: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

DVI/HDMI 2:4 Low-Frequency Fanout Switch

Abstract

General Description The MAX4814E high-definition multimedia interface (HDMITM) switch provides routing for low-frequency signals. The MAX4814E operates from a single +5.0 V $\pm 10 \%$ supply voltage and is ideal for connecting multiple HDMI sources to multiple loads. The MAX4814E is a bidirectional $2: 4$ HDMI switch. Each switch consists of five single-pole/single-throw (SPST) channels. Two channels have a low 3Ω (typ) on-resistance to route +5 V and drain (ground return), and three channels to route data. The device features a mode input to control the device through an $\mathrm{I}^{2} \mathrm{C}$ interface or direct-control logic inputs. The MAX4814E is available in a 64 -pin ($10 \mathrm{~mm} \times 10 \mathrm{~mm}$) TQFP package and operates over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range.

Applications
Commercial/Industrial HDMI/DVITM (Digital Visual Interface) Switch Boxes
High-End Consumer Switchers
AV Receivers with Switching
HDMI is a trademark of HDMI Licensing, LLC.
DVI is a trademark of Digital Display Working Group.

DVI/HDMI 2:4 Low-Frequency Fanout Switch

ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to GND. Note 1.)
VDD, $A_{-}, B_{-}, S W_{-}, E F N$. \qquad -0.3 V to +6.0 V
All Other Pins (except GND) \qquad $-0.3 V$ to $V_{D D}+0.3 V$
Continuous Current, A_, B_ \qquad ..$\pm 60 \mathrm{~mA}$
Continuous Current, V_{DD} or GND \qquad .$\pm 100 \mathrm{~mA}$

Note 1: EFN must be either connected to VDD or left unconnected. EFN must not be connected to ground.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=+5 \mathrm{~V} \pm 10 \%, T_{A}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$. Note 2. $)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Power-Supply Voltage	VDD		4.5	5	5.5	V
Power-Supply Current	IDD	EFN = unconnected; all inputs $=0$; all outputs high or low, no loads			10	$\mu \mathrm{A}$
EFN Leakage Current	IL	$V_{\text {EFN }}=\mathrm{V}_{\text {DD }}-0.2 \mathrm{~V}$	-2		+2	$\mu \mathrm{A}$
LOGIC INPUTS (DA_, DB_, MODE, AD_)						
Input Low Voltage DA_, DB_	$\mathrm{V}_{\text {IL }}$	MODE $=0 \mathrm{~V}$			0.8	V
Input High Voltage DA_, DB_	V_{IH}	MODE $=0 \mathrm{~V}$	2			V
Input-Voltage Hysteresis DA_, DB_	VHYST	MODE $=0 \mathrm{~V}$		150		mV
Input Low Voltage AD_	$\mathrm{V}_{\text {IL }}$	$\mathrm{MODE}=\mathrm{V}_{\mathrm{DD}}$			0.8	V
Input High Voltage AD_	V_{IH}	$\mathrm{MODE}=\mathrm{V}_{\mathrm{DD}}$	2			V
Input-Voltage Hysteresis AD_	VHYST	$\mathrm{MODE}=\mathrm{V}_{\mathrm{DD}}$		150		mV
Input Low Voltage MODE	$\mathrm{V}_{\text {IL }}$				0.8	V
Input High Voltage MODE	V_{IH}		2			V
Input-Voltage Hysteresis MODE	$\mathrm{V}_{\mathrm{HYST}}$			150		mV
Input Leakage Current DA_, DB_	IL	MODE $=0 \mathrm{~V}$			± 1	$\mu \mathrm{A}$
Input Leakage Current AD_	IL	$\mathrm{MODE}=\mathrm{V}_{\mathrm{DD}}$			± 1	$\mu \mathrm{A}$
Input Leakage Current MODE	IL				± 1	$\mu \mathrm{A}$
LOGIC OUTPUTS DO_						
Output-Voltage Low	VOL	MODE $=\mathrm{V}_{\text {DD }}, \mathrm{ISINK}=30 \mu \mathrm{~A}$			0.5	V
Output-Voltage High	VOH	MODE $=\mathrm{V}_{\text {DD }}$, ISOURCE $=26 \mu \mathrm{~A}$	2			V
Output Leakage Current	IL	MODE $=V_{D D}$, output at high impedance, $\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}$			± 1	$\mu \mathrm{A}$
Output Rise Time	tR	Vout from 0.8V to 2.2V, CLOAD $=10 \mathrm{pF}$		600		ns
Output Short-Circuit Current	ISC	ISOURCE			-1	mA
		ISINK			+3	

