: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Low－Voltage，Dual SPDT，Audio Clickless Switches with Negative Rail Capability

Abstract

General Description The MAX4762－MAX4764／MAX4764A／MAX4765 dual SPDT（single－pole／double－throw）switches feature nega－ tive signal capability that allows signals below ground to pass through without distortion．These analog switches operate from a single +1.8 V to +5.5 V supply and have low 0.6Ω on－resistance，making them ideal for switching audio signals． The MAX4763／MAX4765 include a comparator that can be used for headphone detection or a mute／send key function．The MAX4764／MAX4764A／MAX4765 have an internal shunt switch to automatically discharge any capacitance at the NO and NC connection points．This reduces click－and－pop sounds that occur when switching audio signals between precharged points． These SPDT switches are available in space－saving $\mu M A X{ }^{\circledR}$ ，TDFN，thin QFN，and UCSP ${ }^{\top M}$ packages and operate over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended tempera－ ture range．

Applications
Cell Phones
PDAs and Handheld Devices
Notebook Computers
MP3 Players

HMAX is a registered trademark and UCSP is a trademark of Maxim Integrated Products，Inc．

Features
－Distortion－Free Negative Signal Throughput Down to Vcc－5．5V
－Comparator for Headphone or Mute Detection （MAX4763／MAX4765）
－Internal Shunt Resistor Reduces Click／Pop （MAX4764／MAX4764A／MAX4765）
－Low On－Resistance（Ron） 0.6Ω at +2.7 V Supply
－ 0.25Ω On－Resistance Flatness
－ 0.05Ω On－Resistance Matching
－＋1．8V to +5.5 V Supply Voltage
－－70dB Crosstalk（100kHz）
－－65dB Off－Isolation（100kHz）
－0．01\％Total Harmonic Distortion
－Available in μ MAX，TDFN，Thin QFN，and UCSP Packages

Ordering Information

PART	TEMP RANGE	PIN－ PACKAGE	TOP MARK
MAX4762ETB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 TDFN	ACG
MAX4762EUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$	-
MAX4762EBC－T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$12 \mathrm{UCSP}-12$	ABU

Ordering Information continued at end of data sheet． Selector Guide appears at end of data sheet．

Pin Configurations／Functional Diagrams／Truth Table

TOP VIEW	МノХІル MAX4762／MAX4764	MAXI MAX4763／MA				
		（C1） N02 V1 Vcc	（A1）		62－MA／M	
	CO2－a	COM2 ${ }_{\text {CMP }}$		IN_{-}	NO_{-}	NC_{-}
	（12）：			0	OFF	ON
	NC2 ：NC1	NC2 CMP－		1	ON	OFF
		（4） IN2 IN2	（A4）	SWITCHES	N FOR	＂0＂INPUT
UCSP UCSP						
Pin Configurations／Functional Diagrams／Truth Table continued at end of data sheet．						

