# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





## **General Description**

The MAX4741/MAX4742/MAX4743 are low on-resistance, low-voltage, dual single-pole/single-throw (SPST) analog switches that operate from a single +1.6V to +3.6V supply. These devices have fast switching speeds ( $t_{ON} = 24$ ns,  $t_{OFF} = 16$ ns max), handle rail-to-rail analog signals, and consume less than 1µW of quiescent power. The MAX4743 has break-before-make switching.

When powered from a +3V supply, the MAX4741/ MAX4742/MAX4743 feature low  $0.8\Omega$  (max) on-resistance (R<sub>ON</sub>), with  $0.08\Omega$  (max) R<sub>ON</sub> matching and  $0.18\Omega$  R<sub>ON</sub> flatness. The digital logic input is 1.8V CMOS compatible when using a single +3V supply.

The MAX4741 has two normally open (NO) switches, the MAX4742 has two normally closed (NC) switches, and the MAX4743 has one NO switch and one NC switch. The MAX4741 is available in 8-pin  $\mu$ DFN (2mm x 2mm), 8-pin SOT23, and 8-pin  $\mu$ MAX<sup>®</sup> packages. The MAX4742/MAX4743 are available in 8-pin SOT23 and 8-pin  $\mu$ MAX packages.

#### Applications

Power Routing

- Battery Powered Systems
- Audio and Video Signal Routing
- Low-Voltage Data-Acquisition Systems
- **Communications Circuits**
- PCMCIA Cards
- Cellular Phones
- Modems
- Hard Drives

#### **Features**

- Low R<sub>ON</sub>: 0.8Ω max (+3V Supply) 2.5Ω max (+1.8V Supply)
- 0.18Ω max R<sub>ON</sub> Flatness (+3V Supply)
- ♦ +1.6V to +3.6V Single-Supply Operation
- ♦ Available in SOT23 and µMAX Packages
- High-Current Handling Capacity (150mA continuous)
- ♦ 1.8V CMOS Logic Compatible (+3V Supply)
- ♦ Fast Switching: ton = 24ns, toFF = 16ns

## **\_Ordering Information**

| PART       | PIN-<br>PACKAGE | TOP<br>MARK | PACKAGE<br>CODE |  |
|------------|-----------------|-------------|-----------------|--|
| MAX4741EKA | 8 SOT23-8       | AAIY        | K8S-3           |  |
| MAX4741EUA | 8 µMAX          |             | U8-1            |  |
| MAX4741ELA | 8 µDFN          | +AAV        | L822-1          |  |
| MAX4742EKA | 8 SOT23-8       | AAIZ        | K8S-3           |  |
| MAX4742EUA | 8 µMAX          | _           | U8-1            |  |
| MAX4743EKA | 8 SOT23-8       | AAJA        | K8S-3           |  |
| MAX4743EUA | 8 µMAX          | —           | U8-1            |  |

**Note:** All devices are specified over the -40°C to +85°C operating temperature range.



 $\mu$ MAX is a registered trademark of Maxim Integrated Products, Inc.

#### 

Maxim Integrated Products 1

**Pin Configurations** 

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

## **ABSOLUTE MAXIMUM RATINGS**

Voltages Referenced to GND

| V+, IN0.3V to +4V                                     |
|-------------------------------------------------------|
| COM_, NO_, NC_ (Note 1)0.3V to (V+ + 0.3V)            |
| Continuous Current COM_, NO_, NC±150mA                |
| Peak Current COM_, NO_, NC_                           |
| (pulsed at 1ms 10% duty cycle)±300mA                  |
| Continuous Power Dissipation ( $T_A = +70^{\circ}C$ ) |
| 8-Pin SOT23 (derate 7.52mW/°C above +70°C)602mW       |
| 8-Pin µMAX (derate 4.5mW/°C above +70°C)              |
|                                                       |

| 8-Pin µDFN (derate 4.8mW/°C above +7 | 70°C)381mW     |
|--------------------------------------|----------------|
| Operating Temperature Range          | 40°C to +85°C  |
| Maximum Junction Temperature         | +150°C         |
| Storage Temperature Range            | 65°C to +150°C |
| Lead Temperature (soldering, 10s)    | +300°C         |

Note 1: Signals on COM\_, NO\_, or NC\_ exceeding V+ or GND are clamped by internal diodes. Limit forward current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