DVI／HDMI 2：4 Low－Frequency Fanout Switch

ELECTRICAL CHARACTERISTICS（continued）

$\left(V_{D D}=+5 \mathrm{~V} \pm 10 \%, T_{A}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$ ，unless otherwise noted．Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ ．Note 2．）

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG SWITCHES						
On－Resistance Standard Switches： A［1］，$A[2], A[3], B[1], B[2], B[3]$	Ron	V IN $=2.5 \mathrm{~V}, \mathrm{l} \mathrm{IIN}= \pm 10 \mathrm{~mA}$		12		Ω
On－Resistance－Flatness Standard Switches：A［1］，A［2］，A［3］，B［1］，B［2］， B［3］	Rflat	V IN $=0.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.7 \mathrm{~V}$		2.5		Ω
On－Channel－3dB Bandwidth Standard Switches：A［1］，A［2］，A［3］， B［1］，B［2］，B［3］	BW	$R_{S}=R_{L}=50 \Omega, C_{L}=35 \mathrm{pF}$ ，Figure 1		190		MHz
Off－Isolation Standard Switches：A［1］， A［2］，A［3］，B［1］，B［2］，B［3］	VISO	$R S=R L=50 \Omega, f=1 \mathrm{MHz}$ ，Figure 1		65		dB
Crosstalk Standard Switches：A［1］， A［2］，A［3］，B［1］，B［2］，B［3］	$V_{\text {CT }}$	$R_{S}=R_{L}=50 \Omega, f=1 \mathrm{MHz}$ ，Figure 1		75		dB
On－Capacitance Standard Switches： A［1］，A［2］，A［3］，B［1］，B［2］，B［3］	Con	$V_{D D}=4.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ ，Figure 2		37		pF
Off－Capacitance Standard Switches： $A[1], A[2], A[3], B[1], B[2], B[3]$	Coff	$V_{D D}=4.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ ，Figure 2		15		pF
Charge Injection	Q	$V_{G E N}=1.5 \mathrm{~V}, \operatorname{RGEN}=0 \Omega, C_{L}=100 \mathrm{pF},$ Figure 3		13		pC
On－Resistance＋5V／Drain：A［0］，A［4］， B［0］，B［4］	Ron	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ or V_{DD}		3		Ω
Switch Leakage Current	IL				± 10	$\mu \mathrm{A}$
$\mathrm{I}^{2} \mathrm{C}$ SPECIFICATIONS（SDA，SCL，MODE＝VDD）						
Input Low Voltage	$\mathrm{V}_{\text {IL }}$				0.8	V
Input High Voltage	V_{IH}		2.4			V
Input－Voltage Hysteresis	V HYST			450		mV
Input Leakage Current	IL				± 1	$\mu \mathrm{A}$
Output－Voltage Low SDA	VOL	ISINK $=3 \mathrm{~mA}$			0.4	V
TIMING CHARACTERISTICS（Figure 4），MODE＝VDD						
Serial Clock Frequency	fSCL	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$	100	400		kHz
Hold Time（Repeated）START Condition（after this period the first clock pulse is generated）	thD，STA	$\mathrm{fSCL}=100 \mathrm{kHz}$	4			$\mu \mathrm{s}$
Low Period of the SCL Clock	tLOW	$\mathrm{fSCL}=100 \mathrm{kHz}$	4.7			$\mu \mathrm{s}$

DVI/HDMI 2:4 Low-Frequency Fanout Switch

ELECTRICAL CHARACTERISTICS (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
High Period of the SCL Clock	tHIGH	fSCL $=100 \mathrm{kHz}$	4			$\mu \mathrm{s}$
Setup Time for a Repeated START Condition	tSU,STA	$\mathrm{fSCL}=100 \mathrm{kHz}$	4.7			$\mu \mathrm{S}$
Data Hold Time	thD, DAT	$\mathrm{fSCL}=100 \mathrm{kHz}$	25			$\mu \mathrm{s}$
Data Setup Time	tSU,DAT	fSCL $=100 \mathrm{kHz}$	250			ns
ESD PROTECTION (HUMAN BODY MODEL)						
SW_, $\mathrm{A}_{-}, \mathrm{B}_{-}$	ESD	Referenced to GND		± 6		kV
All Other I/Os				± 2		

Note 2: Limits at $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ are guaranteed by design.

