: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Fault-Protected, Low-Voltage, Quad SPST Analog Switches

General Description

The MAX4711/MAX4712/MAX4713 are fault-protected, Rail-to-Rail ${ }^{@}$, low-voltage analog switches featuring low on-resistance and guaranteed on-resistance flatness over the specified signal range. Due to the fault protection feature the analog switch input (NO_ or NC_) and output (COM_) pins are not symmetrical. The fault protection feature allows for the analog input to go beyond the plus or minus supplies without the device drawing excessive amounts of current from the analog inputs. When the analog inputs are driven beyond the supply rails when the switch is on, it will sense a fault and turn itself off and the analog switch output will be clamped to the same polarity supply as the input signal and will not go beyond the supply rails. This feature protects any electronic circuitry connected to the output from excessive voltages present on the analog inputs.

The MAX4711/MAX4712/MAX4713 are quad, single-pole/single-throw (SPST) analog switches. The MAX4711 has four normally closed switches (NC), the MAX4712 has four normally open switches (NO), and the MAX4713 has two NO and two NC switches. Switching times are less than 125 ns for ton, and less than 80 ns for toff. These switches operate from a single +2.7 V to +11 V supply or from dual $\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ supplies. All digital inputs have +0.8 V to +2.4 V logic thresholds, ensuring both TTL and CMOS logic compatibility when using $\pm 4.5 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ or single +4.5 V to +11 V supplies.

Applications
Communication Systems
Battery-Operated Systems
Signal Routing
Test Equipment
Data-Acquisition
Industrial and Process Control Systems
Avionics
Redundant/Backup Systems

Pin Configurations/Functional Diagrams/Truth Tables continued at end of data sheet.

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

Features

- Fault-Protected Analog Inputs
- $\pm 12 \mathrm{~V}$ Fault Protection with Power Off
- $\pm 7 \mathrm{~V}$ Fault Protection with $\pm 5 \mathrm{~V}$ Supplies
- +12 V and -7 V Fault Protection with +5 V Supply
- +12V and -9V Fault Protection with +3V Supply
- Fault-Protected Digital Inputs May Exceed V+ Supply Rail
- All Switches Off with Power Off
- Rail-to-Rail Signal Handling
- Output Clamped to Appropriate Supply Voltages During Fault Condition
- 25Ω (max) Ron at $+25^{\circ} \mathrm{C}$
- 1Ω (max) On-Resistance Match Between Channels
- Single- and Dual-Supply Operation
- Pin-Compatible with Industry-Standard MAX391/MAX392/MAX393
- TTL- and CMOS-Compatible Logic Inputs

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4711CUE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 TSSOP
MAX4711CSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
MAX4711CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic Dip
MAX4711EUE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TSSOP
MAX4711ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX4711EPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic Dip

Ordering Information continued at end of data sheet.
Pin Configurations/Functional Diagrams/Truth Tables

For price, delivery, and to place orders, please contact Maxim Distribution at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Fault-Protected, Low-Voltage, Quad SPST Analog Switches

ABSOLUTE MAXIMUM RATINGS

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
16-Pin TSSOP (derate $5.70 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)........... 457 mW 16-Pin Narrow SO (derate $8.70 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)..... 696 mW 16-Pin Plastic Dip (derate $10.53 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).. .842 mW Operating Temperature Ranges
MAX471_C_E

$$
. .0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
$$

$$
\text { MAX471_E_E E .. } 40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$

Junction Temperature. $+150^{\circ} \mathrm{C}$
Storage Temperature Range
\qquad
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$

Note 1: COM_ pin is not fault-protected. Signals on COM_ exceeding $V+$ or V - are clamped by internal diodes. Limit forward diode current to maximum current rating.
Note 2: NO_ and NC_ pins are fault-protected. Signals on NO_ or NC_ exceeding -12V to +12 V may damage device. These limits apply with $\mathrm{V}+=\mathrm{V}-=0$.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V}$ to $-5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.4 \mathrm{~V}, \mathrm{~V} \mathrm{VL}=+0.8 \mathrm{~V}, \mathrm{GND}=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Fault-Free Analog Signal Range	VCOM, VNO_, V_{NO}	Applies with power on	C, E	V-		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=+4.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {NO_ }}, \\ & \mathrm{V}_{\text {NC-_ }}= \pm 3.5 \mathrm{~V}, \text { lout }=10 \mathrm{~mA} \end{aligned}$	$+25^{\circ} \mathrm{C}$		16	25	Ω
			C, E			30	
On-Resistance Match Between Channels (Note 4)	$\Delta \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{+}=+4.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {NO_ }}, \\ & \mathrm{V}_{\text {NC-_ }}= \pm 3.5 \mathrm{~V}, \text { lout }=10 \mathrm{~mA} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.2	1	Ω
			C, E			2	
On-Resistance Flatness	Rflat	$\begin{aligned} & \mathrm{V}_{+}=+4.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {NO_ }}, \\ & \mathrm{V}_{\text {NC-_ }}= \pm 3.5 \mathrm{~V}, \text { lout }=10 \mathrm{~mA} \end{aligned}$	$+25^{\circ} \mathrm{C}$		1.3	4	Ω
			C, E			5	
NO_, NC_ Off-Leakage Current (Note 5)	INO_(OFF), INC_(OFF)	$\begin{aligned} & \mathrm{V}_{+}=+5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {COM }}= \pm 4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {NO_ }}, \mathrm{V}_{\text {NC- }}=4.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5		+0.5	nA
			C, E	-10		+10	
COM_ Off-Leakage Current (Note 5)	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}_{+}=+5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {COM }}= \pm 4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}_{-},}, \mathrm{V}_{\text {NC_ }}=4.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5		+0.5	nA
			C, E	-10		+10	
COM_ On-Leakage Current (Note 5)	ICOM_(ON)	$\mathrm{V}+=+5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V},$ $\mathrm{V}_{\mathrm{COM}}= \pm 4.5 \mathrm{~V}$, $\mathrm{V}_{\text {NO_ }}, \mathrm{V}_{\text {NC_ }}= \pm 4.5 \mathrm{~V}$ or floating	$+25^{\circ} \mathrm{C}$	-0.5		+0.5	nA
			C, E	-20		+20	
FAULT							
Fault-Protected Analog Signal Range	V_{NO}, V_{NC}	Applies with power on	C, E	-12 + V+		+12 + V-	V
Fault-Protected Analog Signal Range	V_{NO}, V_{NC}	Applies with power off	C, E	-12		+12	V
COM_ Output-Leakage Current, Supplies ON (Note 5)	ICOM	All channels off, $\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$ $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}= \pm 7 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	-50		+50	nA
			C, E	-500		+500	

