: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

M AXIM

0.8Ω, Low-Voltage, Single-Supply SPDT Analog Switch in SC70

Abstract

General Description The MAX4714 is a low on-resistance, low-voltage sin-gle-pole/double-throw (SPDT) analog switch that operates from a single +1.6 V to +3.6 V supply. The MAX4714 has break-before-make switching. This device also has fast switching speeds (ton $=18 \mathrm{~ns}$, max, tOFF = 12ns, max). When powered from $a+3 V$ supply, the MAX4714 features 0.8Ω (max) on-resistance (RON), with 0.18Ω (max) RON matching and flatness. The digital logic input is 1.8 V CMOS compatible when using a single +3 V supply. The MAX4714 is pin compatible with the MAX4599 and is available in a 6 -pin SC70 or μ DFN package.

Applications
Power Routing
Battery-Operated Equipment
Audio and Video Signal Routing
Low-Voltage Data-Acquisition Systems
Communications Circuits
PCMCIA Cards
Cellular Phones
Modems
Hard Drives
\qquad Features

- Low Ron
0.8Ω (max) (+3V Supply)
2.5Ω (max) (+1.8V Supply)
- 0.18Ω max RoN Flatness (+3V Supply)
- +1.6V to +3.6V Single-Supply Operation
- Available in 6-Pin μ DFN (1.5mm x 1mm) and SC70 Packages
- Fast Switching: tON = 18ns (max), tOFF = 12ns (max)
- 1.8 V CMOS Logic Compatible (+3V Supply)
- Pin Compatible with MAX4599
- Guaranteed Break-Before-Make

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4714EXT-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$6 \mathrm{SC} 70-6$	AAY
MAX4714ELT-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$6 \mu \mathrm{DFN}-6$	AJ

Pin Configurations/Functional Diagrams/Truth Table

TOP VIEW

0.8 , Low-Voltage, Single-Supply SPDT Analog Switch in SC70

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to GND

6-Pin SC70 (derate $3.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).............. 247 mW
6-Pin μ DFN-6 (derate $2.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots \ldots . . .167 \mathrm{~mW}$
Operating Temperature Range
MAX4714EXT... ${ }^{\circ} \mathrm{C}$
Junction Temperature........................ $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range $+300^{\circ} \mathrm{C}$

Note 1: Signals on NC, NO, and COM exceeding V+ or GND are clamped by internal diodes.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +3V Supply

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$V_{\text {COM }}$, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$			0		V+	V
On-Resistance (Note 4)	Ron	$\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{ICOM}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.6	0.8	Ω
			$\mathrm{T}_{\text {MIN }}$ to TMAX			0.9	
On-Resistance Match Between Channels (Note 5)	$\Delta \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{ICOM}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.03	0.06	Ω
			TMIN to $\mathrm{T}_{\text {MAX }}$			0.08	
On-Resistance Flatness (Note 6)	RFLAT(ON)	$\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{ICOM}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.6 \mathrm{~V}, 1.5 \mathrm{~V}, 2.1 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.1	0.18	Ω
			$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {MAX }}$			0.2	
NO or NC Off-Leakage Current	INO(OFF), INC(OFF)	$\begin{aligned} & \mathrm{V}_{+}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.3 \mathrm{~V}, 3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1		+1	nA
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-5		+5	
COM On-Leakage Current	ICOM(ON)	$\begin{aligned} & \mathrm{V}_{+}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.3 \mathrm{~V}, 3 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.3 \mathrm{~V}, 3 \mathrm{~V} \text { or floating } \end{aligned}$	$+25^{\circ} \mathrm{C}$	-2		+2	nA
			TMIN to $\mathrm{T}_{\text {MAX }}$	-10		+10	
DYNAMIC							
Turn-On Time	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, $C_{L}=35 \mathrm{pF}$, Figure 1	$+25^{\circ} \mathrm{C}$		13	18	ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			20	
Turn-Off Time	tOFF	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, $C_{L}=35 p F$, Figure 1	$+25^{\circ} \mathrm{C}$		6	12	ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			15	
Break-Before-Make Delay (Note 7)	tBBM	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, $C_{L}=35 p F$, Figure 2	$+25^{\circ} \mathrm{C}$	1	9		ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	1			
Charge Injection	Q	$V_{G E N}, R_{G E N}, C_{L}=1.0 n F$, Figure 3	$+25^{\circ} \mathrm{C}$		22		pC
Off-Isolation (Note 8)	VISO	$\begin{aligned} & f=1 \mathrm{MHz}, V_{C O M}=1 V_{R M S}, \\ & R_{L}=50 \Omega, C_{L}=5 p F, \text { Figure } 4 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-54		dB
Crosstalk (Note 9)		$\begin{aligned} & f=1 M H z, V_{C O M}=1 V_{R M S} \\ & R_{L}=50 \Omega, C_{L}=5 p F \text {, Figure } 4 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-54		dB
Total Harmonic Distortion	THD	$\begin{aligned} & f=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{~V}_{\mathrm{COM}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{R}_{\mathrm{L}}=32 \Omega \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.01		\%