DVI/HDMI 2:4 Low-Frequency Fanout Switch

OFF-ISOLATION $=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$
$O N-L O S S=2010 g \frac{V_{\text {OUT }}}{V_{\text {IN }}}$
CROSSTALK $=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$

MEASUREMENTS ARE STANDARDIZED AGAINST SHORTS AT IC TERMINALS.
OFF-ISOLATION IS MEASURED BETWEEN SW_ AND "OFF" A_ OR B _ TERMINAL ON EACH SWITCH.
ON-LOSS IS MEASURED BETWEEN SW_ AND "ON" A_ OR B_TERMINAL ON EACH SWITCH.
CROSSTALK IS MEASURED FROM ONE CHANNEL TO ALL OTHER CHANNELS.
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.

Figure 1. On-Loss, Off-Isolation, and Crosstalk

Figure 2. Channel Off-/On-Capacitance

Figure 3. Charge Injection

DVI/HDMI 2:4 Low-Frequency Fanout Switch

\qquad Typical Operating Characteristics $\left(\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

DVI/HDMI 2:4 Low-Frequency Fanout Switch

PIN	NAME	FUNCTION
1, 16, 24, 25, 33, 48, 56, 57	GND	Ground. Must connect all GND pins together.
2, 15, 34	I.C.	Internally Connected. Leave I.C. unconnected
3	A[0]	Switch A I/O 0. A [0] has a 3Ω (typ) resistance to switch 5 V or drain.
4	A[1]	Switch A I/O 1. A [1] has a 12Ω (typ) resistance to switch data.
5	A[2]	Switch A I/O 2. A [2] has a 12Ω (typ) resistance to switch data.
6	A[3]	Switch A I/O 3. A 3] has a 12Ω (typ) resistance to switch data.
7	A[4]	Switch A I/O 4. A [4] has a 3Ω (typ) resistance to switch 5V or drain.
8, 9, 17, 32, 40, 41, 49, 64	VDD	Positive-Supply Voltage Input. Connect $V_{D D}$ to $a+5 \mathrm{~V}$ supply voltage. Bypass $V_{D D}$ to GND with a $0.1 \mu \mathrm{~F}$ capacitor. Must connect all V_{DD} pins together.
10	B[0]	Switch B I/O 0. B[0] has a 3Ω (typ) resistance to switch 5 V or drain.
11	B[1]	Switch B I/O 1. B[1] has a 12Ω (typ) resistance to switch data.
12	B[2]	Switch B I/O 2. B[2] has a 12Ω (typ) resistance to switch data.
13	B[3]	Switch B I/O 3. B[3] has a 12Ω (typ) resistance to switch data.
14	B[4]	Switch B I/O 4. B[4] has a 3Ω (typ) resistance to switch 5V or drain.
18	MODE	MODE Selection Input. Connect MODE to VDD (MODE $=1$) to select $I^{2} C$ control mode. Connect MODE to GND $(M O D E=0)$ to select direct-control mode.
19	SDA	$1^{2} \mathrm{C}$-Compatible Serial Data I/O
20	SCL	$1^{2} \mathrm{C}$-Compatible Serial Clock Input
21	AD0	Programmable $\mathrm{I}^{2} \mathrm{C}$ Address Bit. AD[0] sets the $\mathrm{I}^{2} \mathrm{C}$ address of the device. Userselectable device address bit, LSB, LSB+1, MSB (see Figure 5).
22	AD1	Programmable $I^{2} \mathrm{C}$ Address Bit. $\mathrm{AD}[1]$ sets the $\mathrm{I}^{2} \mathrm{C}$ address of the device. Userselectable device address bit, LSB, LSB+1, MSB (see Figure 5).
23	AD2	Programmable $\mathrm{I}^{2} \mathrm{C}$ Address Bit. AD[2] sets the $\mathrm{I}^{2} \mathrm{C}$ address of the device. Userselectable device address bit, LSB, LSB+1, MSB (see Figure 5).
26	SW3[4]	Switch 3 I/O 4
27	SW3[3]	Switch 3 I/O 3
28	SW3[2]	Switch 3 I/O 2
29	SW3[1]	Switch 3 I/O 1
30	SW3[0]	Switch 3 I/O 0
31, 50	EFN	ESD Protection. Connect EFN with an external $0.1 \mu \mathrm{~F}$ capacitor to GND for $\pm 15 \mathrm{kV}$ ESD HBM protection. The capacitor from EFN to GND provides an additional discharge path for the ESD energy.
35	SW2[4]	Switch 2 I/O 4
36	SW2[3]	Switch 2 I/O 3
37	SW2[2]	Switch 2 I/O 2
38	SW2[1]	Switch 2 I/O 1
39	SW2[0]	Switch 2 I/O 0
42	SW1[4]	Switch 1/O 4
43	SW1[3]	Switch 1 I/O 3
44	SW1[2]	Switch 1 I/O 2

