## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

## High-Current, 10, SPST, CMOS Analog Switches


#### Abstract

General Description Maxim's MAX4655-MAX4658 are medium-voltage CMOS analog switches with low on-resistance of $10 \Omega$ max, specifically designed to handle large switch currents. With a switch capability of up to 400 mA peak current and 300 mA continuous current (MAX4655/ MAX4656), and up to 300mA peak current and 150 mA continuous current (MAX4657/MAX4658), these parts can switch loads as low as $25 \Omega$. They can replace reed relays with a million times the speed and virtually unlimited number of lifetime cycles. Normal power consumption is only 3 mW , whether the switch is on or off. These parts are TTL/CMOS compatible and will switch any voltage within its power-supply range. These are SPST (single-pole/single-throw) switches. The MAX4655/MAX4657 are normally closed (NC), while the MAX4656/MAX4658 are normally open (NO). The difference between the MAX4655/MAX4656 and the MAX4657/MAX4658 is in the power dissipation of their packages. Refer to the Absolute Maximum Ratings and the Electrical Characteristics. The MAX4655-MAX4658 power-supply range is from $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ for dual-supply operation and +9 V to +40 V for single-supply operation. These switches can operate from any combination of supplies, within a 40 V V+ to V- range. They conduct equally well in either direction and can handle rail-to-rail analog signals. The offleakage current is only 1 nA max at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. They are available in 8-pin $\mu \mathrm{MAX}{ }^{\circledR}$, TDFN, and SO packages, with exposed paddle options for high-power applications.


## Applications

Relay Replacement
Test Equipment
Communication Systems
xDSL Modems
PBX, PABX Systems
Audio Signal Routing
Audio Systems
PC Multimedia Boards
Redundant/Backup Systems

- High Continuous Current Handling 300mA (MAX4655/MAX4656) 150mA (MAX4657/MAX4658)
- High Peak Current Handling 400mA (MAX4655/MAX4656)
300mA (MAX4657/MAX4658)
- $10 \Omega$ (max) On-Resistance ( $\pm 15 \mathrm{~V}$ supplies)
- VL Not Required
- $1 \Omega$ (max) RoN Flatness over Specified Signal Range
- Rail-to-Rail Signal Handling
- +12V Single Supply or $\pm 15 \mathrm{~V}$ Dual Supply Operation
- Pin Compatible with DG417, DG418

Ordering Information

| PART | TEMP RANGE | PIN-PACKAGE | TOP <br> MARK |
| :--- | :--- | :--- | :---: |
| MAX4655ETA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 TDFN-EP* | AKT |
| MAX4655EUA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $8 \mu \mathrm{MAX}$ | AAAL |
| MAX4655ESA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 SO | - |
| MAX4656ETA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 TDFN-EP* | AKU |
| MAX4656EUA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $8 \mu \mathrm{MAX}$ | AAAM |
| MAX4656ESA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 SO | - |
| MAX4657EUA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $8 \mu \mathrm{MAX}$ | - |
| MAX4657ESA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 SO | - |
| MAX4658EUA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $8 \mu \mathrm{MAX}$ | - |
| MAX4658ESA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 SO | - |

*EP = Exposed paddle.
Pin Configurations/ Functional Diagrams/Truth Tables


## High-Current, 10, , SPST, CMOS <br> Analog Switches

## ABSOLUTE MAXIMUM RATINGS

| V+ to GND | 0.3 V to +44 V |
| :---: | :---: |
| $V$ - to GND | -44V to +0.3V |
| V + to V - | -0.3V to +44V |
| All Other Pins to GND (Note 1) | . V- - 0.3V to V+ + 0.3V |
| Continuous Current, COM, NO, NC (MAX4655/MAX4656) | $\pm 300 \mathrm{~mA}$ |
| Continuous Current, COM, NO, NC (MAX4657/MAX4658) | $\pm 150 \mathrm{~mA}$ |
| Continuous Current, IN . | $\pm 30 \mathrm{~mA}$ |
| Peak Current, COM, NO, NC (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle) |  |
| MAX4655/MAX4656.. | $\pm 400 \mathrm{~mA}$ |
| (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle) |  |
| MAX4657/MAX4658. | $\ldots \pm 300 \mathrm{~mA}$ |



Note 1: Signals on NC, NO, COM, or IN exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