Low-Voltage, Dual SPDT, Audio Clickless Switches with Negative Rail Capability

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V} C \mathrm{C}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range (Note 2)	VNO_, $V_{N C}$, $V^{\prime} \mathrm{COM}_{-}$			$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 5.5 \end{gathered}$		VCC	V
On-Resistance (Notes 3 and 4)	Ron(NC) Ron(NO)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{NC}}{ }_{2} \text { or } \mathrm{V}_{\mathrm{NO}_{-}}= \\ & \mathrm{V}_{\mathrm{CC}}-5.5 \mathrm{~V},-1 \mathrm{~V}, 0 \mathrm{~V}, 1 \mathrm{~V}, 2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} ; \\ & \mathrm{ICM}_{-}=100 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.6	0.85	Ω
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \\ & \text { to } \mathrm{T}_{\mathrm{MAX}} \end{aligned}$			0.95	
On-Resistance Match Between Channels (Notes 3, 4, and 5)	$\Delta \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}_{-}}=0 \mathrm{~V}, \\ & \mathrm{ICOM}=100 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.05	0.1	Ω
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \\ & \text { to } \mathrm{T}_{\mathrm{MAX}} \end{aligned}$			0.15	
On-Resistance Flatness (Notes 4 and 6)	RFLAT(NC)	$\begin{aligned} & \mathrm{V}_{C C}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{NC}} \text { _or } \mathrm{V}_{\mathrm{NC}}= \\ & -1 \mathrm{~V}, 0 \mathrm{~V}, 1 \mathrm{~V}, 2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} ; \\ & \mathrm{I}^{2} \mathrm{CM}=100 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.25	0.4	Ω
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \\ & \text { to } \mathrm{T}_{\mathrm{MAX}} \end{aligned}$			0.45	
Shunt Switch Resistance	RSH	MAX4764/MAX4764A/MAX4765 only, $I_{N O}$ or $I_{N C}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }} \\ & \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$		25	50	Ω
NO_, NC_ Off-Leakage Current (Notes 8 and 9)	INO_(OFF), INC_(OFF)	MAX4762/MAX4763 only (Note 7), $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$, switch open; V_{NC} o or $\mathrm{V}_{\mathrm{NO}}=-2.5 \mathrm{~V},+2.5 \mathrm{~V}$; $\mathrm{V}_{\text {COM }}=+2.5 \mathrm{~V},-2.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-2		+2	nA
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \\ & \text { to } \mathrm{T}_{\mathrm{MAX}} \end{aligned}$	-10		+10	
COM_ On-Leakage Current (Notes 8 and 9)	ICOM_(ON)	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$, switch closed; $\mathrm{V}_{\mathrm{NC}}{ }_{-}$or $\mathrm{V}_{\mathrm{NO}}=-2.5 \mathrm{~V},+2.5 \mathrm{~V}$, or floating; $\mathrm{V}_{\text {COM }}=-2.5 \mathrm{~V},+2.5 \mathrm{~V}$, or floating	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-6		+6	nA
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \\ & \text { to } \mathrm{T}_{\mathrm{MAX}} \end{aligned}$	-50		+50	

Low-Voltage, Dual SPDT, Audio Clickless Switches with Negative Rail Capability

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DYNAMIC CHARACTERISTICS							
Turn-On Time	ton	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=1.5 \mathrm{~V}$; for $\mathrm{NO}_{-}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}; for $N_{C}, V_{I N}=V_{C C}$ to $0 V$; $R_{L}=$ $300 \Omega, C_{L}=35 p F$, Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		25	80	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			80	
			$\begin{aligned} & T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \\ & \text { (MAX4764A) } \end{aligned}$		225	500	
Turn-Off Time	toff	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC}}=1.5 \mathrm{~V}$; for $\mathrm{NO}_{-}, \mathrm{V}_{\text {IN_ }}=\mathrm{V}_{\mathrm{CC}}$ to OV ; for $N_{C}, V_{I N_{-}}=0 V$ to $V_{C C} ; R_{L}=$ $300 \Omega, C_{L}=35 p F$, Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		20	70	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			70	
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN to }} \mathrm{T}_{\text {MAX }} \\ & (\text { MAX } 4764 \mathrm{~A}) \end{aligned}$		225	500	
Break-Before-Make Time Delay	tD	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{N}_{-}}=1.5 \mathrm{~V}$, for $\mathrm{NO}_{-}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{C}}$ to OV ; for $N_{C}, V_{I N}=0 V$ to $V_{C C} ; R_{L}=$ $300 \Omega, C L=35 p F$, Figure 3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	1	7		ns
Charge Injection	Q	$V_{C O M}=0 \mathrm{~V}, \mathrm{C}_{L}=1.0 n \mathrm{~F}$, Figure 4		150			pC
Off-Isolation (Note 10)	VISO	$f=100 \mathrm{kHz}, V_{C O M}=1 V_{\mathrm{RMS}}, R_{L}=50 \Omega, C_{L}=5 \mathrm{pF},$ Figure 5		-65			dB
Crosstalk	$V_{C T}$	$f=100 \mathrm{kHz}, V_{C O M}=1 V_{R M S}, R_{L}=50 \Omega, C_{L}=5 \mathrm{pF},$ Figure 5		-70			dB
Power-Supply Rejection Ratio	PSRR	$f=10 \mathrm{kHz}, \mathrm{V}_{\text {COM }}{ }_{-}=1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		60			dB
On-Channel -3dB Bandwidth	BW	Signal $=0 \mathrm{dBm}, \mathrm{RL}=50 \Omega, C \mathrm{~L}=5 \mathrm{pF}$, Figure 5		27			MHz
Total Harmonic Distortion	THD	$\begin{aligned} & f=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{~V}_{\mathrm{COM}}^{-}=0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \mathrm{DC} \text { Bias }=0, \\ & \mathrm{R}_{\mathrm{L}}=32 \Omega \end{aligned}$		0.01			\%
NO_, NC_ Off-Capacitance	$\begin{aligned} & \mathrm{C}_{\mathrm{NO}} \text { _(OFF) } \\ & \mathrm{C}_{\text {NC_(}} \text { (OFF) } \\ & \hline \end{aligned}$	$f=1 \mathrm{MHz}, \mathrm{V}_{\text {COM }}=0.5 \mathrm{~V}_{\text {P-P }}, \mathrm{DC}$ Bias $=0$, Figure 6		50			pF
COM On-Capacitance	CCOM_(ON)	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\text {COM }}=0.5 \mathrm{~V}_{\text {P-P, }}$, DC Bias $=0$, Figure 6		200			pF
DIGITAL I/O (IN_)							
Input-Logic High Voltage	V_{IH}	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V		1.4			V
		$\mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}$ to 5.5 V		2.0			
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5V (MAX4764A only)		1.6			
Input-Logic Low Voltage	VIL	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V		0.5			V
		$\mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}$ to 5.5 V				0.8	
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5V (MAX4764A only)				0.5	
Input Leakage Current	IIN	$\mathrm{V}_{1 \mathrm{~N}_{-}}=0 \mathrm{~V}$ or V_{CC}		-1		+1	$\mu \mathrm{A}$
COMPARATOR (MAX4763/MAX4765)							
Comparator Threshold					Vcc / 3		V