DVI/HDMI 2:4 Low-Frequency Fanout Switch

Pin Description (continued)

PIN	NAME	FUNCTION
45	SW1[1]	Switch 1 I/O 1
46	SW1[0]	Switch 1 I/O 0
47	N.C.	No Connection. Not internally connected.
51	SWO[4]	Switch 0 I/O 4
52	SW0[3]	Switch 0 I/O 3
53	SWO[2]	Switch 0 I/O 2
54	SWO[1]	Switch 0 I/O 1
55	SWO[0]	Switch 0 I/O 0
58	DAO/DO0	Direct-Control Bit I/O. In mode 0, DAO/DOO is set as an input, DAO, to control switch connections. In mode 1, DAO/DO0 is set as an output, DO0. The output bits are used to drive the MAX3845.
59	DA1/DO1	Direct-Control Bit I/O. In mode 0, DA1/DO1 is set as an input, DA1, to control switch connections. In mode 1, DA1/DO1 is set as an output, DO1. The output bits are used to drive the MAX3845.
60	DA2/DO2	Direct-Control Bit I/O. In mode 0 DA2/DO2 is set as an input, DA2, to control switch connections. In mode 1, DA2/DO2 is set as an output, DO2. The output bits are used to drive the MAX3845.
61	DB0/DO3	Direct-Control Bit I/O. In mode 0 DBO/DO3 is set as an input, DB0, to control switch connections. In mode 1, DB0/DO3 is set as an output, DO3. The output bits are used to drive the MAX3845.
62	DB1	Direct-Control Bit I/O. In mode 0, DB1 is set as an input. In mode 1, DB1 is high impedance.
63	DB2	Direct-Control Bit I/O. In mode 0, DB2 is set as an input. In mode 1, DB2 is high impedance.
EP	EP	Exposed Pad. Connect exposed pad to ground. For enhanced thermal dissipation, connect EP to a copper area as large as possible. Do not use EP as a sole ground connection.

Detailed Description

The MAX4814E provides routing for low-frequency DVI/HDMI signals. The MAX4814E is a bidirectional 2:4 DVI/HDMI switch. Each switch consists of five single-pole/single-throw (SPST) channels. The channels have a low 3Ω (typ) on-resistance to route +5 V and drain, and three channels to route data. Channels A0, A4, B0, B4, SW_0, and SW_4 have a 3Ω (typ) on-resistance to route +5 V and drain, and the remaining channels A1-A3, B1-B3, SLO_3, and SW_1 have a 12Ω (typ) on-resistance to route data. The device features a mode input to control the device using direct-control logic inputs or an ${ }^{2}$ C interface. Connect MODE to GND to control the device using the direct-control bits. Connect MODE to $V_{D D}$ to control the device using $I^{2} \mathrm{C}$. In $I^{2} \mathrm{C}$ mode, the MAX4814E controls the MAX3845 (see Figure 5).

Analog Signal Levels

Signal inputs over the full voltage range ($O V$ to $V_{D D}$) are passed through the switch with minimal change in onresistance (see the Typical Operating Characteristics). The switches are bidirectional. Therefore, switch A_, switch B_, and switch SW_ can be either inputs or outputs.

Switch Control

The MAX4814E features a mode input to control the device through either an ${ }^{2} \mathrm{C}$ interface or through directcontrol logic inputs. Connect MODE to GND (mode 0) to control the device using the direct-control inputs DA_ and DB_ (see Table 1 and Figure 6). Connect MODE to VDD (mode 1) to control the device using the ${ }^{2} \mathrm{C}$ interface.

