: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

50,, Low-Voltage, Quad SPST/Dual SPDT Analog Switches in WLP

General Description

The MAX4747-MAX4750 low-voltage, quad single-pole single-throw (SPST)/dual single-pole/double-throw (SPDT) analog switches operate from a single +2 V to +11 V supply and handle rail-to-rail analog signals. These switches exhibit low leakage current (0.1 nA) and consume less than 0.5 nW (typ) of quiescent power, making them ideal for battery-powered applications.
When powered from a +3 V supply, these switches feature 50Ω (max) on-resistance (Ron), with 3.5Ω (max) matching between channels and 9Ω (max) flatness over the specified signal range.
The MAX4747 has four normally open (NO) switches, the MAX4748 has four normally closed (NC) switches, and the MAX4749 has two NO and two NC switches. The MAX4750 has two SPDT switches. These switches are available in 14-pin TSSOP, 16-pin TQFN ($4 \mathrm{~mm} \times 4 \mathrm{~mm}$), and 16 -bump WLP packages. This tiny chip-scale package occupies a $2 \mathrm{~mm} \times 2 \mathrm{~mm}$ area and significantly reduces the required PC board area.

Applications
Battery-Powered Systems
Audio/Video-Signal Routing
Low-Voltage Data-Acquisition Systems
Cell Phones
Communications Circuits
Glucose Meters
PDAs

Features

- $2 \mathrm{~mm} \times 2 \mathrm{~mm}$ WLP
- Guaranteed On-Resistance (RON) 25Ω (max) at +5 V 50Ω (max) at +3 V
- On-Resistance Matching
3Ω (max) at +5 V
3.5Ω (max) at +3V
- Guaranteed < 0.1nA Leakage Current at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
- Single-Supply Operation from +2.0V to +11V
- TTL/CMOS-Logic Compatible
- -84dB Crosstalk (1MHz)
- -72dB Off-Isolation (1MHz)
- Low Power Consumption: 0.5nW (typ)
- Rail-to-Rail Signal Handling

Ordering Information

PART	TEMP RANGE	PIN-/BUMP- PACKAGE
MAX4747EUD +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 TSSOP
MAX4747ETE +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Thin QFN-EP*
MAX4747EWE +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 WLP

*EP = Exposed pad.
+Denotes a lead(Pb)-free/RoHS-compliant package.
T = Tape and reel.
Ordering Information continued at end of data sheet.

Pin/Bump Configurations/Truth Tables

TOP VIEW
BUMPS SIDE DOWN) МАХІ्М
MAX4747

*CONNECT EP TO V_{+}

INPUT	SWITCH STATE
LOW	OFF
HIGH	ON

Pin Configurations/Truth Tables continued at end of data sheet.

503, Low-Voltage, Quad SPST/Dual SPDT Analog Switches in WLP

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)
V+
V+ ...-0.3V to +12V
IN_, COM_, NO_, NC_ (Note 1).....................-0.3V to (V+ + 0.3V)
Continuous Current (any pin) ... $\pm 10 \mathrm{~mA}$
Peak Current (any pin, pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle) ... $\pm 20 \mathrm{~mA}$
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
14-Pin TSSOP (derate $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 727 mW
16-Pin Thin QFN (derate $16.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 1349 mW
16-Bump WLP (derate $7.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)......... 589 mW
Note 1: Signals on IN_, NO_, NC_, or COM_ exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +3V Supply

