: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

2.5Gbps PCI Express Passive Switches

Abstract

General Description The MAX4888/MAX4889 high-speed passive switches route PCI Express ${ }^{\circledR}$ (PCle) data between two possible destinations. The MAX4888 is a quad single-pole/doublethrow ($4 \times$ SPDT) switch ideally suited for switching two half lanes of PCle data between two destinations. The MAX4889 is an octal single-pole/double-throw ($8 \times$ SPDT) switch ideal for switching four half lanes of PCle data between four destinations. The MAX4888/MAX4889 feature a single digital control input (SEL) to switch signal paths. The MAX4888/MAX4889 are fully specified to operate from a single 3.0 V to 3.6 V power supply and also operate down to +1.65 V . The MAX4888 is available in a $3.5 \mathrm{~mm} \times 5.5 \mathrm{~mm}$, 28-pin TQFN package. The MAX4889 is available in a $3.5 \mathrm{~mm} \times 9.0 \mathrm{~mm}, 42$-pin TQFN package. Both devices operate over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications
Desktop Computers
Servers/Storage Area Networks
Laptops

PCI Express is a registered trademark of PCI-Sig Corp.

Features			
- Single 1.65V to 3.6V Power-Supply Voltage			
- Low Same-Pair Skew of 7ps			
- Low 120¢A (Max) Quiescent Current			
- Supports PCle Gen I Data Rates			
- Flow-Through Pin Configuration for Ease of Layout			
- Industry-Compatible Pinout			
- Lead-Free Packaging			
Ordering Information/\qquad Selector Guide			
PART	PINPACKAGE	CONFIGURATION	PKG CODE
MAX4888ETI+	28 TQFN-EP*	Two Half Lanes	T283555-1
MAX4889ETO+	42 TQFN-EP*	Four Half Lanes	T423590M-1

Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range.
+Denotes lead-free package.
*EP = Exposed paddle.
Typical Application Circuit appears at end of data sheet.

2.5Gbps PCI Express Passive Switches

ABSOLUTE MAXIMUM RATINGS

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
28-Pin TQFN (derate $20.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\left.+70^{\circ} \mathrm{C}\right) \ldots .1666 .7 \mathrm{~mW}$
42-Pin TQFN (derate $35.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\left.+70^{\circ} \mathrm{C}\right) \ldots .2857 .1 \mathrm{~mW}$
Operating Temperature Range $\ldots .40 . ~$

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
28-Pin TQFN (derate $20.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)... .1666 .7 mW 42-Pin TQFN (derate $35.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots . .2857 .1 \mathrm{~mW}$ Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Junction Temperature .. $+150^{\circ} \mathrm{C}$

Continuous Current (SEL)

 .$\pm 150 \mathrm{~mA}$Note 1: Signals on SEL, NO__, NC__ or COM__ exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}+=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ANALOG SWITCH						
Analog-Signal Range	VCOM_, $\mathrm{VNO}_{\mathrm{N}}, \mathrm{V}_{\mathrm{NC}}$		-0.1		(V+-1.2)	V
Voltage Between COM and NO/NC	I VCOM_- VNO_I, \| VCOM - VNC_I $^{\prime}$		0		1.8	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=3.0 \mathrm{~V}, \mathrm{ICOM}_{-}=15 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=0 \mathrm{~V}, 1.8 \mathrm{~V} \end{aligned}$		7		Ω
On-Resistance Match Between Pairs of Same Channel	$\Delta \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{+}=3.0 \mathrm{~V}, \mathrm{ICOM}_{-}=15 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_ }}=0 \mathrm{OV}(\text { Notes } 3,4) \end{aligned}$		0.1	1	Ω
On-Resistance Match Between Channels	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{+}=3.0 \mathrm{~V}, \mathrm{ICOM}_{-}=15 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_ }}=0 \mathrm{OV}(\text { Notes 3, 4) } \end{aligned}$		0.6	2	Ω
On-Resistance Flatness	RFLAT(ON)	$\begin{aligned} & \mathrm{V}_{+}=3.0 \mathrm{~V}, \mathrm{ICOM}_{-}=15 \mathrm{~mA} \\ & \mathrm{~V}_{\text {NO_ }} \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=0 \mathrm{~V}, 1.8 \mathrm{~V}(\text { Notes } 4,5) \end{aligned}$		0.06	2	Ω
NO_ or NC_ Off-Leakage Current	$\begin{aligned} & \text { INO_(OFF) } \\ & \text { INC_(OFF) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{+}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}^{-}= \\ & \mathrm{V}_{\mathrm{NO}_{-}} \text {or } \mathrm{V}_{\mathrm{NC}_{-}}=1.8 \mathrm{~V}, 1.8 \mathrm{~V}, 0 \mathrm{~V} \end{aligned}$	-1		+1	$\mu \mathrm{A}$
COM_ On-Leakage Current	ICOM_(ON)	$\begin{aligned} & \mathrm{V}_{+}=3.6 \mathrm{~V} ; \mathrm{V}_{\text {COM }}=0 \mathrm{~V}, 1.8 \mathrm{~V} ; \\ & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_ }}=\mathrm{V}_{\text {COM_ }} \text { or unconnected } \end{aligned}$	-1		+1	$\mu \mathrm{A}$

