: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

High-Bandwidth, T1/E1, SPST Analog Switches

Abstract

General Description The MAX4815/MAX4816/MAX4817 high-bandwidth, low-on-resistance, quad-SPST analog switches are designed to serve as integrated T1/E1 protection switches for $1+1$ and $\mathrm{N}+1$ line-card redundancy applications. Each MAX4815/MAX4816/MAX4817 replaces four electromechanical relays, significantly reducing board space, simplifying PC board routing, and reducing power consumption. These devices operate with $\pm 3.3 \mathrm{~V}$ or $\pm 5 \mathrm{~V}$ dual supplies for applications requiring T1/E1 signal switching in the line side of the interface transformer. Internal voltage multipliers drive the analog switches, yielding excellent linearity and low 3.7Ω typical on-resistance within the T1/E1 analog signal range. This high-bandwidth (550 MHz typical) family of products is optimized for low return loss and matched pulse template performance in T1/E1 long-haul and short-haul applications. The MAX4815/MAX4816/MAX4817 are available in a tiny $16-$ pin, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$, thin QFN package and are specified over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications

T1/E1 Redundancy Switching
Base Stations and Base-Station Controllers
Add and Drop Multiplexers
Multiservice Provisioning Platforms
Edge Routers
Multiservice Switches (MSSs)
Digital Loop Carriers
Industrial Applications
Data Acquisition
Telecom Signal Switching
Test Equipment
Avionics
\qquad

High-Bandwidth, T1/E1, SPST Analog Switches

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND unless otherwise noted.)
V+ ..-0.3V to +6V
V- ..-6V to +0.3V
V+ to V-..-0.3V to +12V
IN_ ..-0.3V to (V+ + 0.3V)
NO_, NC_, COM_ ...-12V to +12V
NO_ to COM_, NC_ to COM_..............................-18V to +18V
Continuous Current (NO_, NC_, COM_) $\pm 100 \mathrm{~mA}$
Continuous Current (any other terminal) $\pm 30 \mathrm{~mA}$

Peak Current (NO_, NC_, COM_) (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)	
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
16-Pin Thin QFN $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ (derate $33.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
Operating	
Storage Temperature Range -65	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual $\pm 3.3 \mathrm{~V}$ Supplies

$\left(\mathrm{V}+=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{~V}-=-3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Fault-Free Analog Signal Range	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}^{-} \\ & \mathrm{V}_{\mathrm{NO}_{-}} \\ & \mathrm{V}_{\mathrm{NC}_{-}} \\ & \hline \end{aligned}$			V-		V+	V
On-Resistance (Note 2)	Ron	$\begin{aligned} & \mathrm{V}+=+3 \mathrm{~V}, \mathrm{~V}-=-3 \mathrm{~V}, \\ & \mathrm{ICOM}_{-}=30 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}} \text {or } \mathrm{V}_{\mathrm{NC}_{-}}=+3 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		3.7	5	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			6	
On-Resistance Match Between Channels (Notes 2, 3)	$\Delta \mathrm{RON}$	$\begin{aligned} & \mathrm{V}+=+3 \mathrm{~V}, \mathrm{~V}-=-3 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=30 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}} \text {or } \mathrm{V}_{\mathrm{NC}}^{-} \end{aligned}=+3 \mathrm{~V},$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.1	0.6	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.8	
On-Resistance Flatness (Notes 2, 4)	RFLAT(ON)	$\begin{aligned} & \mathrm{V}+=+3 \mathrm{~V}, \mathrm{~V}-=-3 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=30 \mathrm{~mA} \text {; } \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}^{-}=-3 \mathrm{~V}, \\ & 0 \mathrm{~V},+3 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.4	1.2	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			1.5	
NO or NC Off-Leakage Current	INO_(OFF) INC_(OFF)	$\begin{aligned} & \mathrm{V}+=+3.6 \mathrm{~V}, \mathrm{~V}-=-3.6 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{COM}}=-3 \mathrm{~V},+3 \mathrm{~V} ; \\ & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_ }}=+3 \mathrm{~V},-3 \mathrm{~V} \end{aligned}$		-10		+10	nA
COM Off-Leakage Current	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}+=+3.6 \mathrm{~V}, \mathrm{~V}-=-3.6 \\ & \mathrm{~V}_{\text {COM }}=-3 \mathrm{~V},+3 \mathrm{~V} ; \\ & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_ }}=+3 \mathrm{~V}, \end{aligned}$		-10		+10	nA
COM On-Leakage Current	ICOM_(ON)	$\begin{aligned} & \mathrm{V}+=+3.6 \mathrm{~V}, \mathrm{~V}-=-3.6 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\text {Com_ }}=-3 \mathrm{~V},+3 \mathrm{~V} \text {; } \\ & \text { NO_ or NC_ unconnected } \end{aligned}$		-15		+15	nA
FAULT							
Fault Analog Signal Range	VCOM	$\mathrm{V}+=+3.3 \mathrm{~V}, \mathrm{~V}-=-3.3 \mathrm{~V}$		-11		+11	V