Fault-Protected, Low-Voltage, Quad SPST Analog Switches

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V}$ to $-5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{GND}=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	$\mathrm{T}_{\text {A }}$	MIN	TYP	MAX	UNITS
NO_ or NC_ Off-Leakage Current, Supplies ON (Note 5)	$\begin{aligned} & \text { INO_, } \\ & \text { INC_ } \end{aligned}$	$\begin{aligned} & \mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {NO_ }}, \mathrm{V}_{\text {NC- }}= \pm 7 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-50		+50	nA
			C, E	-500		+500	
NO_ or NC_ Input-Leakage Current, Supplies OFF (Note 5)	$\begin{aligned} & I_{\text {NO_ }} \\ & \text { INC_ } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {NO__ }}, \mathrm{V}_{\text {NC_ }}= \pm 12 \mathrm{~V}, \\ & \mathrm{~V}_{ \pm}=0 \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5		+0.5	$\mu \mathrm{A}$
			C, E	-5		+5	
Output Clamp Current	ICOM	$\begin{aligned} & V_{N O_{-}}, V_{N C-}=+7 \mathrm{~V} \\ & V_{+}=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \end{aligned}$	C, E	9	20	33	mA
		$\begin{aligned} & \mathrm{V}_{\text {NO_ }}, \mathrm{V}_{\text {NC }}=-7 \mathrm{~V} \\ & \mathrm{~V}_{+}=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \end{aligned}$		-33	-16	-9	
Output Clamp Resistance	RCLAMP_	$\mathrm{V}_{\text {NO_ }}, \mathrm{V}_{\text {NC- }}= \pm 7 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$		200		Ω
Fault Trip Threshold			$+25^{\circ} \mathrm{C}$	$\begin{gathered} \hline \mathrm{V}- \\ -0.4 \mathrm{~V} \end{gathered}$		$\begin{array}{r} \mathrm{V}+ \\ +\quad 0.4 \mathrm{~V} \\ \hline \end{array}$	V
\pm Fault Output Turn-On Delay Time		$\mathrm{V}_{\text {NO_ }}, \mathrm{V}_{\text {NC- }}= \pm 7 \mathrm{~V}, \mathrm{RCOM}=1 \mathrm{k} \Omega$	$+25^{\circ} \mathrm{C}$		200		ns
\pm Fault Recovery Time		$\mathrm{V}_{\text {NO_- }}, \mathrm{V}_{\text {NC- }}= \pm 7 \mathrm{~V}, \mathrm{R}_{\text {COM }}=1 \mathrm{k} \Omega$	$+25^{\circ} \mathrm{C}$		700		ns
LOGIC INPUT							
Input Logic High	V_{IH}		C, E	2.4			V
Input Logic Low	VIL		C, E			0.8	V
Input-Leakage Current (Note 5)	IIN	$\mathrm{V}_{1} \mathrm{~N}_{-}=0$ or V_{+}	$+25^{\circ} \mathrm{C}$	-1		+1	$\mu \mathrm{A}$
			C, E	-5		+5	
SWITCH DYNAMICS							
Turn-On Time	ton	$\mathrm{V}_{\text {NO_ }}$ or $\mathrm{V}_{\text {NC- }}= \pm 3 \mathrm{~V}$, $R_{L}=300 \Omega, C_{L}=35 p F$, Figure 2	$+25^{\circ} \mathrm{C}$		80	125	ns
			C, E			150	
Turn-Off Time	tofF	$\begin{aligned} & V_{\text {NO_ }} \text { or } V_{\text {NC_- }}= \pm 3 \mathrm{~V}, \\ & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \text {, Figure } 2 \end{aligned}$	$+25^{\circ} \mathrm{C}$		50	80	ns
			C, E			100	
Break-Before-Make Time Delay (MAX4713 only)	tBBM	$\begin{aligned} & V_{N O-} \text { or } V_{N C_{-}}= \pm 3 V, \\ & R_{L}=300 \Omega, C_{L}=35 p F, \text { Figure } 2 \end{aligned}$	$+25^{\circ} \mathrm{C}$	15	30		ns
			C, E	5			
Charge Injection	Q	$V_{G E N}=0, R_{G E N}=0, C_{L}=1 n F,$ Figure 4	$+25^{\circ} \mathrm{C}$		25		pC
NO_ or NC_ Off-Capacitance	CN_(OFF)	$f=1 \mathrm{MHz}$, Figure 5	$+25^{\circ} \mathrm{C}$		8		pF
COM_ Off-Capacitance	CCOM_(OFF)	$f=1 \mathrm{MHz}$, Figure 5	$+25^{\circ} \mathrm{C}$		8		pF
COM_ On-Capacitance	CCOM_(ON)	$f=1 \mathrm{MHz}$, Figure 5	$+25^{\circ} \mathrm{C}$		30		pF
Off-Isolation (Note 6)	VISO	$\begin{aligned} & R_{L}=50 \Omega, C_{L}=15 \mathrm{pF}, \mathrm{PIN}=0, \\ & f=1 \mathrm{MHz} \text {, Figure } 6 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-59		dB
Channel-to-Channel Crosstalk (Note 7)	V_{C} T	$\begin{aligned} & R_{L}=50 \Omega, C_{L}=15 \mathrm{pF}, \mathrm{PIN}=0, \\ & f=1 \mathrm{MHz} \text {, Figure } 6 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-87		dB