0.8 , Low-Voltage, Single-Supply SPDT Analog Switch in SC70

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
NC or NO Off-Capacitance	$\begin{aligned} & \mathrm{C}_{\mathrm{NO} \text { (OFF) }} \text {, } \\ & \mathrm{C}_{\mathrm{NC}(\mathrm{OFF})} \\ & \hline \end{aligned}$	$\mathrm{f}=1 \mathrm{MHz}$, Figure 5	$+25^{\circ} \mathrm{C}$		30		pF
COM On-Capacitance	CCOM(ON)	$\mathrm{f}=1 \mathrm{MHz}$, Figure 5	$+25^{\circ} \mathrm{C}$		65		pF
LOGIC INPUT							
Input Voltage Low	$\mathrm{V}_{\text {IL }}$					0.5	V
Input Voltage High	V_{IH}			1.4			V
Input Leakage Current	IIN	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{+}		-1		+1	$\mu \mathrm{A}$
SUPPLY							
Power-Supply Range	V+			1.6		3.6	V
Positive Supply Current	I+	$\mathrm{V}_{+}=+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } \mathrm{V}_{+}$	$+25^{\circ} \mathrm{C}$		0.04	0.2	$\mu \mathrm{A}$
			TMIN to TMAX			2	

ELECTRICAL CHARACTERISTICS-Single +1.8 V Supply

$\left(\mathrm{V}+=+1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}.\right)($ Notes 2,3$)$

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	VCOM, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$			0		V+	V
On-Resistance	Ron	$\begin{aligned} & I_{C O M}=10 \mathrm{~mA} \\ & V_{N O} \text { or } V_{N C}=+0.9 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		1.2	2.5	Ω
			TMIN to TMAX			5	
NO or NC Off-Leakage Current	INO(OFF), INC(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V}, 1.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1	0.01	+1	nA
			$\mathrm{T}_{\text {MIN }}$ to TMAX	-5		+5	
COM On-Leakage Current	ICOM(ON)	$\mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V}, 1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=0.3 \mathrm{~V}, 1.5 \mathrm{~V}$ or floating	$+25^{\circ} \mathrm{C}$	-2		+2	nA
			$\mathrm{T}_{\text {MIN }}$ to TMAX	-10		+10	
DYNAMIC							
Turn-On Time	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, $C_{L}=35 \mathrm{pF}$, Figure 1	$+25^{\circ} \mathrm{C}$		18	25	ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			30	
Turn-Off Time	tofF	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, $C_{L}=35 \mathrm{pF}$, Figure 1	$+25^{\circ} \mathrm{C}$		9	15	ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			18	
Break-Before-Make Delay (Note 7)	tBBM	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, $C_{L}=35 p F$, Figure 2	$+25^{\circ} \mathrm{C}$	2			ns
			TMIN to TMAX	2			
Charge Injection	Q	$V_{G E N}=0 V, R_{G E N}=0, C_{L}=1 n F \text {, }$ Figure 3	$+25^{\circ} \mathrm{C}$		12		pC

0.8 , Low-Voltage, Single-Supply SPDT Analog Switch in SC70

ELECTRICAL CHARACTERISTICS—Single +1.8V Supply (continued)

$\left(\mathrm{V}+=+1.8 \mathrm{~V}, \mathrm{~V}_{I H}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Notes 2,3$)$