High-Bandwidth, T1/E1, SPST Analog Switches

ELECTRICAL CHARACTERISTICS—Dual $\pm 3.3 \mathrm{~V}$ Supplies (continued)

$\left(\mathrm{V}+=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{~V}-=-3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
NO or NC Off-Leakage Current	$\begin{aligned} & \mathrm{INO}_{2} \\ & \mathrm{INSC}_{2} \end{aligned}$	$\begin{aligned} & \text { V+=+3.3V, } \mathrm{V}-=-3.3 \mathrm{~V} \text {; } \mathrm{V}_{\text {NO_ }} \text { or } \\ & \mathrm{V}_{\text {NC_ }}=+11 \mathrm{~V},-11 \mathrm{~V} ; \mathrm{V}_{\text {COM_ }}=-5.5 \mathrm{~V},+5.5 \mathrm{~V} \end{aligned}$		-1		+1	$\mu \mathrm{A}$
COM Off-Leakage Current	ICOM_	$\begin{aligned} & \mathrm{V}_{+}=+3.3 \mathrm{~V}, \mathrm{~V}-=-3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=+11 \mathrm{~V},-11 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}_{-}} \text {or } \mathrm{V}_{\mathrm{NC}}= \\ & \end{aligned}$		-1		+1	$\mu \mathrm{A}$
SWITCH DYNAMIC CHARACTERISTICS							
Crosstalk (Note 5)	$\mathrm{V}_{\text {CT1 }}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=1.024 \mathrm{MHz}$, Figure 4		110			dB
	$\mathrm{V}_{\text {CT2 }}$	$R_{L}=50 \Omega, f=30 \mathrm{MHz}$, Figure 4		77			
Off-Isolation (Note 6)	VISO1	VCOM_ to V_{NO} or V_{NC}, $R L=50 \Omega, f=1.024 \mathrm{MHz}$, Figure 4		60			dB
	VISO2	$\mathrm{V}_{\mathrm{COM}}$ to V_{NO} or V_{NC}, $R_{L}=50 \Omega, f=30 \mathrm{MHz}$, Figure 4		30			
On-Channel -3dB Bandwidth	BW	$R_{S}=R_{L}=50 \Omega$, Figure 4		550			MHz
COM On-Capacitance	CON(COM_)	$f=1 \mathrm{MHz}$, Figure 5		10			pF
COM Off-Capacitance	COFF(COM_)	$f=1 \mathrm{MHz}$, Figure 5		7			pF
NC/NO Off-Capacitance	CofF	$f=1 \mathrm{MHz}$, Figure 5		7			pF
Charge Injection	Q	$C_{L}=1.0 n F, V_{G E N}=0, R_{G E N}=0$, Figure 3		55			pC
Fault Recovery Time	trec	$\mathrm{V}_{\text {NO_ }}, \mathrm{V}_{\text {NC_, }}, \mathrm{V}_{\text {COM }}=-11 \mathrm{~V}$		128			$\mu \mathrm{s}$
Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{2}} \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=+3 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega \text {, } \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \text {, Figure } 2 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		20	40	$\mu \mathrm{S}$
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			40	
Turn-Off Time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{2}} \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=+3 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \text { Figure } 2 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.5	1	$\mu \mathrm{s}$
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			1	
Power-Up Delay	tDEL				128		$\mu \mathrm{s}$
LOGIC INPUT (IN_)							
Input-Voltage Low	$\mathrm{V}_{\text {IL }}$					0.8	V
Input-Voltage High	V_{IH}			2.4			V
Input Leakage Current	IIN	$\mathrm{V}_{\mathrm{IN}}=0$ or V_{+}		-1		+1	$\mu \mathrm{A}$
POWER SUPPLY							
Quiescent Positive Supply Current	I+	$\mathrm{V}+=+3.6 \mathrm{~V}, \mathrm{~V}-=-3.6 \mathrm{~V}, \mathrm{~V} \mathrm{~N}_{-}=0$ or $\mathrm{V}+$			0.8	2	mA
Quiescent Negative Supply Current	I-	$\mathrm{V}+=+3.6 \mathrm{~V}, \mathrm{~V}-=-3.6 \mathrm{~V}, \mathrm{~V}^{1} \mathrm{~N}_{-}=0$ or $\mathrm{V}+$			0.8	2	mA
Negative Supply Voltage	V-			-3.6		-3.0	V
Positive Supply Voltage	V+			3.0		3.6	V