Fault-Protected, Low-Voltage, Quad SPST Analog Switches

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V}$ to $-5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{GND}=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
POWER SUPPLY							
Power-Supply Range	V+, V-		C, E	± 2.7		± 5.5	V
V+ Supply Current	$1+$	All $\mathrm{VIN}_{-}=0$ or V_{+}	$+25^{\circ} \mathrm{C}$		38	75	$\mu \mathrm{A}$
			C, E			100	
V- Supply Current	I-	All $\mathrm{V}_{1 \mathrm{~N}_{-}}=0$ or V_{+}	$+25^{\circ} \mathrm{C}$		38	75	$\mu \mathrm{A}$
			C, E			100	
GND Supply Current	IGND	All $\mathrm{V}_{1 \mathrm{~N}_{-}}=0$ or V_{+}	$+25^{\circ} \mathrm{C}$		0	1	$\mu \mathrm{A}$
			C, E			10	

ELECTRICAL CHARACTERISTICS—+5V Single Supply

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}-=0, \mathrm{~V}_{\mathrm{IH}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{GND}=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Fault-Free Analog Signal Range	VCOM, VNO_, VNC_	Power on	C, E	V-		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=+4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}}, \\ & \mathrm{~V}_{\mathrm{NC}_{-}}=+3.5 \mathrm{~V}, \text { loUT }=10 \mathrm{~mA} \end{aligned}$	$+25^{\circ} \mathrm{C}$		30	40	Ω
			C, E			50	
On-Resistance Match Between Channels (Note 4)	$\Delta \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{+}=+4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {NO_ }}, \\ & \mathrm{V}_{\text {NC- }}=+3.5 \mathrm{~V}, \text { lout }=10 \mathrm{~mA} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.3	2	Ω
			C, E			3	
On-Resistance Flatness	Rflat	$\begin{aligned} & \mathrm{V}_{+}=+4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {NO_ }}, \mathrm{V}_{\text {NC_ }}=+1.5 \mathrm{~V},+2.25 \mathrm{~V} \\ & +3.5 \mathrm{~V}, \text { IouT }=10 \mathrm{~mA} \end{aligned}$	$+25^{\circ} \mathrm{C}$		2	5	Ω
			C, E			6	
NO_, NC_ Off-Leakage Current (Note 5)	INO_(OFF), Inc_(OFF)	$\begin{aligned} & \mathrm{V}+=+5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {COM }}=+1 \mathrm{~V},+4.5 \mathrm{~V} ; \\ & \mathrm{V}_{\text {NO_ }}, \mathrm{V}_{\text {NC_ }}=+4.5 \mathrm{~V},+1 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5		+0.5	nA
			C, E	-10		+10	
COM_ Off-Leakage Current (Note 5)	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}_{+}=+5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {COM- }}=+1 \mathrm{~V},+4.5 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\text {NO_- }}, \mathrm{V}_{\text {NC_ }}=+4.5 \mathrm{~V},+1 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5		+0.5	nA
			C, E	-10		+10	
COM_ On-Leakage Current (Note 5)	ICOM_(ON)	$\mathrm{V}+=+5.5 \mathrm{~V},$ $\mathrm{V}_{\mathrm{COM}}=+1 \mathrm{~V},+4.5 \mathrm{~V}$; $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\text {NC_ }}=+1 \mathrm{~V},+4.5 \mathrm{~V}$, or floating	$+25^{\circ} \mathrm{C}$	-0.5		+0.5	nA
			C, E	-20		+20	
FAULT							
Fault-Protected Analog Signal Range	VNO_, VNC_	Power on	C, E	-12 + V+		+12	V