# ELECTRICAL CHARACTERISTICS—Single +3V Supply

(V+ = +2.7V to +3.6V, V<sub>IH</sub> = +1.4V, V<sub>IL</sub> = +0.5V, T<sub>A</sub> = T<sub>MIN</sub> to T<sub>MAX</sub>, unless otherwise specified. Typical values are at V+ = +3.0V, T<sub>A</sub> = +25°C.) (Notes 2, 3)

| PARAMETER                 | SYMBOL                                                         | CONDITIONS                                                    | TA                                   | MIN | ТҮР  | МАХ  | UNITS |  |
|---------------------------|----------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------|-----|------|------|-------|--|
| ANALOG SWITCH             |                                                                |                                                               |                                      |     |      |      |       |  |
| Analog Signal Range       | V <sub>COM</sub> _,<br>V <sub>NO</sub> _,<br>V <sub>NC</sub> _ |                                                               |                                      | 0   |      | V+   | V     |  |
| On-Resistance             | BON                                                            | $V_{+} = 2.7V,$                                               | +25°C                                |     | 0.5  | 0.8  |       |  |
| On-nesistance             | HON                                                            | $V_{NO}$ or $V_{NC}$ = 1.5V                                   | $T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$ |     |      | 0.9  |       |  |
| On-Resistance Match       | ABON                                                           | $V_{+} = 2.7V_{,}$                                            | +25°C                                |     | 0.05 | 0.08 |       |  |
| Between Channels (Note 4) | ARON                                                           | $V_{NO}$ or $V_{NC}$ = 1.5V                                   | $T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$ |     |      | 0.09 | 52    |  |
| On-Resistance Flatness    |                                                                | $V_{+} = 2.7V,$                                               | +25°C                                |     | 0.05 | 0.18 |       |  |
| (Note 5)                  | RFLAT(ON)                                                      | $V_{NO_{-}}$ or $V_{NC_{-}} = 1V$ , 1.5V, 2V                  | $T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$ |     |      | 0.20 | 52    |  |
| NO_ or NC_ Off-Leakage    | I <sub>NO_(OFF)</sub> ,<br>I <sub>NC_(OFF)</sub>               | $V_{+} = 3.3V,$                                               | +25°C                                | -1  |      | 1    | n۸    |  |
| Current                   |                                                                | $V_{\rm NO}$ or $V_{\rm NC}$ = 3V, 0.3V                       | $T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$ | -5  |      | 5    | ΠA    |  |
|                           | ICOM_(OFF)                                                     | V+ = 3.3V,<br>V <sub>COM</sub> _ = 0.3V, 3V                   | +25°C                                | -1  |      | 1    | 5     |  |
|                           |                                                                | V <sub>NO</sub> _ or V <sub>NC</sub> _ = 3V, 0.3V or floating | $T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$ | -5  |      | 5    |       |  |
|                           |                                                                | V+ = 3.3V,<br>V <sub>COM</sub> _ = 3V, 0.3V;                  | +25°C                                | -2  |      | 2    |       |  |
| COM_On-Leakage Current    | ICOM_(ON)                                                      | $V_{NO_{-}}$ or $V_{NC_{-}} = 3V$ , 0.3V or floating          | $T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$ | -10 |      | 10   | nA    |  |

# ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

 $(V + = +2.7V \text{ to } +3.6V, V_{IH} = +1.4V, V_{IL} = +0.5V, T_A = T_{MIN} \text{ to } T_{MAX}$ , unless otherwise specified. Typical values are at V + = +3.0V,  $T_A = +25^{\circ}C$ .) (Notes 2, 3)