$\left(\mathrm{V}+=+3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{IH}}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$ (Notes 3, 4)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	VCOM_ $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=+2.7 \mathrm{~V}, \mathrm{ICOM}_{-}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}} \text {or } \mathrm{V}_{\mathrm{NC}}=+1.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		17	50	Ω
			TMin to TMAX			60	
On-Resistance Matching Between Channels (Notes 5, 6)	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{+}=+2.7 \mathrm{~V}, \mathrm{ICOM}_{-}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}} \text {or } \mathrm{V}_{\mathrm{NC}}=+1.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.2	3.5	Ω
			TMIN to TMAX			4.5	
On-Resistance Flatness (Note 7)	RFLAT(ON)	$\begin{aligned} & \mathrm{V}_{+}=+2.7 \mathrm{~V}, \mathrm{I}_{2} \mathrm{CO}-=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}}^{-} \text {or } \mathrm{V}_{\mathrm{NC}}^{-} \end{aligned}=+1 \mathrm{~V},+1.5 \mathrm{~V},+2 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$		2.7	9	Ω
			TMIN to TMAX			11	
NO_ or NC_ Off-Leakage Current (Note 8)	INO_(OFF), INC_(OFF)	$\begin{aligned} & \mathrm{V}+=+3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=+0.3 \mathrm{~V},+3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_ }}=+3 \mathrm{~V},+0.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.1		+0.1	nA
			TMIN to TMAX	-2		+2	
COM_ Off-Leakage Current (Note 8)	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}_{+}=+3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\text {COM }}=+0.3 \mathrm{~V},+3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_ }}=+3 \mathrm{~V},+0.3 \mathrm{~V} \\ & \hline \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.1		+0.1	nA
			TMIN to TMAX	-2		+2	
COM_ On-Leakage Current (Note 8)	ICOM_(ON)	$\begin{aligned} & \mathrm{V}_{+}=+3.6 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\text {com }}=+0.3 \mathrm{~V},+3.0 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\mathrm{NC}}^{-} \\ & \text {unconnected } \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.2		+0.2	nA
			TMin to TMAX	-4		+4	

50ת, Low-Voltage, Quad SPST/Dual SPDT Analog Switches in WLP

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

$\left(\mathrm{V}+=+3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{IH}}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$ (Notes 3, 4)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
DYNAMIC							
Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \text { Figure } 2 \end{aligned}$	$+25^{\circ} \mathrm{C}$		57	150	ns
			TMIN to TMAX			170	
Turn-Off Time	toff	$\mathrm{V}_{\text {NO_ }}$ or $\mathrm{V}_{\mathrm{NC}_{-}}=+1.5 \mathrm{~V}$, $R_{L}=300 \Omega, C_{L}=35 p F$, Figure 2	$+25^{\circ} \mathrm{C}$		24	60	ns
			Tmin to TMAX			70	
Break-Before-Make (MAX4749/MAX4750 Only) (Note 8)	tBBM	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{2}} \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=+1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \text {, Figure } 3 \end{aligned}$	$+25^{\circ} \mathrm{C}$		33		ns
			TMIN to TMAX	1			
Charge Injection	Q	$V_{G E N}=0 V, R_{G E N}=0 \Omega, C_{L}=1.0 n F,$ Figure 4	$+25^{\circ} \mathrm{C}$		7		pC
On-Channel -3dB Bandwidth	BW	Signal $=0 \mathrm{dBm}, 50 \Omega$ in and out	$+25^{\circ} \mathrm{C}$		250		MHz
Off-Isolation (Note 9)	VISO	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\text {NO_ }}=1 \mathrm{~V}_{\mathrm{RMS}}$, $R_{L}=50 \Omega, C_{L}=5 p F$, Figure 5	$+25^{\circ} \mathrm{C}$		-72		dB
Crosstalk (Note 10)	$V_{\text {CT }}$	$\begin{aligned} & f=1 \mathrm{MHz}, V_{N O}=1 V_{\text {RMS }} \\ & R_{L}=50 \Omega, C_{L}=5 p F, \text { Figure } 6 \end{aligned}$	$+25^{\circ} \mathrm{C}$		84		dB
NO_ or NC_ Off-Capacitance	CofF	$\mathrm{f}=1 \mathrm{MHz}$, Figure 7	$+25^{\circ} \mathrm{C}$		20		pF
COM_ Off-Capacitance	CCOM_(OFF)	$f=1 \mathrm{MHz}$, Figure 7	$+25^{\circ} \mathrm{C}$		20		pF
COM_ On-Capacitance	CCOM_(ON)	$f=1 \mathrm{MHz}$, Figure 7	$+25^{\circ} \mathrm{C}$		40		pF
LOGIC INPUT							
Input Logic High	V_{IH}			1.4			V
Input Logic Low	$\mathrm{V}_{\text {IL }}$					0.8	V
Input Leakage Current	IIN	$\mathrm{V}_{1 \mathrm{~N}_{-}}=0 \mathrm{~V}$ or V_{+}		-1	+0.005	+1	$\mu \mathrm{A}$
POWER SUPPLY							
Power-Supply Range	V+			2		11	V
Positive Supply Current	I+	$\begin{aligned} & \mathrm{V}+=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } \mathrm{V}_{+} \text {, } \\ & \text { all switches on or off } \end{aligned}$			0.0001	1	$\mu \mathrm{A}$

