { ICOM }=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0 \text { to } \mathrm{V}+, \\ & \mathrm{V}_{+}=2.7 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2.5	3.5	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			4.5	
On-Resistance Flatness (Note 4)	RFLAT(ON)	$\begin{aligned} & \text { ICOM }=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0 \text { to } \mathrm{V}+\text {, } \\ & \mathrm{V}+=2.7 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.5	0.9	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			1	
Off-Leakage Current (NO or NC) (Notes 5, 6)	INO(OFF), InC(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 3 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, 1 \mathrm{~V} \text {; } \\ & \mathrm{V}+=3.3 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.25	0.01	0.25	nA
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.35		0.35	
COM Off-Leakage Current (Notes 5, 6)	ICOM(OFF)	$\begin{aligned} & V_{C O M}=1 \mathrm{~V}, 3 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, 1 \mathrm{~V} \text {; } \\ & \mathrm{V}+=3.3 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.25	0.01	0.25	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.35		0.35	
COM On-Leakage Current (Notes 5, 6)	ICOM(ON)	$\begin{aligned} & \mathrm{V}_{+}=3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 3 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V} \text {, } \\ & 3 \mathrm{~V} \text { or floating } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.25	0.01	0.25	nA
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.35		0.35	

Fast, Low-Voltage, 2.5 Ω, SPST, CMOS Analog Switches

ELECTRICAL CHARACTERISTICS-Single +3V Supply (continued)

($\mathrm{V}+=2.7 \mathrm{~V}$ to $3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise specified.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
LOGIC INPUT							
Input Logic High	V_{IH}			2.0			V
Input Logic Low	VIL					0.4	V
Logic Input Current	IIN	$\mathrm{V}_{1 \mathrm{~N}_{-}}=0.4 \mathrm{~V}$ or 2.0 V		-1	0.005	1	$\mu \mathrm{A}$
SWITCH DYNAMIC CHARACTERISTICS							
Turn-On Time (Note 5)	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=2.0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \end{aligned}$ Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		12	15	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			20	
Turn-Off Time (Note 5)	tofF	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=2.0 \mathrm{~V}, \\ & \mathrm{RL}_{\mathrm{L}}=300 \Omega, \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \text { Figure } 2 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		8	10	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			13	
Charge Injection	Q	$\begin{aligned} & V_{G E N}=1.5 \mathrm{~V}, C_{L}=1.0 \mathrm{nF}, \\ & \text { RGEN }=0, \text { Figure } 3 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		4		pC
NO or NC Capacitance	Coff	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{GND}$, $f=1 \mathrm{MHz}$, Figure 5	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		17		pF
COM Off-Capacitance	Ссом	$\mathrm{V}_{\mathrm{COM}}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz},$ Figure 5	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		17		pF
COM On-Capacitance	Ссом	$\begin{aligned} & V_{C O M}=V_{N O}, V_{N C}=G N D, \\ & f=1 \mathrm{MHz}, \text { Figure } 5 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		38		pF
Off-Isolation (Note 7)	VISO	$\begin{aligned} & V_{N O}=V_{N C}=1 V_{R M S}, \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \\ & f=10 \mathrm{MHz}, \text { Figure } 4 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-55		dB
		$\begin{aligned} & V_{N O}=V_{N C}=1 V_{R M S}, \\ & R_{L}=50 \Omega, C_{L}=5 p F, \\ & f=1 \mathrm{MHz}, \text { Figure } 4 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-75		
POWER SUPPLY							
Positive Supply Current	$1+$	$\mathrm{V}_{+}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \text { or } \mathrm{V}+\text {, }$ all channels on or off	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.0001		$\mu \mathrm{A}$
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			1.0	

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value is a maximum, is used in this data sheet.
Note 3: SOT packages are 100% production tested at $+25^{\circ} \mathrm{C}$. Limits at the maximum rated temperature are guaranteed by correlation.
Note 4: Flatness is defined as the difference between the maximum and the minimum value of on-resistance as measured over the specified analog signal ranges.
Note 5: Guaranteed by design.
Note 6: Leakage parameters are 100% tested at $+85^{\circ} \mathrm{C}$ and guaranteed by correlation at $+25^{\circ} \mathrm{C}$.
Note 7: Off-Isolation = $20 \log _{10}\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}}\right), \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.