## ELECTRICAL CHARACTERISTICS—Dual Supplies

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$ (Notes 2, 7, 8)

| PARAMETER | SYMBOL | CONDITIONS | TA | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG SWITCH |  |  |  |  |  |  |  |
| Analog Signal Range | $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$, Vcom |  |  | V- |  | V+ | V |
| On-Resistance | Ron | $\begin{aligned} & \hline \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}= \pm 10 \mathrm{~V} \end{aligned}$ | $+25^{\circ} \mathrm{C}$ |  | 7 | 10 | $\Omega$ |
|  |  |  | TMIn to TMAX |  |  | 15 |  |
| On-Resistance Flatness (Note 3) | RFLAT (ON) | $\begin{aligned} & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=-5 \mathrm{~V}, 0,+5 \mathrm{~V} \end{aligned}$ | $+25^{\circ} \mathrm{C}$ |  | 0.3 | 1 | $\Omega$ |
|  |  |  | TMIN to TMAX |  |  | 1.5 |  |
| NO or NC Off-Leakage Current (Note 4) | INO(OFF) or InC(OFF) | $\begin{aligned} & \text { VCOM }=+14.5 \mathrm{~V},-14.5 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\text {NO }} \text { or } \mathrm{V}_{\mathrm{NC}}=-14.5 \mathrm{~V},+14.5 \mathrm{~V} \end{aligned}$ | $+25^{\circ} \mathrm{C}$ | -1 | 0.01 | +1 | nA |
|  |  |  | TMIN to $\mathrm{T}_{\text {MAX }}$ | -10 |  | 10 |  |
| COM Off-Leakage Current (Note 4) | ICOM(OFF) | $\begin{aligned} & V_{\mathrm{COM}}=+14.5 \mathrm{~V},-14.5 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=-14.5 \mathrm{~V},+14.5 \mathrm{~V} \end{aligned}$ | $+25^{\circ} \mathrm{C}$ | -1 | 0.01 | +1 | nA |
|  |  |  | TMIN to $\mathrm{T}_{\text {MAX }}$ | -10 |  | +10 |  |
| COM On-Leakage Current (Note 4) | ICOM(ON) | $\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=+14.5 \mathrm{~V},-14.5 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+14.5 \mathrm{~V} \text {, } \\ & -14.5 \mathrm{~V} \text {, or floating } \end{aligned}$ | $+25^{\circ} \mathrm{C}$ | -2 |  | +2 | nA |
|  |  |  | TMIN to TMAX | -20 |  | +20 |  |
| DYNAMIC CHARACTERISTICS |  |  |  |  |  |  |  |
| Turn-On Time | ton | $\begin{aligned} & V_{\text {NO }} \text { or } V_{N C}=10 V ; \\ & R_{\mathrm{L}}=50 \Omega ; \text { MAX4655/4656, } \\ & R_{\mathrm{L}}=100 \Omega ; \text { MAX4657/4658, } \\ & C_{L}=35 \mathrm{pF} ; \text { Figure } 3 \end{aligned}$ | $+25^{\circ} \mathrm{C}$ |  | 110 | 200 | ns |
|  |  |  | $T_{\text {min }}$ to $T_{\text {max }}$ |  |  | 300 |  |
| Turn-Off Time | toff | $\begin{aligned} & V_{N O} \text { or } V_{N C}=10 V ; \\ & R_{L}=50 \Omega ; \text { MAX4655/4656, } \\ & R_{L}=100 \Omega ; \text { MAX4657/4658, } \\ & C_{L}=35 p F ; \text { Figure } 3 \end{aligned}$ | $+25^{\circ} \mathrm{C}$ |  | 75 | 100 | ns |
|  |  |  | TMIN to TMAX |  |  | 150 |  |