Fault-Protected, Low-Voltage, Quad SPST Analog Switches

ELECTRICAL CHARACTERISTICS-+5V Single Supply (continued)

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}-=0, \mathrm{~V}_{\mathrm{IH}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{GND}=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
Fault-Protected Analog Signal Range	VNO_, VNC_	Power off	C, E	-12		+12	V
COM_ Output-Leakage Current, Supplies ON (Note 5)	ICOM	All channels off; $\mathrm{V}_{\text {NO_, }} \mathrm{V}_{\text {NC_ }}=$ +12 V or $-7 \mathrm{~V}, \mathrm{~V}+=+5 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	-50		+50	nA
			C, E	-500		+500	
NO_ or NC_ Off-Leakage Current, Supplies ON (Note 5)	InO_, InC_	$\begin{aligned} & \mathrm{V}_{\text {NO_, }}, \mathrm{V}_{\text {NC_ }}=+12 \mathrm{~V} \text { or }-7 \mathrm{~V} \text {, } \\ & \mathrm{V}+=+5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-50		+50	nA
			C, E	-500		+500	
NO_ or NC_ Input-Leakage Current, Supplies OFF (Note 5)	INO_, INC_	$\begin{aligned} & \mathrm{V}_{\text {NO_, }}, \mathrm{V}_{\text {NC_ }}= \pm 12 \mathrm{~V}, \\ & \mathrm{~V}_{ \pm}=0 \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5		+0.5	$\mu \mathrm{A}$
			C, E	-5		+5	
Output Clamp Current	ICOM-	$\mathrm{V}_{\text {NO_}}, \mathrm{V}_{\text {NC- }}=+12 \mathrm{~V}, \mathrm{~V}+=5 \mathrm{~V}$	C, E	2	6	11	mA
Output Clamp Resistance	RCLAMP_	Clamp on	$+25^{\circ} \mathrm{C}$		500		Ω
+Fault Output Turn-On Delay Time		$\begin{aligned} & \mathrm{V}_{\text {NO_ }}, \mathrm{V}_{\text {NC_ }}=+12 \mathrm{~V}, \\ & R_{\mathrm{L}}=300 \Omega, \mathrm{~V}+=+5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		200		ns
+Fault Recovery Time		$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=+12 \mathrm{~V}, \\ & R_{\mathrm{L}}=300 \Omega, \mathrm{~V}+=+5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		500		$\mu \mathrm{s}$
LOGIC INPUT							
Input Logic High	V_{IH}		C, E	2.4			V
Input Logic Low	$\mathrm{V}_{\text {IL }}$		C, E			0.8	V
Input-Leakage Current (Note 5)	IIN	$\mathrm{V}_{1 \mathrm{~N}_{-}}=0$ or V_{+}	C, E	-1		+1	$\mu \mathrm{A}$
SWITCH DYNAMICS							
Turn-On Time	ton	$\mathrm{V}_{\text {NO_ }}$ or $\mathrm{V}_{\text {NC_ }}=+3 \mathrm{~V}$, $R_{L}=300 \Omega, C L=35 p F$, Figure 2	$+25^{\circ} \mathrm{C}$		170	230	ns
			C, E			275	
Turn-Off Time	tofF	$\begin{aligned} & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_- }}=+3 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF} \text {, Figure } 2 \end{aligned}$	$+25^{\circ} \mathrm{C}$		55	100	ns
			C, E			125	
Break-Before-Make Time Delay (MAX4713 only)	tBBM	$\begin{aligned} & V_{N O} \text { or } V_{N C-}=+3 \mathrm{~V}, \\ & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \text {, Figure } 2 \end{aligned}$	$+25^{\circ} \mathrm{C}$	30	115		ns
			C, E	20			
Charge Injection	Q	$V_{G E N}=0, R_{G E N}=0, C_{L}=1 \mathrm{nF},$ Figure 4	$+25^{\circ} \mathrm{C}$		-1		pC
POWER SUPPLY							
Power-Supply Range	V+		C, E	2.7		11	V
V+ Supply Current	I+	All $\mathrm{V}_{1 \mathrm{~N}_{-}}=0$ or V_{+}	$+25^{\circ} \mathrm{C}$		34	65	$\mu \mathrm{A}$
			C, E			75	