Direct Control Method (Mode 0)
In mode 0, DAO/DO0 becomes input DA0, DA1/DO1

DVI/HDMI 2:4 Low-Frequency Fanout Switch

Functional Diagram

becomes input DA1, DA2/DO2 becomes input DA2, and DB0/DO3 becomes input DB0. Inputs DB1 and DB2 are enabled.
In mode 0 , the direct-control inputs DA_ and DB_ are used to control the connection of the switches. DA2 is
used as the enable for switch A, and DB2 is used as the enable for switch B. Connecting DA2 to VDD enables switch A, and connecting DA2 to GND disables switch A. Connecting DB2 to VDD enables switch B, and connecting DB2 to GND disables switch B. Inputs DA0 and

DVI/HDMI 2:4 Low-Frequency Fanout Switch

DA1 select the connections of switch A to switch SW and inputs DB0 and DB1. Select the connections of switch B to SW_. See Table 3a for the pin configuration and Table 3b for a complete summary.
I^{2} C Interface Method (Mode 1)
In mode 1, the switch connections are controlled through the $I^{2} \mathrm{C}$ interface. Inputs SDA and SCL program registers R0 and R1. Register R0, bits [7 to 2], select the connection of switch A and switch B to switch SW_ (see the $1^{2} C$ Registers and Bit Descriptions section).
The bits of register R1 transfer data to the output DO_. The data on output DO_ is used to communicate with the MAX3845. In mode 1, DA0/DO0 becomes output DO0, DA1/D01 becomes output DO1, DA2/DO2 becomes output DO2, and DB0/DO3 becomes output DO3. DB1 and DB2 are high impedance. See Table 3a for the pin configuration. See Table 4 for register R1 to DO_ output mapping.

_I ${ }^{2}$ C Registers and Bit Descriptions

Two internal registers (RO and R1) program the MAX4814E. Table 2 lists both registers, their addresses, and power-up default states. Both registers are read/write registers.
In register RO, bit BAEN is used as the enable for switch A, and bit BBEN is used as the enable for switch B. Writing 1 to bit BAEN enables switch A; and writing 0 to bit BAEN disables switch A. Writing 1 to bit BBEN enables switch B, and writing 0 to bit BBEN disables switch B. BASEL1 and BASELO select the connections of switch A to switch SW_, while BBSEL1 and BBSELO
select the connections of switch B to switch SW_ $_{-}$, as summarized in Table 6.
$I^{2} C$ Register RO Two LSB Bits
The two LSBs are hard coded as 00. Register R0 ignores any value written to the two LSBs; anytime register RO is read the hard-coded values are returned.

Bank A Enable (BAEN) and Bank B Enable (BBEN) Bits 1 = Enable
 0 = Disable

Bank A Select (BASEL1/BASEL0) and Bank B Select (BBSEL1/BBSELO) Bits Bits BASEL1 and BASELO select the switch SW_ that switch A is connected to. Bits BBSEL1 and BBSELO select the switch SW_ $_{-}$that switch B is connected to (see Table 6).

Power-On Default States

When power is applied to the MAX4814E internal power-on reset (POR), circuitry sets registers R0 and R1 to their default states. Register R0 is set to all zeros, or O0h, and register R1 is set to 10101010, or AAh, as shown in Table 2.
Having all zeros in register R0 disables both banks A and B; see Table 6 for register RO to switch mapping. Setting register R1 to AAh forces the outputs at DO_ to be high impedance.
Note: The output, DO_ is used to communicate with the MAX3845 when the MAX4814E is being used without its companion. The MAX3845 and the MAX4814E use the ${ }^{2}{ }^{2} \mathrm{C}$ interface $(\mathrm{MODE}=1)$. All DO_ outputs need to be connected through a $10 \mathrm{k} \Omega$ resistor to GND.

Table 1. Mode Configuration

INPUT PIN	
MODE	
0	Puts the device in mode 0. The direct-control inputs DA_ and DB_ control the switches.
1	Puts the device in mode 1. The switches are controlled by the ${ }^{2} \mathrm{C}$ interface. DO_ becomes an active output. Inputs DB1 and DB2 are high impedance.

Table 2. $\mathrm{I}^{2} \mathrm{C}$ Register Map

REGISTER	BIT								ADDRESS	POWER-UP	
	7	6	5	4	3	2	1	0		BINARY	HEX
RO	BBEN	$\begin{gathered} \mathrm{BBSE} \\ \mathrm{~L} 1 \end{gathered}$	BBSELO	BAEN	BASEL1	$\begin{gathered} \text { BASE } \\ \text { LO } \end{gathered}$	X	X	0x00	$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	00
R1	$\begin{gathered} \mathrm{DO3} \\ \text { High } \\ \text { Impedance } \end{gathered}$	$\begin{aligned} & \text { DO3 } \\ & \text { Data } \end{aligned}$	$\begin{gathered} \mathrm{DO} 2 \\ \text { High } \\ \text { Impedance } \end{gathered}$	$\begin{aligned} & \text { DO2 } \\ & \text { Data } \end{aligned}$	DO1 High Impedance	$\begin{aligned} & \text { DO1 } \\ & \text { Data } \end{aligned}$	$\begin{gathered} \text { DOO } \\ \text { High } \\ \text { Impedance } \end{gathered}$	$\begin{aligned} & \text { DOO } \\ & \text { Data } \end{aligned}$	0x01	$\begin{aligned} & 1010 \\ & 1010 \end{aligned}$	AA

