: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

MMXIN

Quad SPST, High-Bandwidth, Signal Line Protection Switch

Abstract

General Description The MAX4854H/MAX4854HL analog switches operate from a single +2 V to +5.5 V supply and can handle signals greater than the supply rail. These devices feature four low on-resistance (7Ω) single-pole/single-throw (SPST) switches, with 27.5 pF on-capacitance, making them ideal for data signals. If the input signal exceeds the supply rail, the switches become high impedance and prevent the signal from feeding through to the output. The MAX4854H/MAX4854HL are available in the space-saving ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$), 16-pin, thin QFN package and operate over the extended $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ temperature range.

Applications
USB Switching
High-Bandwidth Data Switching
Cellular Phones
Notebook Computers
PDAs and Other Handheld Devices

- USB 2.0 Full Speed (12MB) and USB 1.1 Signal Switching
- Overvoltage Protection if Signal Exceeds Vcc
- 150MHz -3dB Bandwidth
- 27.5pF On-Capacitance
- +2 V to +5.5 V Supply Range
- 7Ω On-Resistance
- Low 10hA Supply Current
- 1.8V Logic Compatible
- Available in a Space-Saving ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) 16-Pin TQFN Package

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4854HETE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TQFN-EP*	ACD
MAX4854HLETE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TQFN-EP*	ACX
${ }^{\star} E P=$ Exposed paddle.			

() INDICATES THE MAX4854HL

SWITCHES SHOWN FOR LOGIC 0 INPUT

SWITCHES SHOWN
FOR LOGIC 1 INPUT

MAX4854HL COM2

Quad SPST, High-Bandwidth, Signal Line Protection Switch

ABSOLUTE MAXIMUM RATINGS

$\mathrm{VCC}^{2}, \mathrm{IN}_{-}, \mathrm{COM}_{-}, \mathrm{NO}_{-}, \mathrm{NC}_{-}$to GND (Note 1)-0.3V to +6.0 V Closed Switch Continuous Current COM_, NO_, NC_......... $\pm 50 \mathrm{~mA}$ Peak Current COM_, NO_, NC_ (pulsed at $1 \mathrm{~ms}, 50 \%$ duty cycle) $\pm 100 \mathrm{~mA}$ Peak Current COM_, NO_, NC_ (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)
$\pm 120 \mathrm{~mA}$

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
16-Pin Thin QFN (derate $20.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 1667 mW Operating Temperature Range. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature $\ldots+150^{\circ} \mathrm{C}$ Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s)..................................... $+300^{\circ} \mathrm{C}$

Note 1: Signals on NO_/NC_ or COM_ exceeding GND are clamped by internal diodes. Signals on IN exceeding GND are clamped by an internal diode. Limit the forward-diode current to the maximum current rating.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V} C \mathrm{C}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage	VCC			2.0		5.5	V
Supply Current	IcC	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}_{-}}=0 \mathrm{~V}$ or V_{CC}		10		20	$\mu \mathrm{A}$
ANALOG SWITCH							
Analog Signal Range	V_{NO}, VCOM			0		VCC	V
On		$V_{C C}=3 \mathrm{~V}, \mathrm{I}_{\text {com }}=10 \mathrm{~mA}$,	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		7	9	
On-Resistand	Ron	$\mathrm{V}_{\text {NO_ }}$ or $\mathrm{V}_{\text {NC- }}=0$ to $\mathrm{V}_{\text {cc }}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			10	
On-Resistance Match		$V_{C C}=3 \mathrm{~V}$, $\mathrm{ICOM}=10 \mathrm{~mA}$, or	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.2	0.4	
(Notes 3, 4)		V_{NO} or V_{NC}	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			0.5	
On-Resistance Flatness		$V_{C C}=3 \mathrm{~V}, \mathrm{ICOM}=10 \mathrm{~mA}$,	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2.5	3.75	
(Note 5)	RfLAT	$\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{IV}, 2 \mathrm{~V}, 3 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			4	Ω
NO_ or NC_ Off-Leakage	IOFF	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {NO_ }}$ or $\mathrm{V}_{\text {NC_ }}=1 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-2		+2	nA
Current	IOFF	$\text { or } 4.5 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=4.5 \mathrm{~V} \text { or } 1 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-10		+10	nA
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; $\mathrm{V}_{\text {NO_ }}$ or $\mathrm{V}_{\text {NC_ }}=$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-2		+2	
COM_ On-Leakage Cur	ION	$\mathrm{VV}, 4.5 \mathrm{~V}$, or floating; $\mathrm{V}_{\mathrm{COM}}=$ $1 \mathrm{~V}, 4.5 \mathrm{~V}$, or floating	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-12.5		+12.5	nA