Fault-Protected, Low-Voltage, Quad SPST Analog Switches

ELECTRICAL CHARACTERISTICS—+3V Single Supply

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}-=0, \mathrm{~V}_{\mathrm{IH}}=+2.0 \mathrm{~V}, \mathrm{~V} \mathrm{IL}=+0.6 \mathrm{~V}, \mathrm{GND}=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Fault-Free Analog Signal Range	VCOM. $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$	Power-on	C, E	V-		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}+=+2.7 \mathrm{~V}, \\ & \mathrm{~V}_{\text {NO_ }}, \mathrm{V}_{\text {NC_ }}=+1 \mathrm{~V}, \text { lout }=1 \mathrm{~mA} \end{aligned}$	$+25^{\circ} \mathrm{C}$		54	75	Ω
			C, E			100	
On-Resistance Match Between Channels (Note 4)	$\Delta \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{+}=+2.7 \mathrm{~V}, \\ & \mathrm{~V}_{\text {NO_ }}, \mathrm{V}_{\text {NC_ }}=+1 \mathrm{~V}, \text { lout }=1 \mathrm{~mA} \end{aligned}$	$+25^{\circ} \mathrm{C}$		1	7	Ω
			C, E			9	
NO_, NC_ Off-Leakage Current (Note 5)	Ino_(OFF), INC_(OFF)	$\begin{aligned} & \mathrm{V}_{+}=+3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\text {COM }}=+0.7 \mathrm{~V},+3 \mathrm{~V} \\ & \mathrm{~V}_{\text {NO- }}, \\ & \mathrm{V}_{\text {NC_ }}=+3 \mathrm{~V},+0.7 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5		+0.5	nA
			C, E	-10		+10	
COM_ Off-Leakage Current (Note 5)	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}_{+}=+3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\text {COM- }}=+0.7 \mathrm{~V},+3 \mathrm{~V} \\ & \mathrm{~V}_{\text {NO_ }}, \\ & \mathrm{VNC}_{-}=+3 \mathrm{~V},+0.7 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5		+0.5	nA
			C, E	-10		+10	
COM_ On-Leakage Current (Note 5)	ICOM_(ON)	$\begin{aligned} & \mathrm{V}+=+3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\text {COM }}=+0.7,+3 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\text {NO_- }} \mathrm{V}_{\mathrm{NC}}=+0.7 \mathrm{~V},+3 \mathrm{~V} \text {, or } \\ & \text { floating } \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5		+0.5	nA
			C, E	-20		+20	
FAULT							
Fault-Protected Analog Signal Range	VNO_, V_{NC}	Power-on	C, E	$-12+V+$		+12	V
Fault-Protected Analog Signal Range	V_{NO}, V_{NC}	Power-off	C, E	-12		+12	V
COM_ Output-Leakage Current, Supplies ON (Note 5)	ICOM	All channels off;$\begin{aligned} & \mathrm{V}_{\text {NO_, }}, \mathrm{V}_{\text {NC_ }}=+12 \mathrm{~V} \text { or }-9 \mathrm{~V} \text {, } \\ & \mathrm{V}+=+3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-50		+50	nA
			C, E	-500		+500	
NO_ or NC_ Off-Leakage Current, Supplies ON (Note 5)	INO_, INC_	$\begin{aligned} & \mathrm{V}_{\text {NO_ }}, \mathrm{V}_{\text {NC_ }}=+12 \mathrm{~V} \text { or }-9 \mathrm{~V}, \\ & \mathrm{~V}_{+}=+3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-50		+50	nA
			C, E	-500		+500	
NO_ or NC_ Input-Leakage Current, Supplies OFF (Note 5)	INO_, INC_	$\begin{aligned} & \mathrm{V}_{\text {NO_, }}, \mathrm{V}_{\text {NC_ }}= \pm 12 \mathrm{~V}, \\ & \mathrm{~V}_{ \pm}=0 \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5		+0.5	$\mu \mathrm{A}$
			C, E	-5		+5	
Output Clamp Current	ICOM_	$\mathrm{V}_{\text {NO_, }}, \mathrm{V}_{\text {NC- }}=+12 \mathrm{~V}, \mathrm{~V}+=+3 \mathrm{~V}$	C, E	0.5		3.0	mA
Output Clamp Resistance	RCLAMP_	$\begin{aligned} & \mathrm{V}+=+3 \mathrm{~V}, \mathrm{~V}_{\text {NO_ }}, \mathrm{V}_{\text {NC_ }}=+12 \mathrm{~V} \text {; } \\ & \text { clamp on } \end{aligned}$	$+25^{\circ} \mathrm{C}$		600		k Ω
+Fault Output Turn-On Delay Time		$\begin{aligned} & \mathrm{V}_{\text {NO_ }}, V_{N C_{-}}=+12 \mathrm{~V}, \\ & R_{L}=300 \Omega, V_{+}=+3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		200		ns
+Fault Recovery Time		$\begin{aligned} & V_{N O_{-},} V_{N C_{-}}=+12 \mathrm{~V}, \\ & R_{L}=300 \Omega, V+=+3 V \end{aligned}$	$+25^{\circ} \mathrm{C}$		2.2		$\mu \mathrm{s}$

Fault-Protected, Low-Voltage, Quad SPST Analog Switches

ELECTRICAL CHARACTERISTICS—+3V Single Supply (continued)