[^0]
DVI/HDMI 2:4 Low-Frequency Fanout Switch

Table 3a. Input/Output Configurations for DA_, DB_, and DO_

MODE	PIN CONFIGURATION					
	DA0/DO0	DA1/DO1	DA2/DO2	DB0/DO3	DB1	DB2
0	DA0, Input	DA1, Input	DA2, Input	DB0, Input	DB1, Input	DB2, Input
1	DO0, Output	DO1, Output	DO2, Output	DO3, Output	High Impedance	High Impedance

Table 3b. Mode 0 Direct-Control Configurations

PIN CONNECTION	
DA2	
0	Bank A switches are disabled
1	Bank A switches are enabled. Switch A connections depend on the DA0 and DA1 inputs.

PIN CONNECTION	
DB2	
0	Bank B switches are disabled
1	Bank B switches are enabled. Switch B connections depend on the DB0 and DB1 inputs.

PIN CONNECTION				OPERATION	
DB1	DB0	DA1	DAO		
0	0	0	0	Connect A to SW0	B is high impedance
0	0	0	1	Connect A to SW1	Connect B to SW0
0	0	1	0	Connect A to SW2	Connect B to SW0
0	0	1	1	Connect A to SW3	Connect B to SW0
0	1	0	0	Connect A to SWO	Connect B to SW1
0	1	0	1	Connect A to SW1	B is high impedance
0	1	1	0	Connect A to SW2	Connect B to SW1
0	1	1	1	Connect A to SW3	Connect B to SW1
1	0	0	0	Connect A to SW0	Connect B to SW2
1	0	0	1	Connect A to SW1	Connect B to SW2
1	0	1	0	Connect A to SW2	B is high impedance
1	0	1	1	Connect A to SW3	Connect B to SW2
1	1	0	0	Connect A to SW0	Connect B to SW3
1	1	0	1	Connect A to SW1	Connect B to SW3
1	1	1	0	Connect A to SW2	Connect B to SW3
1	1	1	1	Connect A to SW3	B is high impedance

Note: When switch A and switch B are connected to the same SW_, switch A takes precedence and switch B is high impedance.
$I^{2} C$ Interface
The MAX4814E features an $I^{2} \mathrm{C}$ interface using a repeated start. The MAX4814E I ${ }^{2}$ C interface refers to the ${ }^{2}{ }^{2} \mathrm{C}$ bus specification (version 2.1, Jan 2000).

Device Address

The MAX4814E has selectable device addresses through external inputs. The slave address consists of four fixed bits (B7-B4, set to 0111) followed by three pinprogrammable bits (AD2-ADO), as shown on Table 7.

DVI/HDMI 2:4 Low-Frequency Fanout Switch

Table 4. ${ }^{2}$ C Register R1 (0X01) to DO_Mapping

PIN	REGISTER R1 (0x01)								OUTPUT PIN CONFIGURATION	
MODE	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0		
1	-	-	-	-	-	-	0	0	DO0	0
1	-	-	-	-	-	-	0	1	DO0	1
1	-	-	-	-	-	-	1	X	DO0	Hi-Z
1	-	-	-	-	0	0	-	-	D01	0
1	-	-	-	-	0	1	-	-	DO1	1
1	-	-	-	-	1	X	-	-	DO1	Hi-Z
1	-	-	0	0	-	-	-	-	DO2	0
1	-	-	0	1	-	-	-	-	DO2	1
1	-	-	1	X	-	-	-	-	DO2	Hi-Z
1	0	0	-	-	-	-	-	-	DO3	0
1	0	1	-	-	-	-	-	-	DO3	1
1	1	X	-	-	-	-	-	-	DO3	$\mathrm{Hi}-\mathrm{Z}$

X = Don't care.
Table 5. ${ }^{2} \mathrm{C}$ Register R0 (0x00)

REGISTER R0 (0x00)							
BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BBEN	BBSEL1	BBSEL0	BAEN	BASEL1	BASEL0	X	X

$X=$ Hardwired, not programmed by user.

