: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

High-Bandwidth, VGA 2:1 Switch with $\pm 15 k V$ ESD Protection

General Description

The MAX4885AE integrates high-bandwidth analog switches, level-translating buffers, and level-translating FET switches to implement a complete 2:1 multiplexer for VGA signals. The device provides three very highfrequency 900 MHz (typ) SPDT switches for RGB signals, two low-frequency clamping switches for the DDC signals, a pair of level-translating buffers for the H_{-}and V_{-} signals, and integrated extended ESD protection.
Horizontal and vertical synchronization (H_N_) inputs feature level-shifting buffers to support low-voltage controllers and standard 5V-TTL-compatible monitors, meeting the VESA requirement. Display Data Channel (DDC), consisting of SDA_ and SCL_, are FET switches that protect the low-voltage VGA source from potential damage from high-voltage presence on the monitor while reducing capacitive load.

All seven output terminals of the MAX4885AE feature high-ESD protection to $\pm 15 \mathrm{kV}$ Human Body Model (HBM) (see the Pin Description). All other pins are protected to $\pm 2 \mathrm{kV}$ Human Body Model (HBM).
The MAX4885AE is specified over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range, and is available in a spacesaving, $28-\mathrm{pin}, 4 \mathrm{~mm} \times 4 \mathrm{~mm}$ TQFN package.

Applications

Notebook Computer-MXM/Switchable Graphics KVM for Servers

Features

- Low 5Ω (typ) On-Resistance (R_, G_, B_ Signals)
- Low 5.5pF (typ) On-Capacitance (R_, G_, B_ Signals)
- Independent, Selectable Logic Inputs for Switching
- Similar Pin Configuration to MAX4885
- Ultra-Small, 28-Pin (4mm x 4mm) TQFN Package
- $\pm 15 k V$ ESD HBM

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4885AEETI +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 TQFN-EP*

+Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad.

Typical Operating Circuit

High-Bandwidth, VGA 2:1 Switch with $\pm 15 k V$ ESD Protection

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND unless otherwise noted.)
Vcc... -0.3 V to +6 V
VL... -0.3V to (VCC +0.3 V)
$R_{-}, G_{-}, B_{-}, H 0$, VO, SDAO, SCLO
-0.3 V to $(\mathrm{VCC}+0.3 \mathrm{~V})$
H1, H2, V1, V2, SDA1, SDA2, SCL1,
SCL2, SEL1, SEL2 -0.3V to (VL + 0.3V)
Continuous Current through R_, G_, B_ Switches $\pm 50 \mathrm{~mA}$ Continuous Current through SDA_, SCL_Switches $\pm 50 \mathrm{~mA}$ Continuous Current into SEL1, SEL2, H1, H2, V1, V2 $\pm 20 \mathrm{~mA}$ Peak Current through all Switches
(pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle) \qquad $\pm 100 \mathrm{~mA}$

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+2.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are $\mathrm{at}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	VCC		+4.5		+5.5	V
Logic Supply Voltage	VL	$\mathrm{V}_{\mathrm{L}} \leq \mathrm{V}_{\mathrm{CC}}$	+2.2		VCC	V
Vcc Supply Current	ICC	$\begin{aligned} & \text { VCC }=+5.5 \mathrm{~V}, \mathrm{~V} L=+3.6 \mathrm{~V} \\ & S E L_{-}=H 1=H 2=\mathrm{V} 1=\mathrm{V} 2=\mathrm{GND} \end{aligned}$		2	5	$\mu \mathrm{A}$
VL Supply Current	IL	$\begin{aligned} & \mathrm{VCC}=+5.5 \mathrm{~V}, \mathrm{~V} L=+3.6 \mathrm{~V} \\ & S E L_{-}=\mathrm{H} 1=\mathrm{H} 2=\mathrm{V} 1=\mathrm{V} 2=\mathrm{GND} \end{aligned}$			1	$\mu \mathrm{A}$
ANALOG SWITCHES						
On-Resistance (R_, G_, B_)	R-HF-ON	$\mathrm{V} / \mathrm{N}=+0.7 \mathrm{~V}, \mathrm{I} \mathrm{IN}= \pm 10 \mathrm{~mA}$		5	8	Ω
On-Resistance Match (R_, G_, B_)	$\triangle \mathrm{RON}$	$0 \leq \mathrm{V}$ IN $\leq+0.7 \mathrm{~V}, \mathrm{IIN}=-10 \mathrm{~mA}$			1	Ω
On-Resistance Flatness $\text { (} \left.R_{-}, G_{-}, B_{-}\right)$	RFLAT(ON)	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq+0.7 \mathrm{~V}, \mathrm{I} \mathrm{IN}=-10 \mathrm{~mA}$		0.5	1	Ω
Off Leakage Current (R_, G_, B_)	IOFF	$\mathrm{V}_{\mathrm{R}_{-}}, \mathrm{V}_{\mathrm{G}_{-}}, \mathrm{V}_{\mathrm{B}_{-}}=0 \mathrm{~V}$ or V_{CC}	-1		+1	$\mu \mathrm{A}$
On-Resistance (SDA_, SCL_)	R-DDCON	$\mathrm{VIN}=+0.7 \mathrm{~V}, \mathrm{IIN}= \pm 10 \mathrm{~mA}$		15		Ω
Off-Leakage Current (SDA_, SCL_)	IOFF	$\begin{aligned} & \text { VSDA, } V_{S C L}=0 V \text { or } V_{L}, \\ & V C C=V L=+5 V \end{aligned}$	-1		+1	$\mu \mathrm{A}$