Low-Voltage, Dual SPDT, Audio Clickless Switches with Negative Rail Capability

ELECTRICAL CHARACTERISTICS (continued)
$\left(\mathrm{V} C \mathrm{C}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Comparator Output High Voltage		ISOURCE $=1 \mathrm{~mA}$		$\begin{gathered} V_{C C}- \\ 0.4 V \end{gathered}$			V
Comparator Output Low Voltage		IS INK $=1 \mathrm{~mA}$				0.4 V	V
Comparator Input Leakage Current		$V_{\text {CMP }}=0$ to 2.7 V		-100		+100	nA
Comparator Switching Time		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CMP}}=0 \mathrm{~V}$ to V_{CC}, from 50% of $\mathrm{V}_{\mathrm{CMP}}$ - to 50% of $\mathrm{V}_{\mathrm{CMPO}}$			1	2	$\mu \mathrm{S}$
POWER SUPPLY							
Power-Supply Range	VCC			1.8		5.5	V
Supply Current	I+	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{CC}} \end{aligned}$	MAX4763/MAX4765		5	10	$\mu \mathrm{A}$
			$\begin{aligned} & \text { MAX4762/MAX4764/ } \\ & \text { MAX4764A } \end{aligned}$		0.01	1	
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=1.8 \mathrm{~V}$	MAX4764A		5	10	
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=1.8 \mathrm{~V} \\ & (\text { Note 11) } \end{aligned}$	MAX4764A		2	5	

Note 1: UCSP and TDFN parts are 100% tested at $T_{A}=+25^{\circ} \mathrm{C}$ only, and guaranteed by design over the specified temperature range. Thin QFN parts are 100% tested at $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ only, and guaranteed by design over the specified temperature range.
Note 2: Signals on $\mathrm{COM}_{-}, \mathrm{NO}_{-}$, or NC_{-}exceeding V_{CC} are clamped by internal diodes. Limit forward-diode current to maximum current rating
Note 3: Thin QFN and UCSP are guaranteed by design; not production tested.
Note 4: Icom for UCSP is 10 mA .
Note 5: Δ RON $=\operatorname{RON}(M A X)-\operatorname{RON}(M I N)$
Note 6: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
Note 7: MAX4764/MAX4764A/MAX4765 have an internal shunt switch when in off-state, which determines OFF current.
Note 8: Leakage parameters are 100% tested at maximum-rated hot operating temperature and guaranteed by design at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
Note 9: UCSP parts are guaranteed by design.
Note 10: Off-isolation = $20 \log _{10}\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}}\right), \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.
Note 11: Guaranteed by design, not production tested.