| PARAMETER                      | SYMBOL     | CONDITIONS                                                                                                                       | TA                                   | MIN        | TYP   | MAX | UNITS |  |  |  |
|--------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------|-------|-----|-------|--|--|--|
| SWITCH DYNAMIC CHARACTERISTICS |            |                                                                                                                                  |                                      |            |       |     |       |  |  |  |
| Turn-On Time                   | ton        | $V_{NO_{-}}, V_{NC_{-}} = 1.5V,$                                                                                                 | +25°C                                |            | 18    | 24  | ns    |  |  |  |
|                                | UN         | Figure 1                                                                                                                         | $T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$ |            |       | 28  | 113   |  |  |  |
| Turn Off Time                  | 10.55      | $V_{NO_{-}}, V_{NC_{-}} = 1.5V,$                                                                                                 | +25°C                                |            | 12    | 16  | 20    |  |  |  |
|                                | UCFF       | Figure 1                                                                                                                         | $T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$ |            |       | 18  | ns    |  |  |  |
| Brook Boforo Maka (Noto 6)     | t==+ +     | $V_{NO_{-}}, V_{NC_{-}} = 1.5V,$                                                                                                 | +25°C                                |            | 6     |     | 20    |  |  |  |
| Dreak-Defore-Make (Note o)     | rBBM       | Figure 1 (MAX4743)                                                                                                               | $T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$ | 1          |       |     | ns    |  |  |  |
| Charge Injection               | Q          | V <sub>GEN</sub> = 0, R <sub>GEN</sub> = 0, C <sub>L</sub> =<br>1.0nF, Figure 3                                                  | +25°C                                |            | 28    |     | рС    |  |  |  |
| NO_ or NC_ Off-<br>Capacitance | COFF       | f = 1MHz, Figure 4                                                                                                               | +25°C                                |            | 32    |     | pF    |  |  |  |
| COM_Off-Capacitance            | CCOM_(OFF) | f = 1MHz, Figure 4                                                                                                               | +25°C                                |            | 32    |     | pF    |  |  |  |
| COM_On-Capacitance             | CCOM_(ON)  | f = 1MHz, Figure 4                                                                                                               | +25°C                                |            | 44    |     | рF    |  |  |  |
| -3dB On-Channel Bandwidth      | BW         | Signal = 0, $R_{IN} = R_{OUT} =$<br>50 $\Omega$ , $C_L = 5pF$ , Figure 2                                                         |                                      |            | 100   |     | MHz   |  |  |  |
| Off-Isolation (Note 7)         | VISO       | $f = 1MHz$ , $V_{COM} = 1V_{RMS}$ , $R_L = 50\Omega$ , $C_L = 5pF$ , Figure 2                                                    | +25°C                                |            | -55   |     | dB    |  |  |  |
| Crosstalk (Note 8)             |            | $f = 1MHz$ , $V_{COM} = 1V_{RMS}$ , $R_L = 50\Omega$ , $C_L = 5pF$ , Figure 2                                                    | +25°C                                |            | -110  |     | dB    |  |  |  |
| Total Harmonic Distortion      | THD        | f = 20Hz to 20kHz, V <sub>COM</sub> = 2Vp-p, R <sub>L</sub> = $32\Omega$                                                         | +25°C                                | +25°C 0.02 |       |     | %     |  |  |  |
| LOGIC INPUT                    |            |                                                                                                                                  |                                      |            |       |     |       |  |  |  |
| Input Logic High               | VIH        |                                                                                                                                  |                                      | 1.4        |       |     | V     |  |  |  |
| Input Logic Low                | VIL        |                                                                                                                                  |                                      |            |       | 0.5 | V     |  |  |  |
| Input Leakage Current          | lin        | $V_{IN} = 0 \text{ or } V +$                                                                                                     |                                      | -1         | 0.005 | 1   | μΑ    |  |  |  |
| POWER SUPPLY                   |            |                                                                                                                                  |                                      |            |       |     |       |  |  |  |
| Power-Supply Range             | V+         |                                                                                                                                  |                                      | 1.6        |       | 3.6 | V     |  |  |  |
| Positive Supply Current        | I+         | $I+ \qquad \begin{array}{c} V+=3.6V, V_{IN\_}=0 \text{ or } V+,\\ \text{all channels on or off} \end{array} +25^{\circ}\text{C}$ |                                      |            |       | 0.2 | μA    |  |  |  |

## ELECTRICAL CHARACTERISTICS—Single +1.8V Supply

 $(V + = +1.8V, V_{IH} = +1.0V, V_{IL} = 0.4V, T_A = T_{MIN}$  to  $T_{MAX}$ , unless otherwise specified. Typical values are at  $T_A = +25^{\circ}C.$ ) (Notes 2, 3)