High-Bandwidth, VGA 2:1 Switch with $\pm 15 k V$ ESD Protection

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{VCC}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{VL}=+2.2 \mathrm{~V}$ to $\mathrm{VCC}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DIGITAL INPUTS (SEL_, H1, H2, V1, V2)						
Input Threshold Low	VIL		$0.25 \times \mathrm{V}_{\mathrm{L}}$			V
Input Threshold High	V_{IH}				$\begin{gathered} 0.55 \times \\ V_{L} \end{gathered}$	V
Input Hysteresis	VHYST			100		mV
Input Leakage Current	IL		-1		+1	$\mu \mathrm{A}$
SEL_ Enable/Disable Time	ton, toff	$R L=2.2 \mathrm{k} \Omega, C_{L}=10 \mathrm{pF}$, Figure 1		300		ns
DIGITAL OUTPUTS (H0, V0)						
Output-Voltage Low	VOL	IOUT $=8 \mathrm{~mA}, \mathrm{VCC}=+4.5 \mathrm{~V}$			0.8	V
Output-Voltage High	VOH	IOUT $=-8 \mathrm{~mA}, \mathrm{VCC}=+4.5 \mathrm{~V}$	2.4			V
Rise/Fall Time	tR, tF	$\mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega, C_{L}=10 \mathrm{pF}$, Figure 2			8	ns
RGB AC PERFORMANCE						
Bandwidth	fmax	$R S=R L=50 \Omega$		900		MHz
On-Loss	ILOSS	$f=10 \mathrm{MHz}, R S=R L=50 \Omega, 0 \leq V \leq+0.7 V \text {, }$ Figure 3		0.4		dB
Crosstalk R_, G_, B_	VCT	$f=50 \mathrm{MHz}, \mathrm{RS}=R \mathrm{~L}=50 \Omega$, Figure 3		-40		dB
Off-Capacitance	Coff	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{RO} \text { to R1/R2, G0 to G1/G2, B0 } \\ & \text { to B1/B2 (Note 2) } \end{aligned}$		2.5		pF
On-Capacitance	Con	$f=1 \mathrm{MHz}$, R0 to R1/R2, G0 to G1/G2, B0 to B1/B2 (Note 2)		5.5	8	pF
ESD PROTECTION						
R0, G0, B0, SDAO, SCLO, H0, V0	VESD	HBM (Notes 2, 3)		± 15		kV
RO, GO, B0, SDAO, SCLO, H0, V0	VESD	IEC 61000-4-2 Contact (Notes 2, 3)		± 8		kV
All Other Terminals	VESD	HBM (Note 2)		± 2		kV

Note 2: Guaranteed by design. Not production tested.
Note 3: Tested terminal to GND, $1 \mu \mathrm{~F}$ bypass capacitors on V_{CC} and V_{L}.