For example: If AD0, AD1, and AD2 are hardwired to ground, then the complete address is 0111000 . The full address is defined as the seven most significant bits followed by the read/write bit. Set the read/write bit to 1 to configure the MAX4814E to read mode. Set the read/write bit to 0 to configure the MAX4814E to write mode. The address is the first byte of information sent to the MAX4814E after the START condition.

Applications Information

ESD Protection
As with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. Switch A, switch B, and switch SW_ are further protected against static electricity. Maxim's engineers have developed state-of-the-art structures to protect these pins against ESD up to $\pm 6 \mathrm{kV}$ without
damage. The ESD structures withstand high ESD in normal operation, and when the device is powered down. ESD protection can be tested in various ways. The ESD protection of switch A, switch B, and switch SW_ are characterized for $\pm 6 \mathrm{kV}$ (Human Body Model) using the MIL-STD-883.

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

Human Body Model

Figure 7 shows the Human Body Model, and Figure 8 shows the current waveform it generates when discharged into a low impedance. This model consists of a 100 pF capacitor charged to the ESD voltage of interest that is then discharged into the test device through a $1.5 \mathrm{k} \Omega$ resistor.

DVI／HDMI 2：4 Low－Frequency Fanout Switch

Table 6．Switch Selection Truth Table

DA＿，DB＿INPUTS／REGISTER RO BITS						SWITCH A AND B TO SW＿CONNECTIONS							
$\begin{aligned} & \text { DB2/ } \\ & \text { BBEN } \end{aligned}$	$\begin{gathered} \text { DB1/ } \\ \text { BBSEL1 } \end{gathered}$	$\begin{gathered} \text { DBO/ } \\ \text { BBSELO } \end{gathered}$	$\begin{aligned} & \text { DA2/ } \\ & \text { BAEN } \end{aligned}$	$\begin{gathered} \text { DA1/ } \\ \text { BASEL1 } \end{gathered}$	$\begin{gathered} \text { DAO/ } \\ \text { BASELO } \end{gathered}$	B TO SW3	B TO SW2	B TO SW1	$\begin{aligned} & \text { в то } \\ & \text { swo } \end{aligned}$	$\begin{aligned} & \text { A TO } \\ & \text { SW3 } \end{aligned}$	A TO SW2	A TO SW1	A TO SWO
0	X	X	0	X	X	－	－	－	－	－	－	－	－
0	X	X	1	0	0	－	－	－	－	－	－	－	1
0	X	X	1	0	1	－	－	－	－	－	－	1	－
0	X	X	1	1	0	－	－	－	－	－	1	－	－
0	X	X	1	1	1	－	－	－	－	1	－	－	－
1	0	0	0	X	X	－	－	－	1	－	－	－	－
1	0	0	1	0	0	－	－	－	0	－	－	－	1
1	0	0	1	0	1	－	－	－	1	－	－	1	－
1	0	0	1	1	0	－	－	－	1	－	1	－	－
1	0	0	1	1	1	－	－	－	1	1	－	－	－
1	0	1	0	X	X	－	－	1	－	－	－	－	－
1	0	1	1	0	0	－	－	1	－	－	－	－	1
1	0	1	1	0	1	－	－	0	－	－	－	1	－
1	0	1	1	1	0	－	－	1	－	－	1	－	－
1	0	1	1	1	1	－	－	1	－	1	－	－	－
1	1	0	0	X	X	－	1	－	－	－	－	－	－
1	1	0	1	0	0	－	1	－	－	－	－	－	1
1	1	0	1	0	1	－	1	－	－	－	－	1	－
1	1	0	1	1	0	－	0	－	－	－	1	－	－
1	1	0	1	1	1	－	1	－	－	1	－	－	－
1	1	1	0	X	X	1	－	－	－	－	－	－	－
1	1	1	1	0	0	1	－	－	－	－	－	－	1
1	1	1	1	0	1	1	－	－	－	－	－	1	－
1	1	1	1	1	0	1	－	－	－	－	1	－	－
1	1	1	1	1	1	0	－	－	－	1	－	－	－

－＝Denotes no connection．
1 ＝Denotes switch connection．
$0=$ Denotes switch B is high impedance．
$X=$ Don＇t care ．
Table 7．MAX4814E Device Address

