mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Not Recommended for New Designs

This product was manufactured for Maxim by an outside wafer foundry using a process that is no longer available. It is not recommended for new designs. The data sheet remains available for existing users.

A Maxim replacement or an industry second-source may be available. Please see the QuickView data sheet for this part or contact technical support for assistance.

For further information, contact Maxim's Applications Tech Support.

General Description

The MAX480 is a precision micropower operational amplifier with flexible power-supply capability. Its guaranteed 140 μ V maximum offset voltage (25 μ V typ) is the lowest of any micropower op amp. Similarly, input bias current, input offset current, and drift specifications are within tight limits.

Both the input and output voltage ranges include the negative supply rail, allowing maximum signal range capability in single-supply applications. The MAX480 operates with either a single supply ranging from +1.6V to +36V or dual supplies from $\pm 0.8V$ to $\pm 18V$. The MAX480 consumes less than 20µA, allowing operation in excess of 10,000 hours from a 250mA-hr lithium coin cell. Even with a minimal quiescent current, the amplifier sinks or sources 5mA from its output.

The MAX480 is available in 8-pin DIP and SO packages in commercial, extended, and military temperature ranges.

Precision Micropower Amplifiers Micropower Signal Processing Battery-Powered Analog Circuits

_Features

- Single- or Dual-Supply Operation: +1.6V to +36V, ±0.8V to ±18V
- True Single-Supply Operation: Input and Output Voltage Ranges Include Ground
- ♦ 2.0µV/°C Max Offset Voltage Drift
- ♦ 20µA Max Supply Current
- 5mA Min Output Drive
- ♦ 140µV Max Input Offset Voltage
- ♦ 3nA Max Input Bias Current
- ♦ 500V/mV Min Open-Loop Gain
- Standard 741 Pinout with Nulling to V-

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX480CPA	0°C to +70°C	8 Plastic DIP
MAX480CSA	0°C to +70°C	8 SO
MAX480EPA	-40°C to +85°C	8 Plastic DIP
MAX480ESA	-40°C to +85°C	8 SO
MAX480MJA	-55°C to +125°C	8 CERDIP

Pin Configuration

Typical Operating Circuit

Applications

_____ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V+ to V-)±	V8
Differential Input Voltage(V 20V) to (V+ + 2	0V)
Common-Mode Input Voltage(V 20V) to (V+ + 2	0V)
Output Short-Circuit DurationIndefi	nite
Continuous Power Dissipation	
Plastic DIP (derate 9.09mW/°C above +70°C)727r	nW
SO (derate 5.88mW/°C above +70°C)471	nW
CERDIP (derate 8.0mW/°C above +70°C)640r	nW

Operating Temperature Ranges	
MAX480C_A	0°C to +70°C
MAX480E_A	40°C to +85°C
MAX480MJA	55°C to +125°C
Junction Temperature (TJ)	65°C to +150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10sec).	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_S = \pm 1.5V \text{ to } \pm 15V, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	COND	MIN	ΤΥΡ	MAX	UNITS			
Input Offset Voltage	Vos				25	140	μV		
Input Offset Current	los	$V_{CM} = 0$			0.2	4	nA		
Input Bias Current	IB	$V_{CM} = 0$		1	10	nA			
			$R_L = 100 k\Omega$	500	1200				
	Avo	$V_{\rm S} = \pm 15V$, $V_{\rm O} = \pm 10V$	$R_L = 10k\Omega$	200	600				
Large-Signal Voltage Gain		10 2101	$R_L = 2k\Omega$	75	250		V/mV		
		V+ = 5V, V- = 0,	$R_L = 100 k\Omega$	100	400				
		1V < V _O < 4V	$R_L = 10k\Omega$	50	180				
Input Voltago		$V_{+} = 5V, V_{-} = 0$	0/4			V			
input voltage	IVN	Vs = ±15V (Note 1)	-15/13.5			v			
Output Voltage Swing	Vo	$V_S = \pm 15V$	$R_L = 10k\Omega$	±14	±14.2		v		
			$R_L = 2k\Omega$	±10	±12				
	VOH	$V+ = 5V, V- = 0, R_L = 2$	4.0	4.2					
	Vol	$V_{+} = 5V, V_{-} = 0, R_{L} = -$		100	500	μV			
Common-Mode Rejection Ratio	CMRR	$V+ = 5V, V- = 0, 0 < V_0$	85	110		dB			
		$V_{S} = \pm 15V, -15V < V_{CN}$	90	130					
Power-Supply Rejection Ratio	PSRR			1.0	12	μV/V			
Slew Rate	SR	$V_S = \pm 15V$		12		V/ms			
Supply Current	ISY	$V_S = \pm 1.5V$		9	15				
		$V_S = \pm 15V$		14	20	μΛ			
Capacitive Load Stability		$A_V = +1V/V$, no oscillat		650		pF			
Input Noise Voltage	e _{np-p}	$f_{O} = 0.1$ Hz to 10Hz, V _S		3		μVр-р			
Differential-Mode Input Resistance	R _{IN}	$V_S = \pm 15V$		30		MΩ			
Common-Mode Input Resistance	RINCM	$V_S = \pm 15V$		20		GΩ			