## High-Current, 10 $\Omega$, SPST, CMOS Analog Switches

## ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$ (Notes 2, 7, 8)

| PARAMETER | SYMBOL | CONDITIONS | TA | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Charge Injection | Q | $\begin{aligned} & V_{G E N}=0 ; \text { RGEN }=0 ; \\ & C L=1 n F ; \text { Figure } 4 \end{aligned}$ | $+25^{\circ} \mathrm{C}$ |  | 23 |  | pC |
| -3dB Bandwidth | BW |  | $+25^{\circ} \mathrm{C}$ |  | 210 |  | MHz |
| Off-Isolation (Note 5) | VISO | $f=1 \mathrm{MHz} ; \mathrm{RL}_{\mathrm{L}}=50 \Omega ;$ <br> Figure 5 | $+25^{\circ} \mathrm{C}$ |  | -77 |  | dB |
| Total Harmonic Distortion | THD | $\begin{aligned} & f=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{N}_{-}}=5 \mathrm{~V}_{\mathrm{p}-\mathrm{p} ;} ; \mathrm{R}_{\mathrm{L}}=600 \Omega \end{aligned}$ | $+25^{\circ} \mathrm{C}$ |  | 0.007 |  | \% |
| NO or NC Off-Capacitance | $\mathrm{C}_{\mathrm{NO}(\mathrm{OFF}),}$ CNC(OFF) | $\mathrm{f}=1 \mathrm{MHz}$; Figure 6 | $+25^{\circ} \mathrm{C}$ |  | 25 |  | pF |
| COM Off-Capacitance | CCOM(OFF) | $\mathrm{f}=1 \mathrm{MHz}$; Figure 6 | $+25^{\circ} \mathrm{C}$ |  | 25 |  | pF |
| COM On-Capacitance | CCOM(ON) | $\mathrm{f}=1 \mathrm{MHz}$; Figure 7 | $+25^{\circ} \mathrm{C}$ |  | 67 |  | pF |
| DIGITAL I/O |  |  |  |  |  |  |  |
| Input Logic High | $\mathrm{V}_{\mathrm{IH}}$ |  | TMin to Tmax | 2.4 |  |  | V |
| Input Logic Low | VIL |  | TMIn to Tmax |  |  | 0.8 | V |
| Input Leakage Current | IIN | V IN $=0.8 \mathrm{~V}$ or 2.4 V | TMIn to TMAX | -1 |  | +1 | $\mu \mathrm{A}$ |
| POWER SUPPLY |  |  |  |  |  |  |  |
| Power-Supply Range |  |  | TMin to Tmax | $\pm 4.5$ |  | $\pm 20$ | V |
| Positive Supply Current | I+ | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \text { or } 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{N}_{-}}=3 \mathrm{~V} \text {; } \\ & \text { ISWITCH }=200 \mathrm{~mA} \text {, } \\ & \text { MAX4655/4656; } \\ & \text { ISWITCH }=100 \mathrm{~mA} \text {, } \\ & \text { MAX4657/4658 } \end{aligned}$ | $+25^{\circ} \mathrm{C}$ <br> ${\text { TMIN to } \text { TMAX }}$ |  | 90 | 150 300 | $\mu \mathrm{A}$ |
| Negative Supply Current | I- | $\begin{aligned} & \text { VIN }=0 \text { or } 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{N}}=3 \mathrm{~V} \text {; } \\ & \text { ISWITCH }=200 \mathrm{~mA} \text {, } \\ & \text { MAX4655/4656; } \\ & \text { ISWITCH }=100 \mathrm{~mA} \text {, } \\ & \text { MAX4657/4658 } \end{aligned}$ | $+25^{\circ} \mathrm{C}$ <br> ${\text { TMIn to } \text { TMAX }}$ |  | 10 | 50 100 | $\mu \mathrm{A}$ |
| Ground Current | IGND | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \text { or } 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{N}}=3 \mathrm{~V} \text {; } \\ & \text { ISWITCH }=200 \mathrm{~mA} \text {, } \\ & \text { MAX4655/4656; } \\ & \text { ISWITCH }=100 \mathrm{~mA} \text {, } \\ & \text { MAX4657/4658 } \end{aligned}$ | $+25^{\circ} \mathrm{C}$ <br> ${\text { TMIN to } \text { TMAX }}$ |  | 80 | 130 | $\mu \mathrm{A}$ |

## High-Current, 10 $\Omega$, SPST, CMOS <br> Analog Switches

## ELECTRICAL CHARACTERISTICS—Single Supply

$\left(\mathrm{V}+=+12 \mathrm{~V}, \mathrm{~V}-=0, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 2$)$