B7	B6	B5	B4	B3	B2	B1	B0
0	1	1	1	AD2	AD1	AD0	R／W
Fixed				User Selected			－

Power－Supply Biasing and Sequencing
Proper power－supply sequencing is recommended for all CMOS devices．Do not exceed the absolute maxi－ mum ratings，since stresses beyond the listed ratings can cause permanent damage to the device．Always
sequence VDD on first，followed by the switch inputs and the logic inputs．Bypass at least one $V_{D D}$ input to ground with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device．Use the smallest physical size possible for optimal performance．

DVI/HDMI 2:4 Low-Frequency Fanout Switch

Figure 4. 2-Wire Interface Timing Diagram

Figure 5. Mode 1: 1^{2} C Control

Figure 7. Human Body ESD Test Model

Figure 6. Mode 0: Direct Control

Figure 8. Human Body Current Waveform

DVI/HDMI 2:4 Low-Frequency Fanout Switch

TOP VIEW

*CONNECT EXPOSED PADDLE TO GND.

It is also recommended to bypass more than one $V_{D D}$ input. A good strategy is to bypass one VDD input with a $0.1 \mu \mathrm{~F}$ capacitor and at least a second VDD input with a 1 nF to 10 nF capacitor (use a 0603 or smaller physical size ceramic capacitor).

DVI/HDMI 2:4 Low-Frequency Fanout Switch

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

DVI/HDMI 2:4 Low-Frequency Fanout Switch

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

NDTES:

1. ALL DIMENSIUNS AND TZLERANCING CDNFORM TO ANSI Y14.5-1982.
2. DATUM PLANE $-\mathrm{H}^{-}$IS LICATED AT MILD PARTing Line and CIINCIDENT WITH LEAD, WHERE LEAD EXITS PLASTIC BZDY AT BOTTDM DF PARTING LINE.
3. DIMENSIDNS D1 AND E1 DD NDT INCLUDE MDLD PROTRUSIDN.

ALLDWABLE MDLD PROTRUSIDN IS 0.25 MM $\square N$ D1 AND E1 DIMENSIUNS.
4. THE TOP OF PACKAGE IS SMALLER THAN THE BOTTIM OF PACKAGE BY 0.15 MILLIMETERS
5. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSIDN. ALLDWABLE DAMBAR PRDTRUSION SHALL BE 0.08 MM TUTAL IN EXCESS DF THE b DIMENSION AT MAXIMUM MATERIAL CZNDITION.
6. CDNTRDLLING DIMENSIDN: MILLIMETER.
7. THIS IUTLINE CDNFDRMS TI JEDEC PUBLICATIUN 95 REGISTRATIZN MS-026, VARIATIDN ACD
8. LEADS SHALL BE CDPLANAR WITHIN .004 INCH.

2 EXPDSED DIE PAD SHALL BE CIPLANAR WITH BOTTGM DF PACKAGE WITHIN 2 MILS (. 05 MM).
Od DIMENSIDNS X \& Y APPLY TO EXPOSED PAD (EP) VERSIDNS ZNLY. SEE INDIVIDUAL PRUDUCT
dATASHEET TQ DETERMINE IF A PRDDUCT USES EXPDSED PAD PACKAGE.
11. MARKING SHOWN IS FIR PACKAGE ORIENTATION REFERENCE GNLY.

$\begin{aligned} & S \\ & \text { S } \\ & \text { H } \\ & \text { B } \\ & \mathbf{L} \\ & \hline \end{aligned}$	JEDEC VARIATIDN ALL DIMENSIONS IN MILLIMETERS	
	ACD-HD	
	MIN.	MAX.
A	-	1.20
A_{1}	0.05	0.15
A_{2}	0.95	1.05
D	11.80	12.20
D_{1}	9.80	10.20
E	11.80	12.20
E_{1}	9.80	10.20
L	0.45	0.75
N	64	
e	0.50 BSC.	
b	0.17	0.27
b1	0.17	0.23
c	0.09	0.20
c1	0.09	0.16
X	4.70	5.30
Y	4.70	5.30

1 P- DALLAS			
TTILE' PACKAGE OUTLINE,64L TQFP, 10x10x1.0mm EP OPTION			
${ }_{\text {APPROVAL }}$	$\begin{aligned} & \text { DICUMENT CONTROL NO. } \\ & 21-0084 \end{aligned}$	$\stackrel{\text { REV. }}{\text { C }}$	2/2

[^0]: $X=$ Hardwired code, not programmable by user.

