

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

The MAX4736 is a low on-resistance, low-voltage, dual single-pole/double throw (SPDT) analog switch that operates from a single 1.6V to 4.2V supply. This device has fast switching speeds (t_{ON} = 25ns, t_{OFF} = 20ns max), handles rail-to-rail analog signals, and consumes less than 4µW of quiescent power. The MAX4736 has break-before-make switching.

When powered from a 3V supply, the MAX4736 features low 0.6Ω on-resistance (R_{ON}), with 0.1Ω R_{ON} matching and 0.05Ω R_{ON} flatness. The digital logic input is 1.8V CMOS compatible when using a single 3V supply.

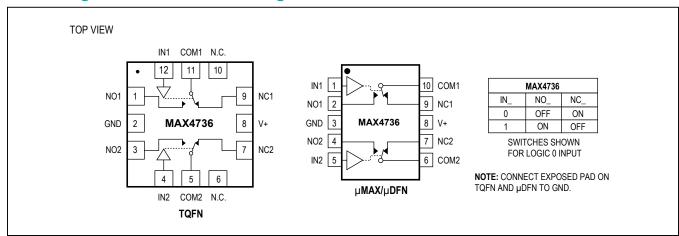
The MAX4736 has one normally open (NO) switch and one normally closed (NC) switch, and is available in 12-pin TQFN (3mm x 3mm), 10-pin μ MAX, and 10-pin μ DFN (2mm x 2mm) packages.

Applications

- Power Routing
- Battery-Powered Systems
- Audio and Video Signal Routing
- Low-Voltage Data-Acquisition Systems
- Communications Circuits
- PCMCIA Cards
- Cellular Phones
- Modems
- Hard Drives

Benefits and Features

- Low R_{ON}


 0.6Ω (3V Supply)
 1.5Ω (1.8V Supply)
- 0.1Ω max R_{ON} Flatness (3V Supply)
- Single-Supply Operation Down to 1.6V
- Available in TQFN, µDFN, and µMAX Packages
- 1.8V CMOS Logic Compatible (3V Supply)
- Fast Switching: t_{ON} = 25ns, t_{OFF} = 20ns

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4736EUB+	-40°C to +85°C	10 μMAX
MAX4736EUB+T	-40°C to +85°C	10 μMAX
MAX4736ETC+	-40°C to +85°C	12 TQFN (3mm x 3mm)
MAX4736ETC+T	-40°C to +85°C	12 TQFN (3mm x 3mm)
MAX4736ELB+	-40°C to +85°C	10 μDFN (2mm x 2mm)
MAX4736ELB+T	-40°C to +85°C	10 μDFN (2mm x 2mm)

T = Tape and reel.

Pin Configurations/Functional Diagrams/Truth Table

⁺Denotes lead(Pb)-free/RoHS-compliant package.

Absolute Maximum Ratings

(Voltages referenced to GND.)	
V+, IN	0.3V to +4.6V
COM_, NO_, NC_ (Note 1)	0.3V to (V+ + 0.3V)
Continuous Current COM_, NO_, NC	±300mA
Continuous Current (all other pins)	±20mA
Peak Current COM_, NO_, NC_	
(pulsed at 1ms 10% duty cycle)	±500mA

Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
10-Pin µDFN (derate 5.3mW/°C above +70°C	C)423.7mW
10-Pin μMAX (derate 5.6mW/°C above +70°C	C)444mW
12-Pin TQFN (derate 14.7mW/°C above +70°C) 1176mW
Operating Temperature Range	40°C to +85°C
Maximum Junction Temperature	+150°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Note 1: Signals on COM_, NO_, or NC_ exceeding V+ or GND are clamped by internal diodes. Limit forward current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics—Single 3V Supply

(V+ = 2.7V to 4.2V, V_{IH} = 1.4V, V_{IL} = 0.5V, T_A = T_{MIN} to T_{MAX} , unless otherwise specified. Typical values are at V+ = 3.0V, T_A = +25°C.) (Notes 2, 3)