Low－Voltage，Dual SPDT，Audio Clickless Switches with Negative Rail Capability

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ ，unless otherwise noted．）

MAX4762－MAX4765 TURN－ON／TURN－OFF TIME vs．TEMPERATURE

ON－RESISTANCE vs．COM VOLTAGE

MAX4763／MAX4765
SUPPLY CURRENT vs．SUPPLY VOLTAGE

MAX4762－MAX4765
LOGIC THRESHOLD vs．SUPPLY VOLTAGE

ON－RESISTANCE vs．COM VOLTAGE

MAX4762－MAX4765 TURN－ON／TURN－OFF TIME vs．SUPPLY VOLTAGE

CHARGE INJECTION vs．VCOM

Low-Voltage, Dual SPDT, Audio Clickless Switches with Negative Rail Capability

$\overline{\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text {, unless otherwise noted. }\right.}$

TOTAL HARMONIC DISTORTION
vs. FREQUENCY

COMPARATOR THRESHOLD
vs. TEMPERATURE

POWER-SUPPLY REJECTION RATIO
vs. FREQUENCY

COMPARATOR THRESHOLD vs. TEMPERATURE

Low-Voltage, Dual SPDT, Audio Clickless Switches with Negative Rail Capability

Pin Description (MAX4762/MAX4764/MAX4764A)

PIN		NAME	
$\mathbf{1 0}-\boldsymbol{\mu M A X}$ $\mathbf{1 0 - T D F N}$	$\mathbf{1 2 - U C S P}$		
1	B1	VCC	Positive-Supply Voltage Input
2	A1	NO1	Analog Switch 1-Normally Open Terminal
3	A2	COM1	Analog Switch 1-Common Terminal
4	A3	NC1	Analog Switch 1-Normally Closed Terminal
5	A4	IN1	Digital Control Input for Analog Switch 1. A logic LOW on IN1 connects COM1 to NC1 and a logic HIGH connects COM1 to NO1.
6	B4	GND	Ground
7	C4	IN2	Digital Control Input for Analog Switch 2. A logic LOW on IN2 connects COM2 to NC2 and a logic HIGH connects COM2 to NO2.
8	C3	NC2	Analog Switch 2-Normally Closed Terminal
9	C2	COM2	Analog Switch 2-Common Terminal
10	C1	NO2	Analog Switch 2-Normally Open Terminal
EP (TDFN only)	-	EP	Exposed pad for TDFN package. Connect to GND.

Pin Description (MAX4763/MAX4765)

PIN		NAME	
$\mathbf{1 2 - T h i n ~}$ QFN	12-UCSP		
1	A2	COM1	Analog Switch 1-Common Terminal
2	A3	NC1	Analog Switch 1-Normally Closed Terminal
3	A4	IN1	Digital Control Input for Analog Switch 1. A logic LOW on IN1 connects COM1 to NC1 and a logic HIGH connects COM1 to NO1.
4	B3	CMP-	Comparator Inverting Input
5	B4	GND	Ground
6	C4	IN2	Digital Control Input for Analog Switch 2. A logic LOW on IN2 connects COM2 to NC2 and a logic HIGH connects COM2 to NO2.
7	C3	NC2	Analog Switch 2-Normally Closed Terminal
8	C2	COM2	Analog Switch 2-Common Terminal
9	C1	NO2	Analog Switch 2-Normally Open Terminal
10	B2	CMPO	Comparator Output
11	B1	VCC	Positive-Supply Voltage Input
12	A1	NO1	Analog Switch 1-Normally Open Terminal
EP	-	EP	Exposed pad. Connect to GND.