| PARAMETER | SYMBOL | CONDITIONS | TA | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG SWITCH |  |  |  |  |  |  |  |
| Analog Signal Range | VIN |  | TMin to Tmax | 0 |  | V+ | V |
| On-Resistance | Ron | $\begin{aligned} & \mathrm{I}_{\mathrm{COM}}=50 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=10 \mathrm{~V} \end{aligned}$ | $+25^{\circ} \mathrm{C}$ |  | 15 | 22 | $\Omega$ |
|  |  |  | TMin to TMAX |  |  | 33 |  |
| On-Resistance Flatness (Note 3) | RFLAT (ON) | $\begin{aligned} & I_{C O M}=50 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=2 \mathrm{~V}, 6 \mathrm{~V}, 10 \mathrm{~V} \end{aligned}$ | $+25^{\circ} \mathrm{C}$ |  | 2.2 | 4 | $\Omega$ |
|  |  |  | TMIn to TMAX |  |  | 5 |  |
| DYNAMIC CHARACTERISTICS |  |  |  |  |  |  |  |
| Turn-On Time | ton | $\begin{aligned} & V_{N O} \text { or } V_{N C}=10 V ; \\ & R_{L}=100 \Omega \mathrm{MAX} 4655 / 4656, \\ & R_{L}=200 \Omega \mathrm{MAX} 4657 / 4658, \\ & C_{L}=35 \mathrm{pF} ; \text { Figure } 3 \end{aligned}$ | $+25^{\circ} \mathrm{C}$ |  | 140 | 200 | ns |
|  |  |  | TMin to TMAX |  |  | 300 |  |
| Turn-Off Time | toff | $\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=10 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \mathrm{M} A \times 4655 / 4656, \\ & \mathrm{R}_{\mathrm{L}}=200 \Omega \mathrm{MAX4657/4658,} \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \text { Figure } 3 \end{aligned}$ | $+25^{\circ} \mathrm{C}$ |  | 65 | 125 | ns |
|  |  |  | TMIn to TMAX |  |  | 200 |  |
| Charge Injection | Q | $\begin{aligned} & \text { VGEN }=0 ; \text { RGEN }=0 ; \\ & C L=1 n F ; \text { Figure } 4 \end{aligned}$ | $+25^{\circ} \mathrm{C}$ |  | 1 |  | pC |
| POWER SUPPLY |  |  |  |  |  |  |  |
| Power-Supply Range | V+ |  |  | 9 |  | 40 | V |
| Positive Supply Current (Note 6) | $1+$ | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \text { or } 12 \mathrm{~V}, \\ & \mathrm{ISWITCH}=100 \mathrm{~mA}, \end{aligned}$ | $+25^{\circ} \mathrm{C}$ |  | 25 | 100 | $\mu \mathrm{A}$ |
|  |  | MAX4657/4658 | Tmin to Tmax $^{\text {m }}$ |  |  | 200 |  |
|  |  | $\begin{aligned} & \text { VIN = } 0 \text { or } 5 \mathrm{~V} \text {, } \\ & \text { ISWITCH = 100mA, } \\ & \text { MAX } 4655 / 4656 \text {; } \\ & \text { ISWITCH }=50 \mathrm{~mA} \text {, } \\ & \text { MAX } 4657 / 4658 \end{aligned}$ | $+25^{\circ} \mathrm{C}$ |  | 46 | 125 |  |
|  |  |  | TMin to TMAX |  |  | 200 |  |

Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
Note 3: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.
Note 4: Leakage parameters are $100 \%$ tested at maximum rated hot temperature and guaranteed by correlation at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
Note 5: Off-isolation = $20 \log _{10}\left[\mathrm{~V}_{\mathrm{COM}} /\left(\mathrm{V}_{\mathrm{NC}}\right.\right.$ or $\left.\left.\mathrm{V}_{\mathrm{NO}}\right)\right], \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NC}}$ or $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.
Note 6: Guaranteed by testing with dual supplies.
Note 7: $-40^{\circ} \mathrm{C}$ specifications are guaranteed by design.
Note 8: TDFN parts are tested at $+25^{\circ} \mathrm{C}$ and guaranteed by design over the entire temperature range.

# High-Current, 10 $\Omega$, SPST, CMOS Analog Switches 

Typical Operating Characteristics
( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)





LEAKAGE CURRENT
vs. TEMPERATURE


SUPPLY CURRENT
vs. SUPPLY VOLTAGE AND TEMPERATURE


ON-RESISTANCE vs. VCOM AND TEMPERATURE (DUAL SUPPLIES)


CHARGE INJECTION


TOTAL HARMONIC DISTORTION
vs. FREQUENCY


## High-Current, 10 $\Omega$, SPST, CMOS Analog Switches



Pin Description

| PIN |  | NAME |  |
| :---: | :---: | :---: | :--- |
| MAX4655/ <br> MAX4657 | MAX4656/ <br> MAX4658 |  |  |
| 1 | 1 |  | Analog Switch Common |
| 2,5 | 2,5 | N.C. | No Internal Connection |
| 3 | 3 | GND | Ground |
| 4 | 4 | V+ | Positive Supply Voltage Input |
| 6 | 6 | IN | Digital Control Input |
| 7 | 7 | V- | Negative Supply Voltage Input |
| - | 8 | NO | Analog Switch Normally Open |
| 8 | - | NC | Analog Switch Normally Closed |
| EP | - | EP | Exposed Paddle. Connect EP to V+. |