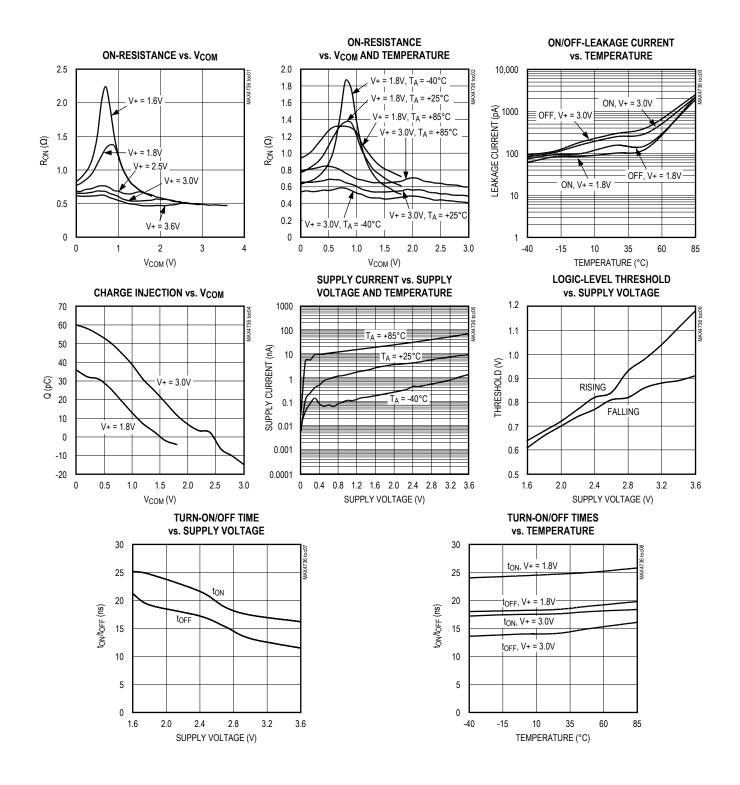
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	V _{COM_} , V _{NO_} , V _{NC_}			0		V+	V
On-Resistance (Note 4)	Pau	V+ = 2.7V ,	+25°C		0.6	8.0	Ω
On-Resistance (Note 4)	R _{ON}	I _{COM} _ = 100mA; V _{NO} _ or V _{NC} _ = 1.5V	T _{MIN} to T _{MAX}			1	12
On-Resistance Match Between Channels	AD	,	+25°C		0.1	0.2	Ω
(Notes 4, 5)	ΔIΛΟΝ	I _{COM} _ = 100mA; V _{NO} _ or V _{NC} _ = 1.5V	T _{MIN} to T _{MAX}		0.3		22
On-Resistance Flatness	Bei atronii	V+ = 2.7V, I _{COM} = 100m A;	+25°C		0.05	0.1	Ω
(Note 6)	R _{FLAT(ON)}	V _{NO_} or V _{NC_} = 1V, 1.5V, 2V	T _{MIN} to T _{MAX}		0.2		\$2
NO_ or NC_ Off-Leakage	I _{NO_(OFF)} ,	V+ = 3.6V ,	+25°C	-1	±0.002	+1	nA
	I _{NC_(OFF)}	V _{COM} _ = 0.3V, 3.3V; V _{NO} _ or V _{NC} _ = 3.3V, 0.3V	T _{MIN} to T _{MAX}	-5		+5	IIA
COM_ On-Leakage	-Leakage	V+ = 3.6V, V _{COM} = 0.3V, 3.3V;	+25°C	-2	±0.002	+2	nA
Current (Note 10)	ICOM_(ON)	V_{NO} or V_{NC} = 0.3V, 3.3V, or floating	T _{MIN} to T _{MAX}	-10		+10	

Electrical Characteristics—Single 3V Supply (continued)

(V+ = 2.7V to 4.2V, V_{IH} = 1.4V, V_{IL} = 0.5V, T_A = T_{MIN} to T_{MAX} , unless otherwise specified. Typical values are at V+ = 3.0V, T_A = +25°C.) (Notes 2, 3)