| PARAMETER                  | SYMBOL                                                     | SYMBOL CONDITIONS                                                                    |                                               | MIN  | ТҮР | МАХ      | UNITS |  |
|----------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------|------|-----|----------|-------|--|
| ANALOG SWITCH              |                                                            |                                                                                      |                                               |      |     |          |       |  |
| Analog Signal Range        | V <sub>COM</sub> ,<br>V <sub>NO</sub> ,<br>V <sub>NC</sub> |                                                                                      |                                               | 0    |     | V+       | V     |  |
| On-Resistance              | R <sub>ON</sub>                                            | $I_{COM} = 10$ mA,<br>$V_{NO}$ or $V_{NC} = 0.9$ V                                   | +25°C<br>T <sub>MIN</sub> to T <sub>MAX</sub> |      | 1.3 | 2.5<br>5 | Ω     |  |
| NO_ or NC_ Off-Leakage     | I <sub>NO</sub> (OFF),                                     | $V_{COM} = 0.3V, 1.5V;$                                                              | +25°C                                         | -1   |     | 1        |       |  |
| Current                    | I <sub>NC_(OFF)</sub>                                      | $v_{NO}$ or $v_{NC}$ = 1.5 $v$ ,<br>0.3 $V$                                          | $T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$          | -5   |     | 5        | ΠA    |  |
|                            |                                                            | $V_{COM} = 0.3V, 1.5V;$                                                              | +25°C                                         | -1   |     | 1        |       |  |
| COM_ On-Leakage Current    | ICOM_(OFF)                                                 | 0.3V 0.3V                                                                            | $T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$          | -5   |     | 5        | nA    |  |
|                            | 1                                                          | $V_{COM} = 0.3V, 1.5V,$                                                              | +25°C                                         | -2   |     | 2        | nA    |  |
| COM_ On-Leakage Current    | ICOM_(ON)                                                  | 1.5V, or floating                                                                    | $T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$          | -10  |     | 10       |       |  |
| SWITCH DYNAMIC CHARACTER   | RISTICS                                                    |                                                                                      |                                               |      |     |          |       |  |
|                            | ton                                                        | $V_{NO_{-}}, V_{NC_{-}} = 1.5V,$                                                     | +25°C                                         |      | 25  | 35       | 20    |  |
| rum-on nine                |                                                            | Figure 1 Figure 1                                                                    | $T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$          |      |     | 40       | ns    |  |
| Turn Off Time              |                                                            | $V_{NO_{-}}, V_{NC_{-}} = 1.5V,$                                                     | +25°C                                         |      | 16  | 25       | ns    |  |
| rum-Oir rime               | LOFF                                                       | $H_L = 50\Omega_2, O_L = 35pH,$<br>Figure 1                                          | $T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$          |      |     | 30       |       |  |
|                            |                                                            | $V_{NO_{-}}, V_{NC_{-}} = 1.5V,$                                                     | +25°C                                         |      | 10  |          |       |  |
| Break-Before-Make (Note 6) | tBBM                                                       | R <sub>L</sub> = 50 <b>Ω</b> , C <sub>L</sub> = 35pF,<br>Figure 1 (MAX4743)          | $T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$          | 1    |     |          | - ns  |  |
| Charge Injection           | Q                                                          | $V_{GEN} = 0$ , $R_{GEN} = 0$ ,<br>$C_L = 1$ nF, Figure 2                            | +25°C                                         |      | 16  |          | рС    |  |
| Off-Isolation (Note 7)     | VISO                                                       | $f = 1MHz, V_{NO_} = V_{NC_}$ $= 1V_{RMS}, R_L = 50\Omega,$ $C_L = 5pF, Figure 2$    | +25°C                                         |      | -50 |          | dB    |  |
| Crosstalk (Note 8)         |                                                            | $      f = 1 MHz, V_{COM} = 1 V_{RMS}, \\ R_L = 50 \Omega, \\ C_L = 5 pF, Figure 2 $ | +25°C                                         | -110 |     |          | dB    |  |

## ELECTRICAL CHARACTERISTICS—Single +1.8V Supply (continued)

 $(V + = +1.8V, V_{IH} = +1.0V, V_{IL} = 0.4V, T_A = T_{MIN}$  to  $T_{MAX}$ , unless otherwise specified. Typical values are at  $T_A = +25^{\circ}C$ .) (Notes 2, 3)

| PARAMETER             | SYMBOL | CONDITIONS                   | TA | MIN | ТҮР | MAX | UNITS |
|-----------------------|--------|------------------------------|----|-----|-----|-----|-------|
| LOGIC INPUT           |        |                              |    |     |     |     |       |
| Input Logic High      | VIH    |                              |    | 1   |     |     | V     |
| Input Logic Low       | VIL    |                              |    |     |     | 0.4 | V     |
| Input Leakage Current | lin    | $V_{IN} = 0 \text{ or } V +$ |    | -1  |     | 1   | μA    |

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value is a maximum, is used in this data sheet.

**Note 3:** μDFN and SOT23 packaged parts are 100% tested at +25°C. Limits across the full temperature range are guaranteed by design and correlation. μMAX packaged parts -40°C specifications are guaranteed by design.