High-Bandwidth, VGA 2:1 Switch with $\pm 15 k V$ ESD Protection

\qquad Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

HV BUFFER OUTPUT-VOLTAGE LOW
vs. TEMPERATURE

Ron vs. VSDAO* (DDC SWITCHES)

SUPPLY CURRENT
vs. TEMPERATURE

HV BUFFER OUTPUT-VOLTAGE HIGH vs. TEMPERATURE

CROSSTALK vs. FREQUENCY

High-Bandwidth, VGA 2:1 Switch with $\pm 15 k V$ ESD Protection

 Test Circuits/Timing Diagrams

Figure 1. Enable/Disable Time

Figure 2. Rise/Fall Time

MEASUREMENTS ARE STANDARDIZED AGAINST SHORTS AT IC TERMINALS.
INSERTION LOSS IS MEASURED BETWEEN RO AND R1 OR R2 ON EACH SWITCH.
CROSSTALK IS MEASURED FROM ONE CHANNEL TO THE OTHER CHANNEL.
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.

Figure 3. Insertion Loss and Crosstalk

High-Bandwidth, VGA 2:1 Switch
 with $\pm 15 k V$ ESD Protection

Pin Description

PIN	NAME	FUNCTION
1	R0	RGB Red Output (Note 4)
2	G0	RGB Green Output (Note 4)
3	B0	RGB Blue Output (Note 4)
4	H0	Horizontal Sync Output (Note 4)
5	V0	Vertical Sync Output (Note 4)
6	SDAO	$1^{2} \mathrm{C}$ Data Output (Note 4)
7	SCLO	${ }^{12} \mathrm{C}$ Clock Output (Note 4)
8	SEL2	Select Input 2. Switches SDA_ and SCL_ signals.
9	VL	Supply Voltage. $+2.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}} \leq \mathrm{V}_{\mathrm{CC}}$. Bypass V_{L} to GND with a $1 \mu \mathrm{~F}$ or larger ceramic capacitor.
10, 27	VCC	Supply Voltage. Vcc $=+5.0 \mathrm{~V} \pm 10 \%$. Bypass VCc to GND with a $1 \mu \mathrm{~F}$ or larger ceramic capacitor.
11	SDA2	$1^{2} \mathrm{C}$ Input Data 2 (Note 5)
12	SCL2	${ }^{2} \mathrm{C}$ C Input Clock 2 (Note 5)
13	R2	RGB Red Input 2 (Note 6)
14	G2	RGB Green Input 2 (Note 6)
15	B2	RGB-Blue Input 2 (Note 6)
16	H2	Horizontal Sync Input 2 (Note 7)
17	V2	Vertical Sync Input 2 (Note 7)
18	I.C.	Internal Connection. Connect to ground or leave unconnected.
19	V1	Vertical Sync Input 1 (Note 7)
20	H1	Horizontal Sync Input 1 (Note 7)
21	B1	RGB Blue Input 1 (Note 6)

High-Bandwidth, VGA 2:1 Switch with $\pm 15 k V$ ESD Protection

Pin Description (continued)

PIN	NAME	FUNCTION
22	G1	RGB Green Input 1 (Note 6)
23	R1	RGB Red Input 1 (Note 6)
24	SCL1	I2 C Clock Input 1 (Note 5)
25	SDA1	I2 C Data Input 1 (Note 5)
26	GND	Ground
28	SEL1	Select Input 1. Switches R_, G_, B_, H_, and V_{-}signals.
-	EP	Exposed Pad. Connect exposed pad to ground or leave unconnected.

Note 4: Terminal with $\pm 15 \mathrm{kV}$ HBM protection.
Note 5: SCL1, SCL2, SDA1, and SDA2 are identical and can be used interchangeably.
Note 6: R1, R2, G1, G2, B1, and B2 are identical and can be used interchangeably.
Note 7: H1, H2, V1, and V2 are identical and can be used interchangeably.

NOTE: TWO VIDEO INPUT SOURCES BEING SWITCHED INTO ONE OUTPUT/SINK USING MAX4885AE.

High-Bandwidth, VGA 2:1 Switch with $\pm 15 k V$ ESD Protection

High-Bandwidth, VGA 2:1 Switch with $\pm 15 k V$ ESD Protection

Detailed Description

The MAX4885AE integrates high-bandwidth analog switches and level-translating buffers to implement a complete 2:1 multiplexer for VGA signals. The device provides switching for RGB, HSYNC, VSYNC, SDA, and SCL signals. These signals are required in notebook VGA switching applications.
The HSYNC and VSYNC inputs feature level-shifting buffers to support 5V-TTL output logic levels from lowvoltage graphics controllers. These buffered switches can be driven from +2.0 V up to +5.5 V . RGB signals are routed with high-performance analog switches. SDA_ and SCL_ are I2C signals with pullups to their respective voltages. The MAX4885AE protects the low-voltage side while effectively translating up to the high-voltage level.
Two select inputs are provided to individually select groups of switches.
RGB, HSYNC, and VSYNC signals are controlled by SEL1; and both SDA_ and SCL_ signals are controlled by SEL2.