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}-=0, \mathrm{~V}_{\mathrm{IH}}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.6 \mathrm{~V}, \mathrm{GND}=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
LOGIC INPUT							
Input Logic High	V_{IH}		C, E	2			V
Input Logic Low	$\mathrm{V}_{\text {IL }}$		C, E			0.6	V
Input-Leakage Current (Note 5)	IIN_	$\mathrm{V}_{1 \mathrm{~N}_{-}}=0$ or V_{+}	C, E	-5		+5	$\mu \mathrm{A}$
SWITCH DYNAMICS							
Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{+}=+2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF}, \text { Figure } 2 \end{aligned}$	$+25^{\circ} \mathrm{C}$		340	500	ns
			C, E			600	
Turn-Off Time	tofF	$\begin{aligned} & \mathrm{V}_{+}=+2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { _or } \mathrm{V}_{\mathrm{NC}}=+1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF}, \text { Figure } 2 \end{aligned}$	$+25^{\circ} \mathrm{C}$		100	175	ns
			C, E			225	
Break-Before-Make Time Delay (MAX4713 only)	tBBM	$\begin{aligned} & \mathrm{V}_{+}=+2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { _or } \mathrm{V}_{\mathrm{NC}}=+1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \text { Figure } 2 \end{aligned}$	$+25^{\circ} \mathrm{C}$	60	240		ns
			C, E	50			
POWER SUPPLY							
Power-Supply Range	V+		C, E	2.7		11	V
V+ Supply Current	I+	All $\mathrm{V}_{1 \mathrm{~N}_{-}}=0$ or V_{+}	$+25^{\circ} \mathrm{C}$		8	15	$\mu \mathrm{A}$
			C, E			20	

Note 3: Algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
Note 4: $\Delta \mathrm{RON}_{\mathrm{ON}}=\Delta \mathrm{RON}_{\mathrm{ON}}(\mathrm{MAX})-\Delta \mathrm{RON}(\mathrm{MIN})$
Note 5: Leakage parameters are 100\% tested at maximum-rated temperature and with dual supplies. Leakage parameters are guaranteed by correlation at $+25^{\circ} \mathrm{C}$
Note 6: Off-isolation = $20 \log _{10}\left[\mathrm{~V}_{\mathrm{COM}} /\left(\mathrm{V}_{\mathrm{NO}} \mathrm{N}_{-}\right.\right.$or $\left.\left.\mathrm{V}_{\mathrm{NC}} \mathrm{C}_{-}\right)\right], \mathrm{V}_{\mathrm{COM}}=$ output, V_{NO} or $\mathrm{V}_{\mathrm{NC}}{ }_{-}=$input to off switch.
Note 7: Between any two switches.

Fault-Protected, Low-Voltage, Quad SPST Analog Switches

ON-RESISTANCE
vs. VCOM (DUAL SUPPLIES)

ON-RESISTANCE vs. VCOM AND
TEMPERATURE (SINGLE SUPPLY)

CHARGE INJECTION vs. Vcom

ON-RESISTANCE vs. Vcom AND
TEMPERATURE (SINGLE SUPPLY)

TURN-ON/TURN-OFF TIME
vs. SUPPLY VOLTAGE (DUAL SUPPLIES)

ON-RESISTANCE vs. VCOM (SINGLE SUPPLY)

ON/OFF-LEAKAGE CURRENT
vs. TEMPERATURE

TURN-ON/TURN-OFF TIME
vs. SUPPLY VOLTAGE (SINGLE SUPPLY)

Fault-Protected, Low-Voltage, Quad SPST Analog Switches

Typical Operating Characteristics (continued)

$\left(\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Fault-Protected, Low-Voltage, Quad SPST Analog Switches

PIN		NAME	FUNCTION			
MAX4711	MAX4712		IN1, IN2, IN3, IN4	Logic Inputs. Fault-protected to (V- + 12V).		
$1,16,9,8$	$1,16,9,8$	$1,16,9,8$	COM1, COM2,	Analog Switch Common Terminals		
$2,15,10,7$	$2,15,10,7$	$2,15,10,7$	-	NC1, NC2, NC3, NC4	Fault-Protected Analog Switch Normally Closed Terminals	COM3, COM4
:---						

Detailed Description

The MAX4711/MAX4712/MAX4713 differ considerably from traditional fault-protection switches, with several advantages. First, they are constructed with two parallel FET's allowing very low on-resistance. Second, they allow signals on the NC_ or NO_ pins that are within or slightly beyond the supply rails to be passed through the switch to the COM terminal, allowing rail-to-rail signal operation. Third, when a signal on NC_ or NO_ exceeds the supply rails by about 150 mV (a fault condition) the voltage on COM_ is limited to the same polarity supply voltage. Operation is identical for both fault polarities.
During a fault condition, the NO_ or NC_ input becomes high impedance regardless of the switch state or load resistance. If the switch is on, the COM_ output current is supplied from V+ or V- by the clamp FET's that are connected from COM to each supply. These FET's can typically source or sink up to 15 mA . When power is removed, the fault protection is still in effect. In this case, the NO_ or NC_ terminals are a virtual open circuit. The fault can be up to $\pm 12 \mathrm{~V}$.
The COM_ pins are not fault-protected, they act as normal CMOS switch terminals. If a voltage source is connected to any COM_ pin, it should be limited to the supply voltages. Exceeding the supply voltage will
cause high currents to flow through the ESD-protected diodes, possibly damaging the device (see Absolute Maximum Ratings).