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
LOGIC INPUT							
Input Voltage Low	$\mathrm{V}_{\text {IL }}$					0.4	V
Input Voltage High	V_{IH}			1			V
Input Leakage Current	IIN	V IN $=0 \mathrm{~V}$ or $\mathrm{V}+$				1	$\mu \mathrm{A}$
SUPPLY							
Positive Supply Current	$1+$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or V_{+}	$+25^{\circ} \mathrm{C}$		0.04	0.2	$\mu \mathrm{A}$
			TMIn to TMAX			2	

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value is a maximum, is used in this data sheet.
Note 3: Parts are 100% tested at $+25^{\circ} \mathrm{C}$. Limits across the full temperature range are guaranteed by design and correlation.
Note 4: Guaranteed by design for μ DFN package.
Note 5: Δ RON = RON(MAX) - RON(MIN).
Note 6: Flatness is defined as the difference between the maximum and minimum values of on-resistance as measured over the specified analog signal range.
Note 7: Guaranteed by design.
Note 8: Off-Isolation = $20 \log _{10}\left[\mathrm{~V}_{\mathrm{COM}} /\left(\mathrm{V}_{\mathrm{NC}}\right.\right.$ or $\left.\left.\mathrm{V}_{\mathrm{NO}}\right)\right], \mathrm{V}_{\mathrm{COM}}=$ output, V_{NC} or $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.
Note 9: Between the two switches.

Typical Operating Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

0.8 , Low-Voltage, Single-Supply SPDT Analog Switch in SC70

Typical Operating Characteristics (continued)
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

LOGIC THRESHOLD VOLTAGE
vs. SUPPLY VOLTAGE

TOTAL HARMONIC DISTORTION vs. FREQUENCY

Pin Description

PIN	NAME	
1	FUNCTION	
2	V+	Digital Control Input
3	GND	Grositive Supply Voltage Input
4	NC	Analog Switch—Normally Closed
5	COM	Analog Switch—Common
6	NO	Analog Switch—Normally Open

0.8Ω, Low-Voltage, Single-Supply SPDT Analog Switch in SC70

\qquad Detailed Description
The MAX4714 is a low-on-resistance (RON), low-voltage, single-pole/double-throw (SPDT) analog switch that operates from $\mathrm{a}+1.6 \mathrm{~V}$ to +3.6 V supply. The MAX4714 has break-before-make switching. This device also has fast switching speeds (ton $=18 \mathrm{~ns}$, max, toff $=12 n s, \max$).
When powered from a +3 V supply, the 0.8Ω (max) RON allows high continuous currents to be switched in a variety of applications.

Applications Information

Logic Inputs

The MAX4714 logic input can be driven up to +3.6 V regardless of the supply voltage. For example, with a
+3.3 V supply, IN may be driven low to GND and high to +3.6 V . Driving IN rail-to-rail minimizes power consumption.

Analog Signal Levels
Analog signals that range over the entire supply voltage ($\mathrm{V}+$ to GND) can be passed with very little change in on-resistance (see Typical Operating Characteristics). The switches are bidirectional, so the NO, NC, and COM pins can be used as either inputs or outputs.

Chip Information
TRANSISTOR COUNT: 135
PROCESS: CMOS

Test Circuits/Timing Diagrams
MイХ1/VI

MAX4714

LOGIC INPUT WAVEFORMS INVERTED FOR SWITCHES THAT HAVE THE OPPOSITE LOGIC SENSE.

Figure 1. Switching Time

Figure 2. Break-Before-Make Interval

0.8 , Low-Voltage, Single-Supply SPDT Analog Switch in SC70

Test Circuits/Timing Diagrams (continued)

Figure 3. Charge Injection

MEASUREMENTS ARE STANDARDIZED AGAINST SHORTS AT IC TERMINALS
OFF-ISOLATION IS MEASURED BETWEEN COM_ AND "OFF" NO_ OR NC_ TERMINAL ON EACH SWITCH.
ON-LOSS IS MEASURED BETWEEN COM_ AND "ON" NO_OR NC_TERMINAL ON EACH SWITCH
CROSSTALK IS MEASURED FROM ONE CHANNEL TO ALL OTHER CHANNELS.
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.
Figure 4. On-Loss, Off-Isolation, and Crosstalk

Figure 5. Channel Off/On-Capacitance

0.8 , Low-Voltage, Single-Supply SPDT Analog Switch in SC70

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

0.8Ω, Low-Voltage, Single-Supply SPDT Analog Switch in SC70

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