Low-Voltage, Dual SPDT, Audio Clickless Switches with Negative Rail Capability

Figure 1. Typical Operating Circuit

Detailed Description

The MAX4762-MAX4764/MAX4764A/MAX4765 are low on-resistance, low-voltage, dual SPDT analog switches that operate from $\mathrm{a}+1.8 \mathrm{~V}$ to +5.5 V supply and are fully specified for nominal 3.0 V applications. The devices feature a negative signal capability that allows signals below ground to pass through without distortion and have break-before-make switching.
The MAX4763/MAX4765 feature a comparator that can be used for headphone or mute detection. The comparator threshold is internally generated to be approximately $1 / 3$ of VCC. The MAX4764/MAX4764A/MAX4765 feature an internal shunt switch to discharge any capacitance at the NO and NC connection points. This reduces the click-and-pop sounds that occur when switching audio signals.

Applications Information

Digital Control Inputs

The MAX4762-MAX4764/MAX4764A/MAX4765 logic inputs accept up to +5.5 V , regardless of supply voltage. For example, with a +3.3 V supply, $\mathrm{IN}_{\text {_ }}$ can be driven low to GND and high to +5.5 V allowing for mixing of logic levels in a system. Driving IN_ rail-to-rail minimizes power consumption. For a +1.8 V supply voltage, the logic thresholds are 0.5 V (low) and 1.4 V (high); for a +5 V supply voltage, the logic thresholds are 0.8 V (low) and 2.0V (high).

Analog Signal Levels

The on-resistance of the MAX4762-MAX4764/ MAX4764A/MAX4765 changes very little for analog input signals across the entire supply voltage range (see the Typical Operating Characteristics). The switches are bidirectional, so the NO_, NC_, and COM_ pins can be either inputs or outputs.
The MAX4762-MAX4764/MAX4764A/MAX4765 pass signals as low as Vcc -5.5 V , including signals below ground with minimal distortion.

Comparator (MAX4763/MAX4765)
The MAX4763/MAX4765 include a comparator that can be used for mute and headphone detection functions. The positive terminal of the comparator is internally set to $\mathrm{V}_{\mathrm{CC}} / 3$. When the negative terminal (CMP-) is below the threshold, the comparator output (CMPO) is a logic high. When CMP- rises above $\mathrm{V}_{\mathrm{Cc}} / 3$, CMPO is a logic low.
The comparator threshold of $\mathrm{V}_{\mathrm{CC}} / 3$ allows for detection of headphones because headphone audio signals are typically biased to $\mathrm{V}_{\mathrm{CC}} / 2$.

Shunt Switch

(MAX4764/MAX4764A/MAX4765)
The 100Ω shunt switches on the MAX4764/MAX4764A/ MAX4765 automatically discharge any capacitance at the NC_ or NO_ terminals when they are unconnected to COM_. This reduces audible click-and-pop sounds that occur when switching between audio sources.
Audible clicks and pops are caused when a step DC voltage is switched into the speaker. By automatically discharging the side that is not connected, any residual DC voltage is removed, thereby reducing the clicks and pops.

Power-Supply Sequencing and Overvoltage Protection

 Caution: Do not exceed the absolute maximum ratings since stresses beyond the listed ratings may cause permanent damage to the device.Proper power-supply sequencing is recommended for all CMOS devices. Always apply VCC before applying analog signals, especially if the analog signal is not current-limited.

UCSP Applications Information

For the latest application details on UCSP construction, dimensions, tape carrier information, printed circuit board techniques, bump-pad layout, and recommended reflow temperature profile, as well as the latest information on reliability testing results, go to the Maxim's website at www.maxim-ic.com/ucsp and search for the Application Note, "UCSP-A Wafer-Level Chip-Scale Package."

Low-Voltage, Dual SPDT, Audio Clickless Switches with Negative Rail Capability

Test Circuits/Timing Diagrams

Figure 2. Switching Time

Figure 3. Break-Before-Make Interval

Figure 4. Charge Injection

Low-Voltage, Dual SPDT, Audio Clickless Switches with Negative Rail Capability

Figure 5. On-Loss, Off-Isolation, and Crosstalk

Figure 6. Channel Off/On-Capacitance

Low-Voltage, Dual SPDT, Audio Clickless Switches with Negative Rail Capability

Pin Configurations/Functional Diagrams/Truth Table (continued)