Pin Compatibility
These switches have identical pinouts to common non-fault-protected CMOS switches. Care should be exercised while considering them for direct replacements in existing printed circuit boards since only the $\mathrm{NO}_{\text {_ }}$ and NC_ pins of each switch are fault-protected.

Internal Construction

Internal construction is shown in Figure 1, with the analog signal paths shown in bold. A single NO switch is shown; the NC configuration is identical except the logic-level translator is inverting. The analog switch is formed by the parallel combination of N -channel FET (N1) and P-channel FET (P1), which are driven on and off simultaneously according to the input fault condition and the logic-level state.

Normal Operation

Two comparators continuously compare the voltage on the NO_{-}(or NC_) pin with V+ and V-. When the signal on NO_{-}or NC_{-}is between $\mathrm{V}+$ and V - the switch acts normally, with FETs N1 and P1 turning on and off in response to $I N_{\text {_ signals. The parallel combination of }}$ N1 and P1 forms a low-value resistor between NO_ (or

Fault－Protected，Low－Voltage， Quad SPST Analog Switches

Figure 1．Block Diagram

NC＿）and COM＿so that signals pass equally well in either direction．

Positive Fault Condition

When the signal on NO＿（or NC＿）exceeds V＋by about 150 mV ，the high－fault comparator output is high，turn－ ing off FETs N1 and P1．This makes the NO＿（or NC＿） input high impedance regardless of the switch state．If the switch state is＂off＂，all FETs are turned off and both NO＿（or NC＿）and COM＿are high impedance．If the switch state is＂on＂，clamp FET P2 is turned on，sourc－ ing current from $V+$ to COM_{-}．

Negative Fault Condition

When the signal on NO＿（or NC＿）exceeds V－by about 150 mV ，the low－fault comparator output is high，turning off FETs N1 and P1．This makes the NO＿（or NC＿）input high impedance regardless of the switch state．If the switch state is＂off＂，all FETs are turned off and both NO＿（or NC＿）and COM＿are high impedance．If the switch state is＂on＂，clamp FET N2 is turned on，sinking current from COM_{-}to V －．

Transient Fault Response and Recovery When a fast rise－time or fall－time transient on NC＿or NO＿exceeds V＋or V－，the output（COM＿）follows the input to the supply rail with only a few nanoseconds delay．This delay is due to the switch on－resistance and circuit capacitance to ground．When the input transient returns to within the supply rails，however，there is a 700 ns output recovery delay time．These values depend on the COM＿output resistance and capaci－ tance，and are not production tested or guaranteed． The delays are not dependent on the fault amplitude． Higher COM＿output resistance and capacitance increase recovery times．

COM＿and IN＿Pins FETs N2 and P2 can source about $\pm 15 \mathrm{~mA}$ from $\mathrm{V}+$ or V－to COM＿in the fault condition．Ensure that if the COM＿pin is connected to a low－resistance load，the absolute maximum current rating of 40 mA is never exceeded both in normal and fault conditions．

Fault-Protected, Low-Voltage, Quad SPST Analog Switches

The COM_ pins do not have fault protection. Reverse ESD-protection diodes are internally connected between COM_, and $\mathrm{V}+$ and V -. If a signal on COM_ exceeds $V+$ or V - by more than a diode drop, one of these diodes will conduct. The IN _ pin can exceed the positive supply voltage, but they can go below the negative supply by only a diode drop. The maximum voltage on these pins is 12 V if operating from a single supply, regardless of the supply voltage (including 0 volts), and if operating from dual supplies, the maximum voltage is $(\mathrm{V}-+12 \mathrm{~V})$.

Fault-Protection Voltage and Power Off The maximum fault voltage on the NC_ or NO_ pins is $\pm 12 \mathrm{~V}$ with power off.

IN_ Logic-Level Thresholds
The logic-level thresholds are CMOS and TTL compatible when using $\pm 4.5 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ or single +4.5 V to +11 V supplies. When using a +2.7 V supply, the logic thresholds are $\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=0.6 \mathrm{~V}$.

Dual Supplies
The MAX4711/MAX4712/MAX4713 operate with bipolar supplies between $\pm 2.7 \mathrm{~V}$ and $\pm 5.5 \mathrm{~V}$. The $\mathrm{V}+$ and V supplies need not be symmetrical, but their difference should not exceed 11V.

Single Supply
The MAX4711/MAX4712/MAX4713 operate from a single supply between +2.7 V and +11 V when V - is connected to GND.