50,, Low-Voltage, Quad SPST/Dual SPDT Analog Switches in WLP

ELECTRICAL CHARACTERISTICS-Single +5V Supply

$\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{IH}}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$ (Notes 3, 4)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	VCOM_, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=+4.5 \mathrm{~V}, \\ & \mathrm{I}_{2} \mathrm{COM}_{-}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}_{-} \text {or }} \mathrm{V}_{\mathrm{NC}_{-}}=+3.0 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		8.2	25	Ω
			TMin to TMAX			30	
On-Resistance Matching Between Channels (Notes 5, 6)	$\Delta \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{+}=+4.5 \mathrm{~V}, \mathrm{ICOM}_{-}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}} \text {or } \mathrm{V}_{\mathrm{NC}_{-}}=+3.0 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.1	3	Ω
			Tmin to TMAX			4	
On-Resistance Flatness (Notes 7)	RFLAT(ON)	$\begin{aligned} & \mathrm{V}_{+}=+4.5 \mathrm{~V}, \mathrm{ICOM}_{-}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_- }}=+1 \mathrm{~V},+2 \mathrm{~V},+3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		2.2	5	Ω
			TMin to TMAX			7	
NO_ or NC_ Off-Leakage Current (Note 8)	INO_(OFF), INC_(OFF)	$\begin{aligned} & \mathrm{V}_{+}=+5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {COM }}=+1 \mathrm{~V},+4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {NO_ }} \text { or } \mathrm{V}_{\mathrm{NC}}^{-} \end{aligned}=+4.5 \mathrm{~V},+1 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	-0.1		+0.1	nA
			TMIn to TMAX	-2		+2	
COM_ Off-Leakage Current (Note 8)	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}_{+}=+5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {COM }}=+1 \mathrm{~V},+4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_ }}=+4.5 \mathrm{~V},+1 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.1		+0.1	nA
			TMin to TMAX	-2		+2	
COM_ On-Leakage Current (Note 8)	ICOM_(ON)	$\begin{aligned} & \mathrm{V}_{+}=+5.5 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\text {com_ }}=+1 \mathrm{~V},+4.5 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\text {NO_ or }} \mathrm{V}_{\text {NC_ }}=+1 \mathrm{~V},+4.5 \mathrm{~V} \text {, or } \\ & \text { unconnected } \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.2		+0.2	nA
			TMIN to TMAX	-4		+4	
DYNAMIC							
Turn-On Time	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}{ }^{-}=+3.0 \mathrm{~V}$, $R_{L}=300 \Omega, C_{L}=35 p F$, Figure 2	$+25^{\circ} \mathrm{C}$		36	85	ns
			TMIN to TMAX			95	
Turn-Off Time	toff	V_{NO} or $\mathrm{V}_{\mathrm{NC}}{ }^{2}=+3.0 \mathrm{~V}$, $R L=300 \Omega, C_{L}=35 p F$, Figure 2	$+25^{\circ} \mathrm{C}$		19	45	ns
			TMIN to TMAX			55	
Break-Before-Make (MAX4749/MAX4750 Only) (Note 8)	$t_{\text {BBM }}$	$\mathrm{V}_{\text {NO_ }}$ or $\mathrm{V}_{\mathrm{NC}}=+3.0 \mathrm{~V}$, $R_{L}=300 \Omega, C_{L}=35 p F$, Figure 3	$+25^{\circ} \mathrm{C}$		14		ns
			Tmin to TMAX	1			
Charge Injection	Q	$\begin{aligned} & V_{G E N}=0 V, R_{G E N}=0 \Omega, \\ & C_{L}=1.0 n F, \text { Figure } 4 \end{aligned}$	$+25^{\circ} \mathrm{C}$		9		pC
On-Channel -3dB Bandwidth	BW	Signal $=0 \mathrm{dBm}$, 50Ω in and out	$+25^{\circ} \mathrm{C}$		250		MHz
Off-Isolation (Note 9)	VISO	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{NO}}=1 \mathrm{~V}_{\mathrm{RMS}}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}, \text { Figure } 5 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-72		dB