# High-Current, 10 $\Omega$, SPST, CMOS Analog Switches 

## Detailed Description

The MAX4655-MAX4658 are single SPST CMOS analog switches. The CMOS switch construction provides rail-to-rail signal handling while consuming very little power. The switch is controlled by a TTL/CMOS level compatible digital input. The MAX4655/MAX4657 are normally closed switches, and the MAX4656/MAX4658 are normally open switches.
These devices can be operated with either single power supplies or dual power supplies. Operation at up to $\pm 20 \mathrm{~V}$ supplies allows users a wide switching dynamic range. Additionally, asymmetrical operation is possible to tailor performance to a particular application.
These switches have been specifically designed to handle high switch currents, up to 400 mA peak current and 300 mA continuous currents. In order to do this, a new technique is used to drive the body of the output N -channel device. (Note: the basic switch between the input NC/NO terminal, and the output common terminal consists of an N-channel MOSFET and a P-channel MOSFET in parallel.) The standard method limits operation to approximately a 600 mV drop across the switch. More than 600 mV causes an increase in Idon leakage current (due to the turn-on of on-chip parasitic diodes) and an increase in $V+$ supply current. With the new sensing method, there is no limitation to the voltage drop across the switch. Current and voltage are limited only by the power dissipation rating of the package and the absolute maximum ratings of the switch.
When the analog input to output voltage drop is approximately 7 mV there is an increase in power supply current from typically $90 \mu \mathrm{~A}$ to 2 mA within a 1 mV to 7 mV range, caused by the new sensing/driving circuitry.


Figure 1. Overvoltage Protection Using Blocking Diodes

## Applications Information

## Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the devices. First, connect GND, followed by $\mathrm{V}+, \mathrm{V}$-, and the remaining pins. If power-supply sequencing is not possible, add two small signal diodes (D1, D2) in series with supply pins (Figure 1). Adding diodes reduces the analog signal range to one diode drop below $V+$ and one diode drop above $V$-, but does not affect the devices' low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between V+ and V- should not exceed 44 V . The protection diode for the negative supply is not required when V - is connected to GND.

Off-Isolation at High Frequencies
In $50 \Omega$ systems, the high-frequency on-response of these parts extends from DC to above 100 MHz , with a typical loss of -2 dB . When the switch is turned off, however, it behaves like a capacitor, and off-isolation decreases with increasing frequency. This effect is more pronounced with higher source and load impedances. Above 5 MHz , circuit board layout becomes critical. The graphs shown in the Typical Operating Characteristics were taken using a $50 \Omega$ source and load connected with BNC connectors.

## High-Current, 10 , SPST, CMOS Analog Switches



Figure 2. Block Diagram


Figure 3. Switching Time


Figure 4. Charge Injection

## High-Current, 10 $\Omega$, SPST, CMOS Analog Switches

Test Circuits/Timing Diagrams (continued)


Figure 5. Off-Isolation

Figure 6. Channel Off-Capacitance


TRANSISTOR COUNT: 45 PROCESS: CMOS

## Chip Information



Figure 7. Channel On-Capacitance

## High Current, 10 10 , SPST, CMOS Analog Switches

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)



## High Current，10 $\Omega$ ，SPST，CMOS Analog Switches

（The package drawing（s）in this data sheet may not reflect the most current specifications．For the latest package outline information go to www．maxim－ic．com／packages．）


## High Current, 10, SPST, CMOS Analog Switches

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)
NOTES

1. D\&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15 mm (.006").
3. LEADS TO BE COPLANAR WITHIN 0.10 mm (.004").
4. CONTROLLING DIMENSION: MILLIMETERS.
5. MEETS JEDEC MSO12.
6. $N=$ NUMBER OF PINS.

| W DAL SEMICONDUCTOR |  |  |  |
| :---: | :---: | :---: | :---: |
| TTTLE: |  |  |  |
| PACKAGE OUTLINE, .150" SOIC |  |  |  |
| APPROVAL | DOCUMENT CONTROL NO. $21-0041$ | B | $1 / 1$ |

## Revision History

[^0]Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 $\qquad$ Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600


[^0]:    Pages changed at Rev 4: 1, 2, 3, 6, 12