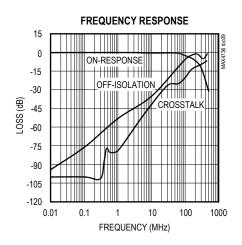
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
SWITCH DYNAMIC CHARACTERISTICS								
Turn-On Time	t _{ON}	$V_{NO_{-}}, V_{NC_{-}} = 1.5V;$ $R_{L} = 50\Omega, C_{L} = 35pF,$	+25°C		20	25	ns	
	ON	Figure 1	T _{MIN} to T _{MAX}			30		
Turn-Off Time	t	$V_{NO_{-}}, V_{NC_{-}} = 1.5V;$ $R_{L} = 50\Omega, C_{L} = 35pF,$	+25°C		15	20		
Turr-Oil Time	VOFF		T _{MIN} to T _{MAX}			25	ns	
Break-Before-Make	4	$V_{NO_{-}}, V_{NC_{-}} = 1.5V;$ $R_{1} = 50\Omega, C_{1} = 35pF,$	+25°C		5		ns	
(Note 7)	t _{BBM}	Figure 2	T _{MIN} to T _{MAX}	1			115	
Charge Injection	Q	$V_{GEN} = 0$, $R_{GEN} = 0$, $C_L = 1.0$ nF, Figure 3	+25°C		60		pC	
NO_ or NC_ Off- Capacitance	C _{OFF}	f = 1MHz, Figure 4	+25°C		33		pF	
COM_ Off-Capacitance	C _{COM(OFF)}	f = 1MHz, Figure 4	+25°C		60		pF	
COM_ On-Capacitance	C _{COM(ON)}	f = 1MHz, Figure 4	+25°C		85		pF	
-3dB On-Channel Bandwidth	BW	Signal = 0, $R_{IN} = R_{OUT} = 50\Omega$, $C_L = 5pF$, Figure 5			130		MHz	
Off-Isolation (Note 8)	V _{ISO}	f = 1MHz, V_{COM} = 1 V_{P-P} , R_L = 50 Ω , C_L = 5pF, Figure 5	+25°C		-52		dB	
Crosstalk (Note 9)	V _{CT}	$f = 1MHz$, $V_{COM} = 1V_{P-P}$, $R_L = 50\Omega$, $C_L = 5pF$, Figure 5	+25°C		-78		dB	
Total Harmonic Distortion	THD	$f = 20$ Hz to 20 kHz, V_{COM} = $2V_{P-P}$, $R_L = 32\Omega$	+25°C		0.018		%	
LOGIC INPUT (A_, IN_)								
Input Logic High	V _{IH}			1.4			V	
Input Logic Low	V _{IL}					0.5	V	
Input Leakage Current	I _{IN}	V _{IN} _ = 0 or 3.6V		-1	+0.005	+1	μA	
POWER SUPPLY								
Power-Supply Range	V+			1.6		3.6	V	
Positive Supply Current	l+	V+ = 3.6V, V _{IN} _ = 0 or V+, all channels on or off			0.006	1	μA	

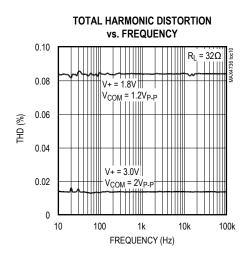
Electrical Characteristics—Single 1.8V Supply


 $(V + = 1.8V, V_{IH} = 1.0V, V_{IL} = 0.4V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise specified. Typical values are at } T_A = +25^{\circ}\text{C.}) \text{ (Notes 2, 3)}$