**Note 4:**  $\Delta R_{ON} = R_{ON}(MAX) - R_{ON}(MIN)$ .

Note 5: Flatness is defined as the difference between the maximum and the minimum value of on-resistance as measured over the specified analog signal ranges.

Note 6: Guaranteed by design.

Note 7: Off-Isolation = 20log<sub>10</sub>(V<sub>COM</sub>/V<sub>NO</sub>), V<sub>COM</sub> = output, V<sub>NO</sub> = input to off switch.

Note 8: Between two switches.



# **Typical Operating Characteristics**

 $(T_A = +25^{\circ}C, unless otherwise noted.)$ 



# **Typical Operating Characteristics (continued)**

# \_Pin Description

| PIN       |         |      |         |         |         |      |                                 |  |
|-----------|---------|------|---------|---------|---------|------|---------------------------------|--|
| MAX47     | 741     | MA   | X4742   | MAX4743 |         | NAME | FUNCTION                        |  |
| µMAX/µDFN | SOT23-8 | μΜΑΧ | SOT23-8 | μΜΑΧ    | SOT23-8 |      |                                 |  |
| 1         | 8       | _    | —       | 1       | 8       | NO1  | Analog Switch 1 Normally Open   |  |
| _         | —       | 1    | 8       | _       | —       | NC1  | Analog Switch 1 Normally Closed |  |
| 2         | 7       | 2    | 7       | 2       | 7       | COM1 | Analog Switch 1 Common          |  |
| 3         | 6       | 3    | 6       | 3       | 6       | IN2  | Logic Control Input Switch 2    |  |
| 4         | 5       | 4    | 5       | 4       | 5       | GND  | Ground                          |  |
| 5         | 3       | _    | —       | _       | _       | NO2  | Analog Switch 2 Normally Open   |  |
| _         | _       | 5    | 3       | 5       | 3       | NC2  | Analog Switch 2 Normally Closed |  |
| 6         | 4       | 6    | 4       | 6       | 4       | COM2 | Analog Switch 2 Common          |  |
| 7         | 1       | 7    | 1       | 7       | 1       | IN1  | Logic Control Input Switch 1    |  |
| 8         | 2       | 8    | 2       | 8       | 2       | V+   | Positive Supply Voltage         |  |

# **Detailed Description**

The MAX4741/MAX4742/MAX4743 are low  $0.8\Omega$  max (at V+ = +3V) on-resistance, low-voltage, dual analog switches that operate from a +1.6V to +3.6V single supply. CMOS switch construction allows switching analog signals that are within the supply voltage range (GND to V+).

When powered from a +3V supply, the 0.8  $\Omega$  max RoN allows high continuous currents to be switched in a variety of applications.

# **Applications Information**

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence V+ on first, followed by NO\_, NC\_, or COM\_.

Although it is not required, power-supply bypassing improves noise margin and prevents switching noise propagation from the V+ supply to other components. A  $0.1\mu$ F capacitor, connected from V+ to GND, is adequate for most applications.

#### **Logic Inputs** The MAX4741/MAX4742/MAX4743 logic inputs can be driven up to +3.6V regardless of the supply voltage. For example, with a +1.8V supply, IN\_ may be driven low to GND and high to +3.6V. Driving IN\_ rail-to-rail minimizes power consumption.

#### Analog Signal Levels

Analog signals that range over the entire supply voltage (V+ to GND) can be passed with very little change in onresistance (see *Typical Operating Characteristics*). The switches are bidirectional, so the NO\_, NC\_, and COM\_ pins can be used as either inputs or outputs.

#### Layout

High-speed switches require proper layout and design procedures for optimum performance. Reduce stray inductance and capacitance by keeping traces short and wide. Ensure that bypass capacitors are as close to the device as possible. Use large ground planes where possible.





Figure 1. Switching Times



#### Test Circuits/Timing Diagrams (continued)

Figure 2. Off-Isolation, On-Loss, and Crosstalk



Figure 3. Charge Injection



Figure 4. NO\_, NC\_, and COM\_ Capacitance

# MAX4741/MAX4742/MAX4743



## \_Chip Information

TRANSISTOR COUNT = 121 PROCESS = CMOS

## Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)



![](_page_11_Figure_4.jpeg)

# \_Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

![](_page_12_Figure_4.jpeg)

# **Revision History**

Pages changed at Rev 2: 1, 12

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12

- \_\_Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
- © 2006 Maxim Integrated Products

**MAXIM** is a registered trademark of Maxim Integrated Products, Inc.