DYNAMIC CHARACTERISTICS

Signal Over Rail to High-Z Switching Time		V_{NO} or $\mathrm{V}_{\mathrm{NC}}^{-}, \quad=\mathrm{V}_{\mathrm{CC}}$ to $\left(\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}\right), \mathrm{V}_{\mathrm{CC}}<5 \mathrm{~V}$ (Figure 1)		0.5	1	$\mu \mathrm{s}$
High-Z to Low-Z Switching Time		$\mathrm{V}_{\text {NO_ }}$ or $\mathrm{V}_{\text {NC_- }}=\left(\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}\right)$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}<5 \mathrm{~V}$ (Figure 1)		0.5	1	$\mu \mathrm{S}$
Skew (Note 3)	tSKEW	$\mathrm{R}_{\mathrm{S}}=39 \Omega, \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$ (Figure 2)		0.15	1	ns
Propagation Delay (Note 3)	tpD	RS $=39 \Omega, C_{L}=50 \mathrm{pF}$ (Figure 2)		0.9	2	ns
Turn-On Time	ton	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=$ $1.5 \mathrm{~V}, \mathrm{RL}=300 \Omega, C_{L}=50 \mathrm{pF}$ (Figure 1)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	40	60	ns
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		100	
Turn-Off Time	tofF	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=$ $1.5 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=300 \Omega, \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$ (Figure 1)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	30	40	ns
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		60	

Quad SPST, High-Bandwidth, Signal Line Protection Switch

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V} C \mathrm{C}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Charge Injection	Q	$V_{\text {COM }}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$ (Figure 3)		8		pC
Off-Isolation (Note 6)	VISO	$f=100 \mathrm{kHz}, V_{C O M}=1 V_{R M S}, R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}$ (Figure 4)		-80		dB
Crosstalk	$V_{\text {CT }}$	$f=1 \mathrm{MHz}, V_{C O M}=1 V_{R M S}, R_{L}=50 \Omega, C_{L}=5 p F$ (Figure 4)		-95		dB
-3dB Bandwidth	BW	Signal $=0 \mathrm{dBm}, \mathrm{RL}=50 \Omega, C_{L}=5 \mathrm{pF}$ (Figure 4)		150		MHz
Total Harmonic Distortion	THD	$\mathrm{f}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{V}_{\text {COM }}=1 \mathrm{~V}+2 \mathrm{VPP}_{-\mathrm{P}, \mathrm{R}_{\mathrm{L}}=600 \Omega}$		0.04		\%
NO_ Off-Capacitance	CofF	$f=1 \mathrm{MHz}$ (Figure 5)		12		pF
COM On-Capacitance	Con	$\mathrm{f}=1 \mathrm{MHz}$ (Figure 5)		27.5		pF
DIGITAL I/O (IN_)						
Input-Logic High Voltage	V_{IH}	$\mathrm{VCC}=2 \mathrm{~V}$ to 3.6V	1.4			V
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ to 5.5 V	1.8			
Input-Logic Low Voltage	VIL	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$ to 3.6 V			0.5	V
		$\mathrm{V}_{\text {cc }}=3.6 \mathrm{~V}$ to 5.5 V			0.8	
Input Leakage Current	IIN	$\mathrm{V}_{1 \mathrm{~N}_{-}}=0$ or 5.5 V	-0.5		+0.5	$\mu \mathrm{A}$

Note 2: Specifications are 100% tested at $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ only, and guaranteed by design and characterization over the specified temperature range.
Note 3: Guaranteed by design and characterization; not production tested.
Note 4: $\Delta \mathrm{RON}_{\mathrm{ON}}=\operatorname{RON(MAX)}-\operatorname{RON(MIN)}$.
Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
Note 6: Off-Isolation $=20 \log _{10}\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}_{-}}\right), \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Quad SPST, High-Bandwidth, Signal Line Protection Switch

\qquad
$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Quad SPST, High-Bandwidth, Signal Line Protection Switch