Fast, Low-Voltage, 2.5 Ω, SPST, CMOS Analog Switches

Typical Operating Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SUPPLY CURRENT vs. SUPPLY VOLTAGE AND TEMPERATURE

harge injection vs. Vcom

TURN-ON/TURN-OFF TIME vs. TEMPERATURE

TOTAL HARMONIC DISTORTION
vs. FREQUENCY

ON/OFF-LEAKAGE CURRENT
vs. TEMPERATURE

TURN-ON/TURN-OFF TIME
vs. VCOM

FREQUENCY RESPONSE

Fast, Low-Voltage, 2.5 Ω, SPST, CMOS Analog Switches

PIN						NAME	FUNCTION
MAX4645			MAX4646				
SOT23-5	SOT23-6	$\mu \mathrm{MAX}$	SOT23-5	SOT23-6	$\mu \mathrm{MAX}$		
1	1	1	1	1	1	COM	Analog Switch Common Terminal
2	2	8	-	-	-	NO	Analog Switch Normally Open Terminal
-	-	-	2	2	8	NC	Analog Switch Normally Closed Terminal
3	3	7	3	3	7	GND	Ground
4	4	6	4	4	6	IN	Logic Control Input
-	5	2, 3, 5	-	5	2, 3, 5	N.C.	No Connection. Not internally connected.
5	6	4	5	6	4	V+	Positive Supply Voltage

Detailed Description

The MAX4645/MAX4646 are low 2.5Ω max on-resistance (at $\mathrm{V}+=5 \mathrm{~V}$), low-voltage analog switches that operate from $\mathrm{a}+1.8 \mathrm{~V}$ to +5.5 V single supply. CMOS switch construction allows processing analog signals that are within the supply voltage range (GND to $\mathrm{V}+$).

Applications Information

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence V_{+}on first, followed by the logic inputs, NO, or COM. If power-supply sequencing is not possible, add two small signal diodes (D1, D2) in series with the supply pins for overvoltage protection (Figure 1). Adding these diodes reduces the analog signal by one diode drop below $\mathrm{V}+$ and one diode drop above GND, but does not affect the low switch resistance and low leakage characteristics of the device. Device operation is unchanged, and the difference between $V+$ and GND should not exceed 6 V .
Although it is not required, power-supply bypassing improves noise margin and prevents switching noise from propagating from the $\mathrm{V}+$ supply to other components. A $0.1 \mu \mathrm{~F}$ capacitor, connected from $\mathrm{V}+$ to GND , is adequate for most applications.

Figure 1. Overvoltage Protection Using Two External Blocking Diodes

Fast, Low-Voltage, 2.5Ω, SPST,
CMOS Analog Switches

Test Circuits/Timing Diagrams

Figure 2. Switching Time

Figure 3. Charge Injection

Fast, Low-Voltage, 2.5 Ω, SPST, CMOS Analog Switches

Figure 4. Off-Isolation/On-Channel Bandwidth

Test Circuits/Timing Diagrams (continued)

Figure 5. Channel Off/On-Capacitance

Pin Configurations/Functional Diagrams/Truth Tables (continued)

Chip Information

TRANSISTOR COUNT: 50

Fast，Low－Voltage，2．5 Ω ，SPST， CMOS Analog Switches

Package Information
（The package drawing（s）in this data sheet may not reflect the most current specifications．For the latest package outline information go to www．maxim－ic．com／packages．）

SYMBDL	MIN	MAX
A	0.90	1.45
A1	0.00	0.15
A2	0.90	1.30
b	0.35	0.50
C	0.08	0.20
D	2.80	3.00
E	2.60	3.00
E1	1.50	1.75
L	0.35	0.60
L1	0.60	

NOTES：
ALL DIMENSIDNS ARE IN MILLIMETERS．
FIUT LENGTH MEASURED AT INTERCEPT PIINT BETWEEN DATUM A \＆LEAD SURFACE．
3．PACKAGE IUTLINE EXCLUSIVE DF MLLD FLASH \＆METAL BURR．MLLD FLASH，PRITRUSIIN IR METAL BURR SHUULD NDT EXCEED 0.25 MM．
4．PACKAGE DUTLINE INCLUSIVE DF SULDER PLATING．
5．MEETS JEDEC MD178，VARIATIDN AA．
6．LEADS TI BE CDPLANAR WITHIN 0.10 mm ．
7．SULDER THICKNESS MEASURED AT FLAT SECTIZN DF LEAD BETWEEN 0.08 mm AND 0.15 mm FRDM LEAD TIP．

APPROVAL	DOCUMENT CONTROL NO． $21-0057$	E	$1 / 1$

Fast, Low-Voltage, 2.5 Ω, SPST, CMOS Analog Switches

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Fast, Low-Voltage, 2.5 Ω, SPST, CMOS Analog Switches

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)
NOTES:

1. D\&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15 MM (.006").
3. CONTROLLING DIMENSION: MILLIMETERS.
4. MEETS JEDEC MO-187C-AA.

Note: The MAX4645/MAX4646 do not have an exposed paddle.