High-Bandwidth, T1/E1, SPST Analog Switches

ELECTRICAL CHARACTERISTICS—Dual ± 5 V Supplies

$\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}-=-5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Fault-Free Analog Signal Range	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}} \\ & \mathrm{~V}_{\mathrm{NO}_{-}} \\ & \mathrm{V}_{\mathrm{NC}}^{-} \end{aligned}$			V-		V+	V
On-Resistance (Note 2)	Ron	$\begin{aligned} & \mathrm{V}+=+4.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V}, \\ & \mathrm{ICOM}=30 \mathrm{~mA}, \\ & \mathrm{I}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_ }}=+3 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		3.7	5	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \text { to }$ TMAX			6	
On-Resistance Match Between Channels (Notes 2, 3)	$\Delta \mathrm{RoN}$	$\begin{aligned} & \mathrm{V}+=+4.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V}, \\ & \mathrm{I} \text {, } \\ & \mathrm{V}_{\mathrm{NO}_{-}}=30 \mathrm{or} \mathrm{~V}_{\mathrm{NC}}^{-} \end{aligned}=+3 \mathrm{~V},$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.1	0.6	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \text { to }$ TMAX			0.8	
On-Resistance Flatness (Notes 2, 4)	RFLAT(ON)	$\begin{aligned} & \mathrm{V}+=+4.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=30 \mathrm{~mA} \text {; } \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=-3 \mathrm{~V}, 0 \mathrm{~V} \text {, } \\ & +3 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.4	1.2	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \text { to }$ TMAX			1.5	
NO or NC Off-Leakage Current	INO_(OFF) INC_(OFF)	$\begin{aligned} & \mathrm{V}+=+5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{COM}}=-5 \mathrm{~V},+5 \mathrm{~V} ; \\ & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_ }}=+5 \mathrm{~V},-5 \mathrm{~V} \\ & \hline \end{aligned}$		-10		+10	nA
COM Off-Leakage Current	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}+=+5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{COM}}=-5 \mathrm{~V},+5 \mathrm{~V} ; \\ & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_ }}=+5 \mathrm{~V},-5 \mathrm{~V} \end{aligned}$		-10		+10	nA
COM On-Leakage Current	ICOM_(ON)	$\begin{aligned} & \mathrm{V}+=+5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} ; \\ & \mathrm{V}_{\text {COM_ }}=-5 \mathrm{~V},+5 \mathrm{~V} ; \\ & \text { NO_ or NO_ unconnected } \end{aligned}$		-15		+15	nA
FAULT							
Fault Analog Signal Range	$V_{C O M}$ V_{NO} V_{NC}	$\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$		-11		+11	V
NO or NC Off-Leakage Current	$\begin{aligned} & \mathrm{INO}_{2} \\ & \text { INC_ } \end{aligned}$	$\begin{aligned} & \mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} ; \\ & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\mathrm{NC}}^{-}=+11 \mathrm{~V},-11 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{COM}}^{-}= \\ & \hline \end{aligned}$		-1		+1	$\mu \mathrm{A}$
COM Off-Leakage Current	ICOM_	$\begin{aligned} & \mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \\ & \mathrm{~V}_{\text {COM }}=+11 \mathrm{~V},-11 \mathrm{~V} ; \\ & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_ }}=-5.5 \mathrm{~V},+5 . \end{aligned}$		-1		+1	$\mu \mathrm{A}$
SWITCH DYNAMIC CHARACTERISTICS							
Crosstalk (Note 5)	$\mathrm{V}_{\mathrm{CT} 1}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=1.024 \mathrm{MHz}$, Figure 4			110		dB
	$\mathrm{V}_{\text {CT2 }}$	$R_{L}=50 \Omega, f=30 \mathrm{MHz}$, Figure 4		77			