Chip Information
TRANSISTOR COUNT: 463

Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
MAX4712CUE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 TSSOP
MAX4712CSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
MAX4712CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic Dip
MAX4712EUE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TSSOP
MAX4712ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX4712EPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic Dip
MAX4713CUE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 TSSOP
MAX4713CSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
MAX4713CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic Dip
MAX4713EUE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TSSOP
MAX4713ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX4713EPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic Dip

Pin Configurations/Functional Diagrams/Truth Tables (continued)

SWITCHES SHOWN FOR LOGIC "0" INPUT

Fault-Protected, Low-Voltage, Quad SPST Analog Switches

Test Circuits/Timing Diagrams

V- IS CONNECTED TO GND (0) FOR SINGLE-SUPPLY OPERATION.
Figure 2. Switch Turn-On/Turn-Off Times

V- IS CONNECTED TO GND (0) FOR SINGLE-SUPPLY OPERATION.
Figure 3. MAX4713 Break-Before-Make Interval

$\Delta V_{\text {OUT }}$ IS THE MEASURED VOLTAGE DUE TO CHARGETRANSFER ERROR Q WHEN THE CHANNEL TURNS OFF

V- IS CONNECTED TO GND (0) FOR SINGLE-SUPPLY OPERATION.
$Q=\Delta V_{\text {OUT }} \times C_{L}$
Figure 4. Charge Injection

Fault-Protected, Low-Voltage, Quad SPST Analog Switches

MAX4711/MAX4712/MAX4713

V- IS CONNECTED TO GND (0) FOR SINGLE-SUPPLY OPERATION.
Figure 5. COM_, NO_, NC_ Capacitance

OFF-ISOLATION $=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$
ON LOSS $=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$
CROSSTALK $=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$

MEASUREMENTS ARE STANDARDIZED AGAINST SHORT AT SOCKET TERMINALS.
OFF-ISOLATION IS MEASURED BETWEEN COM_ AND "OFF" NO_ OR NC_ TERMINALS.
ON LOSS IS MEASURED BETWEEN COM_AND "ON" NO_OR NC_TERMINALS.
CROSSTALK IS MEASURED BETWEEN COM_ TERMINALS WITH ALL SWITCHES ON.
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.
V- IS CONNECTED TO GND (0) FOR SINGLE-SUPPLY OPERATION.
Figure 6. Frequency Response, Off-Isolation, and Crosstalk

Fault-Protected, Low-Voltage, Quad SPST Analog Switches

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

NDTES:

1. DIMENSIONS D AND E DD NDT INCLUDE FLASH
2. MILD FLASH UR PRUTRUSIUNS NaT TO EXCEED 0.15 mm PER SIDE
3. CINTROLLING DIMENSIDN: MILLIMETER
4. MEETS JEDEC DUTLINE MD-153. SEE JEDEC VARIATIONS TABLE
5. "N" REFERS TO NUMBER OF LEADS

- THE LEAD TIPS MUST LIE WITHIN A SPECIFIED ZZNE. THIS TQLERANCE ZONE IS DEFINED BY TWI PARALLEL PLANES. UNE PLANE IS THE SEATING PLANE, datum [-C-]; THE OTHER PLANE IS AT THE SPECIFIED DISTANCE FRDM [-C-] IN THE DIRECTION INDICATED

Fault-Protected, Low-Voltage, Quad SPST Analog Switches

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.053	0.069	1.35	1.75
A1	0.004	0.010	0.10	0.25
B	0.014	0.019	0.35	0.49
C	0.007	0.010	0.19	
e	0.050 BSC		1.27	
E	0.150	0.157	3.80	4.00
H	0.228	0.244	5.80	6.20
L	0.016	0.050	0.40	1.27

NOTES:

1. D\&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15 mm (.006").
3. LEADS TO BE COPLANAR WITHIN 0.10 mm (.004").
4. CONTROLLING DIMENSION: MILLIMETERS.
5. MEETS JEDEC MSO12.
6. $N=$ NUMBER OF PINS.

Fault-Protected, Low-Voltage, Quad SPST Analog Switches

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	---	0.180	---	4.572
A1	0.015	---	0.38	---
A2	0.125	0.175	3.18	4.45
A3	0.055	0.080	1.40	2.03
B	0.015	0.022	0.381	0.56
B1	0.045	0.065	1.14	1.65
C	0.008	0.014	0.2	0.355
D1	0.005	0.080	0.13	2.03
E	0.300	0.325	7.62	8.26
E1	0.240	0.310	6.10	7.87
e	0.100	BSC.	2.54	BSC.
eA	0.300	BSC.	7.62	BSC.
eB	0.400	BSC.	10.16	BSC.
L	0.115	0.150	2.921	3.81

	INCHES		MILLIMETERS			
	MIN	MAX	MIN	MAX	N	MS001
D	0.348	0.390	8.84	9.91	8	$A B$
D	0.735	0.765	18.67	19.43	14	$A C$
D	0.745	0.765	18.92	19.43	16	$A A$
D	0.885	0.915	22.48	23.24	18	$A D$
D	1.015	1.045	25.78	26.54	20	$A E$
D	1.14	1.265	28.96	32.13	24	$A F$
D	1.360	1.380	34.54	35.05	28	$* 5$

NDTES:

1. D\&E DZ NDT INCLUDE MULD FLASH
2. MDLD FLASH IR PRDTRUSIDNS NDT TO EXCEED .15mm (.006")
3. CDNTRDLLING DIMENSIDN: MILLIMETER
4. MEETS JEDEC MSOO1-XX AS SHOWN IN ABDVE TABLE
5. SIMILIAR Tロ JEDEC MD-058AB
6. $N=$ NUMBER $\square F$ PINS

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