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH	'	1					
Analog Signal Range	V _{COM_} , V _{NO_} , V _{NC_}			0		V+	V
On Pecietance	Pau	I _{COM} = 100mA;	+25°C		1.5	2	Ω
On-Resistance	R _{ON}	V _{NO} _or V _{NC} _ = 1V	T _{MIN} to T _{MAX}			3	12
SWITCH DYNAMIC CHAP	RACTERISTICS						
Turn-On Time	t _{ON}	V_{NO} , or V_{NC} = 1V; R_{I} = 50 Ω , C_{I} = 35pF,	+25°C		25	30	ns
	JON	Figure 1	T _{MIN} to T _{MAX}			35	113
Turn-Off Time	t _{OFF}	V_{NO} , or V_{NC} = 1V; R_L = 50 Ω , C_L = 35pF, Figure 1	+25°C		18	25	ns
	OFF		T _{MIN} to T _{MAX}			28	
Break-Before-Make	tone	V _{NO} , or V _{NC} = 1V;	+25°C		7		ns
(Note 7)	t _{BBM}	$R_L = 50\Omega$, $C_L = 35pF$, Figure 2	T _{MIN} to T _{MAX}	1			115
Charge Injection	Q	V _{GEN} = 0, R _{GEN} = 0, C _L = 1nF, Figure 3	+25°C		35		pC
Off-Isolation (Note 8)	V _{ISO}	$f = 1MHz, V_{NO} = V_{NC}$ $= 1V_{P-P}, R_L = 50\Omega,$ $C_L = 5pF, Figure 5$	+25°C		-52		dB
Crosstalk (Note 9)	V _{CT}	$f = 1MHz$, $V_{COM} = 1V_{P-P}$, $R_L = 50\Omega$, $C_L = 5pF$, Figure 5	+25°C		-78		dB
LOGIC INPUT (IN_)							
Input Logic High	V _{IH}			1			V
Input Logic Low	V _{IL}					0.4	V
Input Leakage Current	I _{IN}	V _{IN} = 0 or 3.6V				1	μA

- **Note 2:** The algebraic convention, where the most negative value is a minimum and the most positive value is a maximum, is used in this data sheet.
- Note 3: -40°C specifications are guaranteed by design.
- Note 4: R_{ON} and ΔR_{ON} matching specifications for TQFN packaged parts are guaranteed by design.
- Note 5: $\Delta R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$.
- **Note 6:** Flatness is defined as the difference between the maximum and the minimum value of on-resistance as measured over the specified analog signal ranges.
- Note 7: Guaranteed by design.
- Note 8: Off-Isolation = $20log_{10}(V_{COM_{-}}/V_{NO_{-}})$, $V_{COM_{-}}$ = output, $V_{NO_{-}}$ = input to OFF switch.
- Note 9: Between two switches.
- Note 10: Leakage parameters are 100% tested at hot temperature and guaranteed by correlation at room.
- **Note 11:** Devices are guaranteed to 1 million cycles of operation. (Cycle = switch on \rightarrow switch off \rightarrow switch on)
- Note 12: The minimum load resistance is 8Ω .


Typical Operating Characteristics


 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Pin Description

PI	N	NAME	FUNCTION	
μMAX/μDFN	TQFN			
1	12	IN1	Digital Control Input Switch 1	
2	1	NO1	Analog Switch 1—Normally Open Terminal	
3	2	GND	Ground	
4	3	NO2	Analog Switch 2—Normally Open Terminal	
5	4	IN2	Digital Control Input Switch 2	
6	5	COM2	Analog Switch 2—Common Terminal	
7	7	NC2	Analog Switch 2—Normally Closed Terminal	
8	8	V+	Positive-Supply Voltage Input	
9	9	NC1	Analog Switch 1—Normally Closed Terminal	
10	11	COM1	Analog Switch 1—Common Terminal	
_	6,10	N.C.	No Connection	
_	EP	EP	Exposed Pad. Connect to ground.	

Detailed Description

The MAX4736 is a low 0.8Ω max (at V+ = 2.7V) onresistance, low-voltage, dual SPDT analog switch that operates from a 1.6V to 4.2V single supply. CMOS switch construction allows switching analog signals that range from GND to V+.

When powered from a 2.7V supply, the 0.8Ω max R_{ON} allows high continuous currents to be switched in a variety of applications.

Applications Information

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings; stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence V+ on first, followed by NO_, NC_, or COM_.

Although it is not required, power-supply bypassing improves noise margin and prevents switching noise propagation from the V+ supply to other components. A $0.1\mu F$ capacitor, connected from V+ to GND, is adequate for most applications.

Logic Inputs

The MAX4736 logic inputs can be driven up to 3.6V, regardless of the supply voltage. For example, with a 1.8V supply, IN_ can be driven low to GND and high to 3.6V. Driving IN_rail-to-rail minimizes power consumption.