2.5Gbps PCI Express Passive Switches

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}+=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

Note 2: All units are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design and characterization and are not production tested.
Note 3: $\Delta R O N=\operatorname{RON}(M A X)-\operatorname{RON}(M I N)$.
Note 4: Guaranteed by design. Not production tested.
Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.

2.5Gbps PCI Express Passive Switches

2.5Gbps PCI Express Passive Switches

Typical Operating Characteristics (continued)
$\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

EYE DIAGRAM
($\mathrm{V}_{+}=1.8 \mathrm{~V}, \mathrm{f}=1.25 \mathrm{CHz}$, 600 mV P-p PRBS SIGNAL, $\left.R_{S}=R_{L}=50 \Omega\right)^{\dagger}$

*PRBS = PSEUDORANDOM BIT SEQUENCE tGEN I; 2.5Gps; UI = 400ps

*PRBS = PSEUDORANDOM BIT SEQUENCE ${ }^{\dagger}$ GEN I; $2.5 \mathrm{Gps} ; \mathrm{UI}=400 \mathrm{ps}$

*PRBS = PSEUDORANDOM BIT SEQUENCE
${ }^{\dagger}$ GEN I; $2.5 \mathrm{Gps} ; \mathrm{UI}=400 \mathrm{ps}$

2.5Gbps PCI Express Passive Switches

Pin Description

PIN		NAME	FUNCTION
MAX4888	MAX4889		
$\begin{gathered} 1,10,12,14 \\ 20,25,27 \end{gathered}$	$\begin{gathered} 1,4,10,14,17 \\ 19,21,39,41 \end{gathered}$	GND	Ground
2	9	SEL	Digital Control Input
3, 9	-	N.C.	No Connection. Not internally connected.
4	2	COM1+	Analog Switch 1. Common Positive Terminal.
5	3	COM1-	Analog Switch 1. Common Negative Terminal.
6	6	COM2+	Analog Switch 2. Common Positive Terminal.
7	7	COM2-	Analog Switch 2. Common Negative Terminal.
$\begin{gathered} 8,11,13,19 \\ 26,28 \end{gathered}$	$\begin{gathered} 5,8,13,18 \\ 20,30 \\ 40,42 \end{gathered}$	V+	Positive-Supply Voltage Input. Connect V + to a 1.65 V to 3.6 V supply voltage. Bypass $\mathrm{V}+$ to GND with a $0.1 \mu \mathrm{~F}$ capacitor placed as close to the device as possible. (See the Board Layout section).
15	31	NO2-	Analog Switch 2. Normally Open Negative Terminal.
16	32	NO2+	Analog Switch 2. Normally Open Positive Terminal.
17	33	NO1-	Analog Switch 1. Normally Open Negative Terminal.
18	34	NO1+	Analog Switch 1. Normally Open Positive Terminal.
21	35	NC2-	Analog Switch 2. Normally Closed Negative Terminal.
22	36	NC2+	Analog Switch 2. Normally Closed Positive Terminal.
23	37	NC1-	Analog Switch 1. Normally Closed Negative Terminal.
24	38	NC1+	Analog Switch 1. Normally Closed Positive Terminal.
-	11	COM3+	Analog Switch 3. Common Positive Terminal.
-	12	COM3-	Analog Switch 3. Common Negative Terminal.
-	15	COM4+	Analog Switch 4. Common Positive Terminal.
-	16	COM4-	Analog Switch 4. Common Negative Terminal.
-	22	NO4-	Analog Switch 4. Normally Open Negative Terminal.
-	23	NO4+	Analog Switch 4. Normally Open Positive Terminal.
-	24	NO3-	Analog Switch 3. Normally Open Negative Terminal.
-	25	NO3+	Analog Switch 3. Normally Open Positive Terminal.
-	26	NC4-	Analog Switch 4. Normally Closed Negative Terminal.
-	27	NC4+	Analog Switch 4. Normally Closed Positive Terminal.
-	28	NC3-	Analog Switch 3. Normally Closed Negative Terminal.
-	29	NC3+	Analog Switch 3. Normally Closed Positive Terminal.
EP	EP	EP	Exposed Paddle. Connect EP to GND.