50,, Low-Voltage, Quad SPST/Dual SPDT Analog Switches in WLP

ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)

$\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{IH}}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$ (Notes 3, 4)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
Crosstalk (Note 10)	V_{CT}	$\begin{aligned} & f=1 \mathrm{MHz}, V_{N O}=1 V_{\text {RMS }}, \\ & R_{L}=50 \Omega, C_{L}=5 p F, \text { Figure } 6 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-84		dB
NO_ or NC_ Off-Capacitance	CofF	$\mathrm{f}=1 \mathrm{MHz}$, Figure 7	$+25^{\circ} \mathrm{C}$		20		pF
COM_ Off-Capacitance	CCOM_(OFF)	$\mathrm{f}=1 \mathrm{MHz}$, Figure 7	$+25^{\circ} \mathrm{C}$		20		pF
COM_ On-Capacitance	CCOM_(ON)	$\mathrm{f}=1 \mathrm{MHz}$, Figure 7	$+25^{\circ} \mathrm{C}$		40		pF
LOGIC INPUT							
Input Logic High	V_{IH}			2			V
Input Logic Low	VIL					0.8	V
Input Leakage Current	IIN	$\mathrm{V}_{1 \mathrm{~N}_{-}}=0 \mathrm{~V}$ or V_{+}		-1	+0.005	+1	$\mu \mathrm{A}$
POWER SUPPLY							
Power-Supply Range	V+			2		11	V
Positive Supply Current	I+	$\mathrm{V}_{+}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } \mathrm{V}+$ all switches on or off			0.0001	1	$\mu \mathrm{A}$

Note 3: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
Note 4: WLP parts are 100% tested at $+25^{\circ} \mathrm{C}$ only, and are guaranteed by design over temperature. TSSOP and Thin QFN parts are 100% tested at $+85^{\circ} \mathrm{C}$ and guaranteed by design over temperature.
Note 5: $\quad \Delta \operatorname{RON}=\operatorname{RON}(M A X)-\operatorname{RON}(\mathrm{MIN})$.
Note 6: WLP and Thin QFN on-resistance matching between channels is guaranteed by design.
Note 7: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.
Note 8: Guaranteed by design.
Note 9: Off-isolation = $20 \log _{10}\left(\mathrm{~V}_{\mathrm{NO}} / \mathrm{VCOM}_{-}\right), \mathrm{V}_{\mathrm{NO}}=$ output, $\mathrm{V}_{\mathrm{COM}}=$ input to off switch
Note 10: Between any two switches.

Typical Operating Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

50,, Low-Voltage, Quad SPST/Dual SPDT Analog Switches in WLP

Typical Operating Characteristics (continued)
$\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

TOTAL HARMONIC DISTORTION
vs. FREQUENCY

50,, Low-Voltage, Quad SPST/Dual SPDT Analog Switches in WLP

Pin Description-TSSOP

PIN				NAME	FUNCTION	
MAX4747	MAX4748	MAX4749	MAX4750			
$1,3,8,11$	-	-	-	NO1-NO4	Analog-Switch Normally Open Terminals	
-	$1,3,8,11$	-	-	NC1-NC4	Analog-Switch Normally Closed Terminals	
-	-	1,8	-	NO1, NO3	Analog-Switch Normally Open Terminals	
-	-	-	1,8	NO1, NO2	Analog-Switch Normally Open Terminals	
-	-	-	4,11	NC1, NC2	Analog-Switch Normally Closed Terminals	
-	-	3,11	-	NC2, NC4	Analog-Switch Normally Closed Terminals	
$2,4,9,10$	$2,4,9,10$	$2,4,9,10$	-	COM1-COM4	Analog-Switch Common Terminal	
-	-	-	2,9	COM1, COM2	Analog-Switch Common Terminal	
$13,5,6,12$	$13,5,6,12$	$13,5,6,12$	-	IN1-IN4	Logic-Control Digital Input	
-	-	-	13,6	IN1, IN2	Logic-Control Digital Input	
7	7	7	7	GND	Ground. Connect to digital ground.	
14	14	14	14	V+	Positive Analog and Digital Supply Voltage Input. Internally connected to substrate.	
-	-	-	$3,5,10,12$	N.C.	No Connection. Not internally connected.	