High-Bandwidth, T1/E1, SPST Analog Switches

ELECTRICAL CHARACTERISTICS—Dual $\pm 5 \mathrm{~V}$ Supplies (continued)
$\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}-=-5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Off-Isolation (Note 6)	VISO1	$\mathrm{V}_{\mathrm{COM}}$ to V_{NO} or $\mathrm{V}_{\mathrm{NC}_{-}}$, $R L=50 \Omega, f=1.024 \mathrm{MHz}$, Figure 4			60		dB
	VISO2	VCOM_ to V_{NO} or V_{NC}, $R_{L}=50 \Omega, f=30 \mathrm{MHz}$, Figure 4		30			
On-Channel -3dB Bandwidth	BW	$R_{S}=R_{L}=50 \Omega$, Figure 4		550			MHz
COM On-Capacitance	CON(COM_)	$f=1 \mathrm{MHz}$, Figure 5		10			pF
COM Off-Capacitance	COFF(COM_)	$f=1 \mathrm{MHz}$, Figure 5		7			pF
NC/NO Off-Capacitance	COFF	$f=1 \mathrm{MHz}$, Figure 5		7			pF
Charge Injection	Q	$C_{L}=1.0 n F, V_{G E N}=0, R \mathrm{GEN}=0$, Figure 3		55			pC
Fault Recovery Time	trec	$\mathrm{V}_{\text {NO_ }}, \mathrm{V}_{\text {NC-}}, \mathrm{V}_{\text {COM }}=-11 \mathrm{~V}$		128			$\mu \mathrm{s}$
Turn-On Time	ton	$\mathrm{V}_{\mathrm{NO}} \mathrm{RO}_{\mathrm{o}}$ or $\mathrm{V}_{\mathrm{N}} \mathrm{R}_{-}=+3 \mathrm{~V}$, $R \mathrm{~L}=300 \Omega$, $C_{L}=35 p F$, Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		20	40	$\mu \mathrm{s}$
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \text { to }$ TMAX			40	
Turn-Off Time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{2}} \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=+3 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \text {, Figure } 2 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.5	1	$\mu \mathrm{s}$
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }} \text { to } \\ & \mathrm{T}_{\text {MAX }} \end{aligned}$			1	
Power-Up Delay	tDEL				128		$\mu \mathrm{s}$
LOGIC INPUT (IN_)							
Input-Voltage Low	$\mathrm{V}_{\text {IL }}$					0.8	V
Input-Voltage High	V_{IH}			2.4			V
Input Leakage Current	IIN	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$		-1		+1	$\mu \mathrm{A}$
POWER SUPPLY							
Quiescent Positive Supply Current	I+	$\mathrm{V}+=+5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V}, \mathrm{~V}^{\mathrm{N}}$ - $=0$ or $\mathrm{V}+$			0.9	2	mA
Quiescent Negative Supply Current	I-	$\mathrm{V}+=+5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V}, \mathrm{~V}^{1} \mathrm{~N}_{-}=0$ or $\mathrm{V}+$			0.9	2	mA
Negative Supply Voltage	V-			-5.5		-4.5	V
Positive Supply Voltage	V+			4.5		5.5	V

Note 1: All parameters are production tested at $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ and guaranteed by design over specified temperature range.
Note 2: Guaranteed by design, not production tested.
Note 3: Δ RON = RON(MAX) - RON(MIN).
Note 4: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.
Note 5: Between any two switches.
Note 6: Off-isolation $=20 \times \log _{10}\left[\mathrm{~V}_{\mathrm{COM}} /\left(\mathrm{V}_{\mathrm{NC}_{-}}\right.\right.$or $\left.\left.\mathrm{V}_{\mathrm{NO}}\right)\right], \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NC}_{-}}$or $\mathrm{V}_{\mathrm{NO}_{-}}=$input to OFF switch.