Selector Guide

PART	COMPARATOR	SHUNT	PACKAGE SIZE (mm)
MAX4762EBC-T	No	No	1.5×2.0
MAX4762ETB	No	No	3.0×3.0
MAX4762EUB	No	No	3.0×5.0
MAX4763EBC-T	Yes	No	1.5×2.0
MAX4763ETC	Yes	No	4.0×4.0
MAX4764EBC-T	No	Yes	1.5×2.0
MAX4764ETB	No	Yes	3.0×3.0
MAX4764AETB	No	Yes	3.0×3.0
MAX4764EUB	No	Yes	3.0×5.0
MAX4765EBC-T	Yes	Yes	1.5×2.0
MAX4765ETC	Yes	Yes	4.0×4.0

_Ordering Information (continued)

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4763EBC-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	12 UCSP-12	ABS
MAX4763ETC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	12 Thin QFN	AAED
MAX4764ETB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 TDFN	ACH
MAX4764EUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$	-
MAX4764EBC-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$12 \mathrm{UCSP}-12$	ABV
MAX4764AETB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 TDFN	AQP
MAX4765EBC-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	12 UCSP-12	ABT
MAX4765ETC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	12 Thin QFN	AAEE

TRANSISTOR COUNT: 769
PROCESS: BiCMOS

Low-Voltage, Dual SPDT, Audio Clickless Switches with Negative Rail Capability

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Low-Voltage, Dual SPDT, Audio Clickless Switches with Negative Rail Capability

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

COMMON DIMENSIONS			
SYMBOL	MIN.	MAX.	
A	0.70	0.80	
D	2.90	3.10	
E	2.90	3.10	
A1	0.00	0.0	
L	0.20	0.40	
k	0.25 MIN.		
A2	0.20 REF.		

PACKAGE VARIATIONS								
PKG. CODE	N	D2	E2	e	JEDEC SPEC	b	[(N/2)-1] e e	DOWNBONDS ALLOWED
T633-1	6	1.50 ± 0.10	2.30 ± 0.10	0.95 BSC	MO229 / WEEA	0.40 ± 0.05	1.90 REF	NO
T633-2	6	1.50 ± 0.10	2.30 ± 0.10	0.95 BSC	MO229 / WEEA	0.40 ± 0.05	1.90 REF	NO
T833-1	8	1.50 ± 0.10	2.30 ± 0.10	0.65 BSC	MO229 / WEEC	0.30 ± 0.05	1.95 REF	NO
T833-2	8	1.50 ± 0.10	2.30 ± 0.10	0.65 BSC	MO229 / WEEC	0.30 ± 0.05	1.95 REF	NO
T833-3	8	1.50 ± 0.10	2.30 ± 0.10	0.65 BSC	MO229 / WEEC	0.30 ± 0.05	1.95 REF	YES
T1033-1	10	1.50 ± 0.10	2.30 ± 0.10	0.50 BSC	MO229 / WEED-3	0.25 ± 0.05	2.00 REF	NO
T1433-1	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	----	0.20 ± 0.05	2.40 REF	YES
T1433-2	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	----	0.20 ± 0.05	2.40 REF	NO

NOTES: 1. ALL DIMENSIONS ARE in mm. ANGLES IN DEGREES.
2. COPLANARITY SHALL NOT EXCEED 0.08 mm
3. WARPAGE SHALL NOT EXCEED 0.10 mm .
4. PACKAGE LENGTH/PACKAGE WIDTH ARE CONSIDERED AS SPECIAL CHARACTERISTIC(S).
5. DRAWING CONFORMS TO JEDEC MO229, EXCEPT DIMENSIONS "D2" AND "E2"

AND T1433-1 \& T1433-2
7. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.

IIE PACKAGE OUTLINE, $6,8,10$ \& 14L, TDFN, EXPOSED PAD, $3 \times 3 \times 0.80 \mathrm{~mm}$
dRAWING NOT TO SCALE-

Low-Voltage, Dual SPDT, Audio Clickless Switches with Negative Rail Capability

Low－Voltage，Dual SPDT，Audio Clickless Switches with Negative Rail Capability

Package Information（continued）
（The package drawing（s）in this data sheet may not reflect the most current specifications．For the latest package outline information， go to www．maxim－ic．com／packages．）