Bump Description-WLP

PIN				NAME	FUNCTION
MAX4747	MAX4748	MAX4749	MAX4750		
B1, A2, C4, D2	-	-	-	NO1-NO4	Analog-Switch Normally Open Terminals
-	B1, A2, C4, D2	-	-	NC1-NC4	Analog-Switch Normally Closed Terminals
-	-	B1, C4	-	NO1, NO3	Analog-Switch Normally Open Terminals
-	-	-	B1, C4	NO1, NO2	Analog-Switch Normally Open Terminals
-	-	-	A3, D2	NC1, NC2	Analog-Switch Normally Closed Terminals
-	-	A2, D2	-	NC2, NC4	Analog-Switch Normally Closed Terminals
A1, A3, D4, D3	A1, A3, D4, D3	A1, A3, D4, D3	-	COM1-COM4	Analog-Switch Common Terminal
-	-	-	A1, D4	COM1, COM2	Analog-Switch Common Terminal
C1, A4, B4, D1	C1, A4, B4, D1	C1, A4, B4, D1	-	IN1-IN4	Logic-Control Digital Input
-	-	-	C1, B4	IN1, IN2	Logic-Control Digital Input
C3	C3	C3	C3	GND	Ground. Connect to digital ground.
B2	B2	B2	B2	V+	Positive Analog and Digital Supply Voltage Input. Internally connected to substrate.
-	-	-	A2, A4, D1, D3	N.C.	No Connection. Not internally connected.

50 , Low-Voltage, Quad SPST/Dual SPDT Analog Switches in WLP

Pin Description-TQFN-EP

PIN				NAME	FUNCTION
MAX4747	MAX4748	MAX4749	MAX4750		
1,3	1,3	1,3	1,9	COM1, COM2	Analog-Switch Common Terminals
2	-	-	7	NO2	Analog-Switch Normally Open Terminal
4,13	4,13	4,13	5,13	IN2, IN1	Logic-Control Digital Inputs
5,12	5,12	5,12	-	IN3, IN4	Logic-Control Digital Inputs
6	6	6	6	GND	Ground. Connect to digital ground.
7	-	7	-	NO3	Analog-Switch Normally Open Terminal
8,14	8,14	8,14	$2,4,8,10,12,14$	N.C.	No Connection. Not internally connected.
9,10	9,10	9,10	-	COM3, COM4	Analog-Switch Common Terminals
11	-	-	-	NO4	Analog-Switch Normally Open Terminal
15	15	15	15	V+	Positive Supply-Voltage Input
16	-	16	16	NO1	Analog-Switch Normally Open Terminal
-	2	2	11	NC2	Analog-Switch Normally Closed Terminal
-	7	-	-	NC3	Analog-Switch Normally Closed Terminal
-	11	11	-	NC4	Analog-Switch Normally Closed Terminal
-	16	-	3	NC1	Analog-Switch Normally Closed Terminal
-	-	-	-	EP	Exposed Pad. Connect EP to V+.

50,, Low-Voltage, Quad SPST/Dual SPDT Analog Switches in WLP

Applications Information

Operating Considerations for High-Voltage Supply

The MAX4747-MAX4750 operate to +11V with some precautions. The absolute maximum rating for $V+$ is +12 V (referenced to GND). When operating near this region, bypass $V+$ with a minimum $0.1 \mu \mathrm{~F}$ capacitor to ground as close to the IC as possible.

Logic Levels

The MAX4747-MAX4750 are TTL compatible when powered from a single +3 V supply. When powered from other supply voltages, the logic inputs should be driven rail-to-rail. For example, with a +11 V supply, IN _ should be driven low to 0 V and high to 11 V . With a +3.3 V supply, IN_{-}should be driven low to 0 V and high to 3.3 V . Driving $I N$ _ rail-to-rail minimizes power consumption.

Analog Signal Levels

Analog signals that range over the entire supply voltage (GND to $\mathrm{V}+$) pass with very little change in RoN (see the Typical Operating Characteristics). The bidirectional switches allow NO_, NC_, and COM_ connections to be used as either inputs or outputs.