High-Bandwidth, T1/E1, SPST Analog Switches

Typical Operating Characteristics

High-Bandwidth, T1/E1, SPST Analog Switches

Typical Operating Characteristics (continued)

$\left(\mathrm{V}+=+3.3 \mathrm{~V}, \mathrm{~V}-=-3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

FREQUENCY RESPONSE

FREQUENCY (MHz)

OFF-ISOLATION vs. FREQUENCY

T1 (100 2) PULSE TEMPLATE TEST

E1 (120ת) SCOPE SHOT OF THE INPUT AND OUTPUT OF DEVICE

High-Bandwidth, T1/E1, SPST Analog Switches

Typical Operating Characteristics (continued)
$\left(\mathrm{V}+=+3.3 \mathrm{~V}, \mathrm{~V}-=-3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Pin Description

PIN			NAME	FUNCTION
MAX4815	MAX4816	MAX4817		
1	-	-	NC1	Analog Switch Normally Closed Terminal 1
2	2	2	V-	Negative Supply Voltage. Bypass V- to ground with a $0.1 \mu \mathrm{~F}$ ceramic capacitor.
3	3	3	GND	Ground
4	-	-	NC4	Analog Switch Normally Closed Terminal 4
5	5	5	COM4	Analog Switch Common Terminal 4
6	6	6	IN4	Switch 4 Logic-Control Input
7	7	7	IN3	Switch 3 Logic-Control Input
8	8	8	COM3	Analog Switch Common Terminal 3
9	-	9	NC3	Analog Switch Normally Closed Terminal 3
10	10	10	N.C.	No Connection. Not internally connected.
11	11	11	V+	Positive Supply Voltage. Bypass V+ to ground with a $0.1 \mu \mathrm{~F}$ ceramic capacitor.
12	-	12	NC2	Analog Switch Normally Closed Terminal 2
13	13	13	COM2	Analog Switch Common Terminal 2
14	14	14	IN2	Switch 2 Logic-Control Input
15	15	15	IN1	Switch 1 Logic-Control Input
16	16	16	COM1	Analog Switch Common Terminal 1
-	1	1	NO1	Analog Switch Normally Open Terminal 1
-	4	4	NO4	Analog Switch Normally Open Terminal 4
-	9	-	NO3	Analog Switch Normally Open Terminal 3
-	12	-	NO2	Analog Switch Normally Open Terminal 2
EP	EP	EP	EP	Exposed Paddle. Connect exposed paddle to V- or leave unconnected.

High-Bandwidth, T1/E1, SPST Analog Switches

Detailed Description

The MAX4815/MAX4816/MAX4817 are high-bandwidth, low-on-resistance, quad-SPST analog switches targeted to serve as integrated T1/E1 analog protection switches for $1+1$ and $\mathrm{N}+1$ line-card redundancy applications. These devices are designed to replace electromechanical relays to save board space, reduce power consumption, and simplify PC board routing. The devices allow the user to live insert the boards with no adverse effects.

The MAX4815/MAX4816/MAX4817 support $\pm 3.3 \mathrm{~V}$ or $\pm 5 \mathrm{~V}$ dual-supply operation, which is required for E1/T1 signal switching in the line-side of the interface transformer. Internal voltage multipliers supply the switches yielding excellent linearity and low on-resistance, typically 3.7Ω, within the E1/T1 analog signal range. This high-bandwidth, typically 550 MHz , family of devices is optimized for low return loss and matched pulse template performance in E1/T1 short-haul and long-haul applications.

Analog Signal Levels
The on-resistance of the MAX4815/MAX4816/MAX4817 is very low and stable as the analog signals are swept from V- to V+ (see the Typical Operating Characteristics).

Fault Protection

The fault protection of the MAX4815/MAX4816/ MAX4817 allows the devices to handle input signals of more than twice the supply voltage without clamping the signal, latching up, or disturbing other cards in the system. The device detects when the input voltage drops below the negative supply. As soon as a fault condition is detected, the switch is immediately turned off for 128 clock cycles (typically $128 \mu \mathrm{~s}$). At the end of the $128 \mu \mathrm{~s}$ timeout, the switch is turned back on for one clock cycle. At the end of the one clock cycle, if the signal is within the operating range, the switch will remain on. Otherwise, the device will turn the switch off again for 128 clock cycles. This will repeat until the signal is within the operating range. In T1/E1 redundancy applications, this can happen when the load resistor (RL_{L}) is removed or disconnected for any reason, as shown in Figure 1. Without a load resistor, the output voltage when using a $1: 2$ transformer can be as high as $\pm 11 \mathrm{~V}$.