2.5Gbps PCI Express Passive Switches

МАХ4888/МАХ4889

Figure 1. Switching Time

2.5Gbps PCI Express Passive Switches

Figure 2. Propagation Delay and Output Skew

2.5Gbps PCI Express Passive Switches

Test Circuits/Timing Diagrams (continued)

Figure 3. On-Loss, Off-Isolation, and Crosstalk

Figure 4. Channel Off-/On-Capacitance

Detailed Description

The MAX4888/MAX4889 high-speed passive switches route PCle data between two possible destinations. The MAX4888/MAX4889 are ideal for routing PCle signals to change the system configuration. For example, in a graphics application, the MAX4888/MAX4889 create two
sets of eight lanes from a single 16-lane bus. The MAX4888/MAX4889 feature a single digital control input (SEL) to switch signal paths.
The MAX4888/MAX4889 are fully specified to operate from a single 3.0 V to 3.6 V power supply and also operate down to 1.65 V .

Digital Control Input (SEL)

The MAX4888/MAX4889 provide a single digital control input (SEL) to select the signal path between the COM_ and NO__NC_ channels. The truth tables for the MAX4888/MAX4889 are depicted in the Functional Diagrams/Truth Table section. Drive SEL rail-to-rail to minimize power consumption.

Analog Signal Levels
The MAX4888/MAX4889 accept standard PCle signals to a maximum of $\mathrm{V}+-1.2 \mathrm{~V}$. Signals on the COM_+ channels are routed to either the NO_+ or NC_+ channels, and signals on the COM_- channels are routed to either the NO_- or NC_- channels. The MAX4888/ MAX4889 are bidirectional switches, allowing COM__, NO_, and NC__ to be used as either inputs or outputs.

2.5Gbps PCI Express Passive Switches

2.5Gbps PCI Express Passive Switches

Applications Information

PCle Switching

The MAX4888/MAX4889 primary applications are aimed at reallocating PCle lanes (see Figure 5). For example, in graphics applications, several manufacturers have found that it is possible to improve performance by a factor of nearly two by splitting a single 16-lane PCle bus into two 8-lane buses. Two of the more prominent examples are SLITM (Scaled Link Interface) and CrossFire ${ }^{\text {TM }}$. The MAX4889 permits a computer motherboard to operate properly with a single 16-lane graphics card, and can later be updated to dual cards. The same motherboard can be used with dual cards where the user sets a jumper or a bit through software to switch between single- or dual-card operation.

Board Layout

High-speed switches require proper layout and design procedures for optimum performance. Keep designcontrolled impedance PCB traces as short as possible or follow impedance layouts per the PCle specification. Ensure that power-supply bypass capacitors are placed as close to the device as possible. Multiple bypass capacitors are recommended. Connect all grounds and the exposed pad to large ground planes.

Figure 5. The MAX4888/MAX4889 Used as a Single-Lane Switch

Chip Information
PROCESS: CMOS

CrossFire is a trademark of ATI Technologies, Inc.
SLI is a trademark of NVIDIA Corporation.