Power-Supply Sequencing and Overvoltage Protection

CAUTION: Do not exceed the absolute maximum ratings. Stresses beyond the listed ratings can cause permanent damage to the devices.
Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals, especially if the analog signal is not current limited. If this sequencing is not possible, and if the analog inputs are not current limited to $<20 \mathrm{~mA}$, add small-signal diode D1 as shown in Figure 1. If the analog signal can dip below GND, add D2. Adding protection diodes reduces the analog signal range to a diode drop (about 0.7 V) below $\mathrm{V}+$ (for D 1), and to a diode drop above ground (for D2). Leakage is unaffected by adding the diodes. On-resistance increases slightly at low supply voltages. Maximum supply voltage ($\mathrm{V}+$) must not exceed +11 V .

Test Circuits/Timing Diagrams

Figure 1. Overvoltage Protection Using External Blocking Diodes Adding protection diodes causes the logic thresholds to be shifted relative to the power-supply rails. The most significant shift occurs when using low supply voltages (+5 V or less). With a +5 V supply, TTL compatibility is not guaranteed when protection diodes are added. Driving IN_ and IN_ all the way to the supply rails (i.e., to a diode drop higher than the $V+$ pin, or to a diode drop lower than the GND pin) is always acceptable.

Protection diodes D1 and D2 also protect against some overvoltage situations. Using the circuit in Figure 1, no damage results if the supply voltage is below the absolute maximum rating (+12V) and if a fault voltage up to the absolute maximum rating $(\mathrm{V}++0.3 \mathrm{~V})$ is applied to an analog signal terminal.

WLP Applications Information

For the latest application details on WLP construction, dimensions, tape carrier information, PC board techniques, bump-pad layout, and recommended reflow temperature profile, as well as the latest information on reliability testing results, refer to the Application Note 1891: Wafer-Level Packaging (WLP) and its Applications on Maxim's web site at www.maxim-ic.com/wlp.

50,, Low-Voltage, Quad SPST/Dual SPDT Analog Switches in WLP

Figure 2. Switching Time

Figure 3. Break-Before-Make Interval

Figure 4. Charge Injection

50,, Low-Voltage, Quad SPST/Dual SPDT Analog Switches in WLP

Test Circuits/Timing Diagrams (continued)

Figure 5. Off-Isolation/On-Channel Bandwidth

Figure 7. Channel Off-/On-Capacitance

Figure 6. Crosstalk

Ordering Information (continued)

PART	TEMP RANGE	PIN-/BUMP- PACKAGE
MAX4748EUD +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 TSSOP
MAX4748ETE +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Thin QFN-EP*
MAX4748EWE +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 WLP
MAX4749EUD +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 TSSOP
MAX4749ETE +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Thin QFN-EP*
MAX4749EWE $+\mathrm{T}^{* *}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 WLP
MAX4750EUD+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 TSSOP
MAX4750ETE +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Thin QFN-EP*
MAX4750EWE + T** *	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 WLP

*EP = Exposed pad.
+Denotes a lead(Pb)-free/RoHS-compliant package.
**Future products. Contact factory for availability.
T = Tape and reel.

50,, Low-Voltage, Quad SPST/Dual SPDT Analog Switches in WLP

Pin/Bump Configurations/Truth Tables (continued)

50,, Low-Voltage, Quad SPST/Dual SPDT Analog Switches in WLP

Chip Information

PROCESS: CMOS
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
14 TSSOP	U14+1	$\underline{\underline{\mathbf{2 1 - 0 0 6 6}}}$	$\underline{\underline{\mathbf{9 0 - 0 1 1 3}}}$
16 TQFN	$\mathrm{T} 1644+4$	$\underline{\mathbf{2 1 - 0 1 3 9}}$	$\underline{\mathbf{9 0 - 0 0 7 0}}$
16 WLP	W162D2+1	$\underline{\mathbf{2 1 - 0 2 0 0}}$	Refer to Application Note 1891

50,, Low-Voltage, Quad SPST/Dual SPDT Analog Switches in WLP

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
2	$12 / 06$	Various changes	$1-15$
3	$1 / 12$	Updated UCSP to WLP packaging, corrected pin configuration, added lead-free packaging	$1-9,11-13$

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