Hot Insertion

The MAX4815/MAX4816/MAX4817 tolerate hot insertions, thus are not damaged when inserted into a live backplane. Competing devices can exhibit low impedance when plugged into a live backplane that can cause high power dissipation leading to damage of the device itself. The MAX4815/MAX4816/MAX4817 have relatively high input impedance when $\mathrm{V}+$ and V - are

Figure 1. Fault Protection
unconnected or connected to GND. Therefore, the devices are not destroyed by a hot insertion. In order to guarantee data integrity, the $\mathrm{V}+$ and V - supplies must be properly biased.

Applications Information

T1/E1 N+1 Redundancy
The MAX4815/MAX4816/MAX4817 are designed for adjacent line-card protection applications. Figures 6 and 7 show a basic architecture for twisted-pair interface ($120 \Omega \mathrm{E} 1$, or $100 \Omega \mathrm{~T} 1$). Coaxial cable interface ($75 \Omega \mathrm{E} 1$) can be illustrated with the same figures but without the single-ended-to-differential conversion stage. A single protection card can replace up to N line cards in a $\mathrm{N}+1$ redundancy scheme. Figure 6 shows the MAX4815/ MAX4816/MAX4817 sitting in the line cards where they can reroute any of the input/output signals to a protection line card. Figure 7 shows the MAX4815/MAX4816/ MAX4817 sitting in a protection-switching card where the switches are always powered. These figures do not show the surge protection elements and resistors for line termination/impedance matching.
The low on-resistance and high bandwidth of the MAX4815/MAX4816/MAX4817 yield good pulse template and return-loss performance (see the Typical Operating Characteristics). The pulse template tests for E1 (twisted pair interface 120Ω and coaxial interface 75Ω) and T1 (twisted pair interface 100 Ω) were tested using the Dallas DS2155 single-chip transceiver evaluation board, and twelve switches in parallel with one switch closed and the other eleven open. The internal transmit termination feature must be disabled when using this circuit. To use the same transmit resistors for E1 twisted pair and coaxial cables, the transmit line build out control register (TLBC) is set to the value 6Ah. This sets the driver voltage so the output pulse has the right amplitude for both 120Ω (twisted pair) and 75Ω (coaxial) loads. The analog switches were powered with dual power supplies at $\pm 5 \mathrm{~V}$.

High-Bandwidth, T1/E1, SPST Analog Switches

\qquad Test Circuits/Timing Diagrams

Figure 2. Switch Turn-On/Turn-Off Times

$\Delta V_{\text {OUT }}$ IS THE MEASURED VOLTAGE DUE TO CHARGETRANSFER ERROR Q WHEN THE CHANNEL TURNS OFF $Q=\Delta V_{\text {OUT }} \times C_{L}$

Figure 3. Charge Injection

MEASUREMENTS ARE STANDARDIZED AGAINST SHORT AND OPEN AT SOCKET TERMINALS.
OFF-ISOLATION IS MEASURED BETWEEN COM_AND OFF NO_OR NC_ TERMINALS.
ON-RESPONSE IS MEASURED BETWEEN COM_AND ON NO_OR NC_TERMINALS.
CROSSTALK IS MEASURED FROM ONE CHANNEL TO ALL OTHER CHANNELS.

Figure 4. On-Loss, Off-Isolation, and Crosstalk

High-Bandwidth, T1/E1, SPST Analog Switches

Figure 5. Channel Off-/On-Capacitance

High-Bandwidth, T1/E1, SPST Analog Switches

Figure 6. Adjacent Line-Card Protection Architecture with Switches in the Line Cards for Twisted Pair Cable (120』 E1, or 100 $\operatorname{T1}$). Figure for coaxial cable (75ת E1) is the same without the single-ended-to-differential conversion.

High-Bandwidth, T1/E1, SPST Analog Switches

Figure 7. Adjacent Line-Card Protection Architecture with Switches out of the Line Cards for Twisted Pair Cable (120』 E1, or 100Ω T1). Figure for coaxial cable (75Ω E1) is the same without the single-ended-to-differential conversion.

High-Bandwidth, T1/E1, SPST Analog Switches

Chip Information
PROCESS: BiCMOS
CONNECT EXPOSED PADDLE TO V-

High-Bandwidth, T1/E1, SPST Analog Switches

L L8tXVW/9 म8tXVW/G L8tXVW

High-Bandwidth, T1/E1, SPST Analog Switches

High-Bandwidth, T1/E1, SPST Analog Switches

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Revision History

Pages changed at Rev 2: 1, 9, 17