2.5Gbps PCI Express Passive Switches

2.5Gbps PCI Express Passive Switches

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

2.5Gbps PCI Express Passive Switches

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

CIMMIN DIMENSIGNS						
REF.	MIN.	NDM.	MAX.	NQTE		
A	0.70	0.75	0.80			
A1	0	-	0.05			
A3	0.20 REF.					
b	0.20	0.25	0.30			
D	3.40	3.50	3.60			
E	5.40	5.50	5.60			
e	0.50 BSC.					
K	0.25	-	-			
L	0.30	0.40	0.50	PINL		
N	28					
ND	4					
NE						

	EXPOSED PAD VARIATIUNS					
	D2			E2		
	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.
T283555-1	1.95	2.05	2.15	3.95	4.05	4.15

NDTES:

1. DIMENSIONING \& TQLERANCING CONFORM TI ASME Y14.5M-1994.
2. ALL DIMENSIINS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
3. N IS THE TITAL NUMBER DF TERMINALS.
4. THE TERMINAL \#1 IDENTIFIER AND TERMINAL NUMBERING CZNVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL \#1 IDENTIFIER ARE OPTIUNAL, BUT MUST BE LICATED WITHIN THE ZONE INDICATED. THE TERMINAL \#1 IDENTIFIER MAY BE EITHER A MDLD DR MARKED FEATURE.
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP.
6. ND AND NE REFER TD THE NUMBER DF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
7. COPLANARITY APPLIES TO THE EXPISED heat SINK SlUG AS WELL AS the TERMINALS. CIPLANARITY SHALL NDT EXCEED 0.08 mm .
8. WARPAGE SHALL NOT EXCEED 0.10 mm .
9. MARKING IS FIR PACKAGE DRIENTATION PURPDSE DNLY.
(1)RALLAS /VIJIXIJU

亿l LeAD CENTERLINES DEFINED BY DIMESION $e^{ \pm 0.05}$.

APPROVAL	DOCUMENT CONTROL N
	$21-0184$

REV.	
D	$2 / 2$

2.5Gbps PCI Express Passive Switches

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

2．5Gbps PCI Express Passive Switches

（The package drawing（s）in this data sheet may not reflect the most current specifications．For the latest package outline information go to www．maxim－ic．com／packages．）

CIMMIN DIMENSIUNS						
REF．	MIN．	NDM．	MAX．	NDTE		
A	0.70	0.75	0.80			
A1	0	-	0.05			
A3	0.20 REF．					
b	0.20	0.25	0.30			
D	3.40	3.50	3.60			
E	8.90	9.00	9.10			
e	0.50 BSC．					
K	0.25	-	-			
L	0.35	0.40	0.45	PILL		
N	42					
ND	4					
NE	17					

	EXPOSED PAD VARIATIUNS					
	D2			E2		
	MIN．	NDM．	MAX．	MIN．	NDM．	MAX．
T423590－1	1.95	2.05	2.15	7.45	7.55	7.65
T423590M－1	1.95	2.05	2.15	7.45	7.55	7.65

NOTES，
1．DIMENSIDNING \＆TQLERANCING CDNFORM TD ASME Y14．5M－1994．
2．ALL DIMENSIDNS ARE IN MILLIMETERS．ANGLES ARE IN DEGREES．
3．N IS THE TDTAL NUMBER DF TERMINALS．
4．THE TERMINAL＊1 IDENTIFIER AND TERMINAL NUMBERING CUNVENTION SHALL CDNFORM TD JESD 95－1 SPP－012．DETAILS DF TERMINAL \＃1 IDENTIFIER ARE OPTIDNAL，BUT MUST BE LOCATED WITHIN THE ZZNE INDICATED．THE TERMINAL \＃1 IDENTIFIER MAY BE EITHER A MDLD OR MARKED FEATURE
S．DIMENSIIN b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FRIM TERMINAL TIP．

6．ND AND NE REFER TI THE NUMBER DF TERMINALS IN EACH D AND E SIDE RESPECTIVELY．
7．CDPLANARITY APPLIES TI THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS．CIPLANARITY SHALL NDT EXCEED 0.08 mm ．
8．WARPAGE SHALL NDT EXCEED 0.10 mm ．
Q．MARKING IS FOR PACKAGE DRIENTATIUN PURPDSE QNLY．
亿alead centerlines to be at defined by dimesian e ± 0.05 ．
－DRAWING NOT TO SCALE－

\qquad