Table 1. RGB/HV Truth Table

SEL1	FUNCTION	
0	R1 to R0 G1 to G0 B1 to B0	H1 to H0 V1 to V0
1	R2 to R0 G2 to GO B2 to B0	H2 to H0 V2 to Vo

Table 2. DDC Truth Table

SEL2	FUNCTION	
0	SDA1 to SDAO SCL1 to SCL0	
1	SDA2 to SDAO SCL2 to SCL0	

RGB Switches

The MAX4885AE provides three SPDT high-bandwidth switches to route standard VGA R_{-}, G_{-}, and B_{-}signals (see Table 1). The R_{-}, G_{-}, and B_{-}analog switches are identical and any of the three switches can be used to route red, green, or blue video signals. The RO, GO, and BO outputs are ESD protected to $\pm 15 \mathrm{kV}$ (HBM).

Horizontal/Vertical Sync Level Shifter
H1, H2, V1, and V2 inputs are buffered to provide levelshifting and drive capability for horizontal/vertical sync signals that meet the VESA specification. The H_{-}and V_{-} level-shifters are identical, and each level-shifter can be used for either horizontal or vertical signals. The HO and Vo outputs are ESD protected to $\pm 15 \mathrm{kV}$ (HBM).

Display-Data Channel Multiplexer
The MAX4885AE provides two logic-level translating switches to route DDC signals (see Table 2). VL is normally set to +3.3 V to provide logic-shifting for VESA ${ }^{12} \mathrm{C}$-compatible signals. The MAX4885AE protects the low-voltage graphics controller from +5 V that could be present in VESA-compatible monitors. In some applications, such as KVM, where logic-level shifting is not required, then VL can be connected to VCc. The SDA_ and SCL_ switches are identical, and each switch can be used to route either SDA_ or SCL_ signals. The SDAO and SCLO outputs are ESD protected to $\pm 15 \mathrm{kV}$ (HBM).

ESD Protection

As with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. Additionally, the RO, GO, BO, HO, VO, SDAO, and SCLO terminals of the MAX4885AE are designed for protection to the following limit: $\pm 15 \mathrm{kV}$ using the HBM.
For optimum ESD performance, bypass VCC and VL pins to ground with 1μ F or larger ceramic capacitors as close as possible to these supply pins.

High-Bandwidth, VGA 2:1 Switch with $\pm 15 k V$ ESD Protection

Figure 4. Human Body ESD Test Model

Human Body Model

Figure 4 shows the HBM, and Figure 5 shows the current waveform it generates when discharged into a lowimpedance state. This model consists of a 100 pF capacitor charged to the ESD voltage of interest, which is then discharged into the device through a $1.5 \mathrm{k} \Omega$ resistor.

ESD Test Conditions
ESD performance depends on a variety of conditions. Contact Maxim for a reliability report, test setup, methodology, and results.

Applications Information

The MAX4885AE provides the switching and levelshifting necessary to drive a standard VGA port from either an internal graphics controller or an add-in module (MXM or GPU—see Typical Applications Circuit). The R_{-}, G_{-}, and B_{-}signals are switched through the three low-capacitance SPDT switches. Internal buffers drive the HSYNC and VSYNC signals to VGA standard 5V-TTL levels. The DDC multiplexer provides level-shifting. Connect VL to +3.3 V for normal operation, or to V_{CC} to disable level-shifting for DDC signals as for KVM application.

Figure 5. Human Body Model Current Waveform

Power-Supply Decoupling

Bypass each VCC pin and VL pin to ground with a $1 \mu \mathrm{~F}$ or larger ceramic capacitor as close as possible to the device.

PCB Layout
High-speed switches such as the MAX4885AE requires proper PCB layout for optimum performance. Ensure that impedance-controlled PCB traces for high-speed signals are matched in length and as short as possible. Connect the exposed pad to ground or leave unconnected.

Chip Information

PROCESS: BICMOS

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
28 TQFN-EP	T2844+1	$\underline{21-0139}$

[^0]
[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