Analog Signal Levels

Analog signals that range over the entire supply voltage (V+ to GND) can be passed with very little change in onresistance (see *Typical Operating Characteristics*). The switches are bidirectional, so the NO_, NC_, and COM_pins can be used as either inputs or outputs.

Layout

High-speed switches require proper layout and design procedures for optimum performance. Reduce stray inductance and capacitance by keeping traces short and wide. Ensure that bypass capacitors are as close to the device as possible. Use large ground planes where possible.

Test Circuits/Timing Diagrams

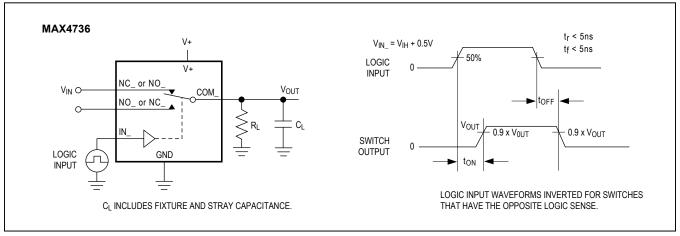


Figure 1. Switching Time

Test Circuits/Timing Diagrams (continued)

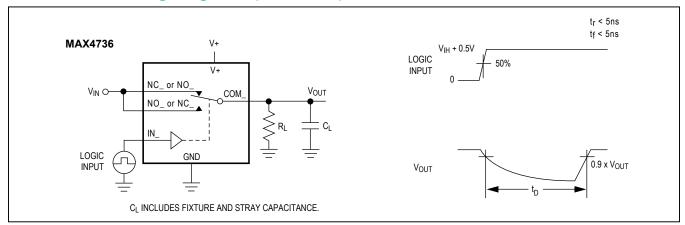


Figure 2. Break-Before-Make Interval

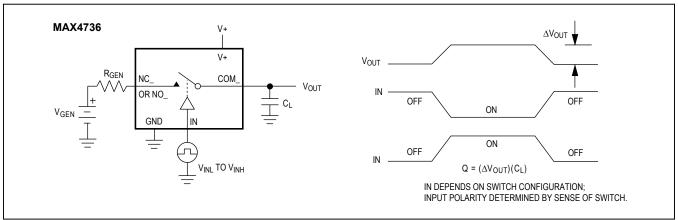


Figure 3. Charge Injection

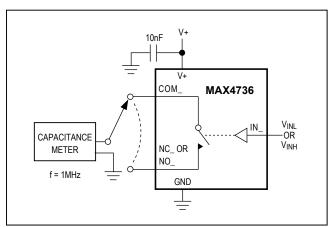


Figure 4. Channel Off/On-Capacitance

Chip Information

TRANSISTOR COUNT: 379

PROCESS: CMOS

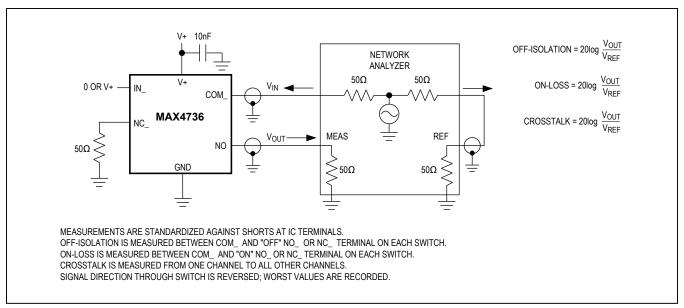


Figure 5. On-Loss, Off-Isolation, and Crosstalk

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
10 MDFN	L1022+1	<u>21-0164</u>	<u>90-0006</u>
10 MMAX	U10+2	<u>21-0061</u>	<u>90-0330</u>
12 TQFN	T1233+1	<u>21-0136</u>	<u>90-0066</u>

MAX4736

0.6Ω, Low-Voltage, Single-Supply, Dual SPDT **Analog Switch**

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
3	1/14	Added QFN package	1, 2, 4, 6, 10
4	11/16	Removed reference to EV kit manual, QFN package option, and corrected <i>Ordering Information</i> table	1, 2, 4, 6, 9

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.