Pin Description

PIN	NAME	FUNCTION
$1,5,7,10$	NO1, NO2, NO3, NO4	Normally Open Terminals for Analog Switch (MAX4854H)
$1,5,7,10$	NC1, NC2, NC3, NC4	Normally Closed Terminals for Analog Switch (MAX4854HL)
2,11	N.C.	No Connection. Internally not connected.
3	IN2	Digital Control Input for Analog Switch 2. A logic-low (MAX4854H) or logic-high (MAX4854HL) on IN2 opens switch 2 and a logic-high (MAX4854H) or logic-low (MAX4854HL) on IN2 connects COM2 to NO2.
4	COM2	Common Terminal for Analog Switch 2
6	GND	Ground
8	COM3	Common Terminal for Analog Switch 3
9	IN3	Digital Control Input for Analog Switch 3. A logic-low (MAX4854H) or logic-high (MAX4854HL) on IN3 opens switch 3 and a logic-high (MAX4854H) or logic-low (MAX4854HL) on IN3 connects COM3 to NO3.
12	COM4	Common Terminal for Analog Switch 4
13	IN4	Digital Control Input for Analog Switch 4. A logic-low (MAX4854H) or logic-high (MAX4854HL) on IN4 opens switch 4 and a logic-high (MAX4854H) or logic-low (MAX4854HL) on IN4 connects COM4 to NO4.
14	VCC	Supply Voltage. Bypass VCC to GND with a 0.014F capacitor as close to the pin as possible.
15	IN1	Digital Control Input for Analog Switch 1. A logic-low (MAX4854H) or logic-high (MAX4854HL) on IN1 opens switch 1 and a logic-high (MAX4854H) or logic-low (MAX4854HL) on IN1 connects COM1 to NO1.
16	COM1	Common Terminal for Analog Switch 1
-	EP	Exposed Paddle. Connect to PC board ground plane.

Detailed Description

The MAX4854H/MAX4854HL quad SPST switches have low on-resistance, operate from $\mathrm{a}+2 \mathrm{~V}$ to +5.5 V supply, and are fully specified for nominal 3.0 V applications. These devices feature overvoltage protection by putting the switch into high-impedance mode when the switch input exceeds $V_{C c}$.
These switches have low 27.5 pF on-channel capacitance, which allows for 12 Mbps switching of the data signals for USB 2.0 full speed/1.1 applications. The MAX4854H/MAX4854HL are designed to switch D+ and D- USB signals with a guaranteed skew of less than 1ns (see Figure 2) as measured from 50% of the input signal to 50% of the output signal.

Applications Information

Digital Control Inputs

The logic inputs (IN_{-}) accept up to +5.5 V even if the supply voltages are below this level. For example, with a +3.3 V Vcc supply, IN_ can be driven low to GND and
high to +5.5 V , allowing for mixing of logic levels in a system. Driving $I N$ _ rail-to-rail minimizes power consumption. For a +2 V supply voltage, the logic thresholds are 0.5 V (low) and 1.4 V (high); for a +5 V supply voltage, the logic thresholds are 0.8 V (low) and 1.8 V (high).

Analog Signal Levels

The on-resistance of these switches changes very little for analog input signals across the entire supply voltage range (see the Typical Operating Characteristics). The switches are bidirectional, so the NO_ and COM_ pins can be either inputs or outputs.

Power-Supply Sequencing
Caution: Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the device.
Proper power-supply sequencing is recommended for all CMOS devices. Always apply VCC before applying analog signals, especially if the analog signal is not current limited.

Quad SPST, High-Bandwidth, Signal Line Protection Switch

Figure 1. Switching Time

Figure 2. Output Signal Skew

Quad SPST, High-Bandwidth, Signal Line Protection Switch

Figure 3. Charge Injection

OFF-ISOLATION $=20 \log \frac{V_{O U T}}{V_{\text {IN }}}$
$O N-L O S S=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$
CROSSTALK $=2010 g \frac{V_{\text {OUT }}}{V_{\text {IN }}}$
*FOR CROSSTALK THIS PIN IS NO2.
MEASUREMENTS ARE STANDARDIZED AGAINST SHORTS AT IC TERMINALS
COM2 IS OPEN.
OFF-ISOLATION IS MEASURED BETWEEN COM_ AND "OFF" OR NO_ TERMINAL ON EACH SWITCH.
ON-LOSS IS MEASURED BETWEEN COM_ AND "ON" OR NO_TERMINAL ON EACH SWITCH.
CROSSTALK IS MEASURED FROM ONE CHANNEL TO THE OTHER CHANNEL.
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED
Figure 4. On-Loss, Off-Isolation, and Crosstalk

Chip Information

TRANSISTOR COUNT: 735
PROCESS: CMOS

Figure 5. Channel Off-/On-Capacitance

Quad SPST, High-Bandwidth, Signal Line Protection Switch

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

NOTES:

1. DIMENSIONING \& TOLERANCING CONFORM TO ASME Y14.5M-1994.
2. DIMENSIONING \& TOLERANCING CONFORM TO ASME Y14.5M-1994.
3. NIS THE TOTAL NUMBER OF TERMINALS
4. THE TERMINAL \#1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO WITHIN THE ZONE INDICATED. THE TERMINAL \#1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm

FROM TERMINAL TIP
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS
9. DRAWING CONFORMS TO JEDEC MO220 REVISION C.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