ELECTRICAL CHARACTERISTICS

(V_S = $\pm 1.5V$ to $\pm 15V,$ T_A = T_{MIN} to T_MAX, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MAX480C MIN TYP MAX		MAX480E MIN TYP MAX		MAX480M MIN TYP MAX			UNITS		
Input Offset Voltage	Vos				40	220		50	250		70	300	μV
Input Offset Voltage Drift	TCV _{OS}	(Note 2)			0.3	2.0		0.3	2.0		0.3	2.0	µV/°C
Input Offset Current	los	Vcm = 0			0.2	5.0		0.3	7.0		0.5	10.0	nA
Input Bias Current	Ι _Β	V _{CM} = 0			1	15		2	20		3	30	nA
		$V_S = \pm 15V,$ $V = \pm 10V$	$R_L = 100 k\Omega$	350	950		350	800		60	400		V/mV
Large-Signal Voltage Gain			$R_L = 10k\Omega$	130	400		130	400		45	240		
	Avo		$R_L = 2k\Omega$	55	125		55	150		30	110		
		$V_{+} = 5V,$	$R_L=100k\Omega$	50	360		50	280		35	200		
			v- = 0, 1V < Vo < 4V	$R_L = 10k\Omega$	30	150		30	140		22	110	
Input Voltage Range		V+ = 5V, V- = 0		0/3.5			0/3.5 0/3.5						
		$V_{S} = \pm 15V$ (Note 1)		-15/13.5 -15/13.5				-15/13	v				
	Vo	$V_{S} = \pm 15V$	$R_L = 10k\Omega$	±13.5	±14		±13.5	±14		±13.5	±13.7		
Output Voltage Swing VoH			$R_L = 2k\Omega$	±9.5 ±	±11.8		±9.5	±11.8		±10.5	±11.5		V
	Vон	$V+ = 5V, V- = 0$ $R_{L} = 2k\Omega$		3.9	4.1		3.9	4.1		3.9	4.1		v
	V _{OL}	$V_{+} = 5V, V_{-} = 0$ $R_{L} = 10k\Omega$	I		100	500		100	500		100	500	μV
Common-Mode Rejection Ratio		$V_{+} = 5V, V_{-} = 0, \\ 0 < V_{CM} < 3.5V$		85	110		85	110		80	105		dD
	CIVIAN	V _S = ±15V, -15V < V _{CM} < 1	3.5V	90	120		90	120		85	115		uв
Power-Supply Rejection Ratio	PSRR				1.0	12		1.0	12		3.2	15	μV/V
Supply Current		$V_S = \pm 1.5V$			12	25		13	25		15	25	
	ISY	$V_S = \pm 15V$		16 30 17 30		19	30	μΑ					

Note 1: Guaranteed by CMRR test.

Note 2: Guaranteed by design.

 $(T_A = +25^{\circ}C, unless otherwise noted.)$

Typical Operating Characteristics

Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, unless otherwise noted.)$

CURRENT NOISE DENSITY vs. FREQUENCY

 $100 \mu s/div \label{eq:VS} V_S = \pm 15 V, \, A_V = +1, \ R_L = 10 k \Omega, \, C_L = 500 p F$

LARGE-SIGNAL TRANSIENT RESPONSE

 $1ms/div \label{eq:VS} V_S=\pm 15V, \ A_V=+1, \ R_L=10k\Omega, \ C_L=500pF$

ed) MAX480

MAX480

Figure 1. Offset Nulling Circuit

Figure 2. Burn-In Circuit

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <u>www.maxim-ic.com/packages</u>.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

6

MAXIM is a registered trademark of Maxim Integrated Products, Inc.