imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

The MAX4888/MAX4889 high-speed passive switches route PCI Express[®] (PCIe) data between two possible destinations. The MAX4888 is a quad single-pole/double-throw (4 x SPDT) switch ideally suited for switching two half lanes of PCIe data between two destinations. The MAX4889 is an octal single-pole/double-throw (8 x SPDT) switch ideal for switching four half lanes of PCIe data between four destinations. The MAX4888/MAX4889 feature a single digital control input (SEL) to switch signal paths.

The MAX4888/MAX4889 are fully specified to operate from a single 3.0V to 3.6V power supply and also operate down to +1.65V. The MAX4888 is available in a 3.5mm x 5.5mm, 28-pin TQFN package. The MAX4889 is available in a 3.5mm x 9.0mm, 42-pin TQFN package. Both devices operate over the -40°C to +85°C temperature range.

Applications

Desktop Computers Servers/Storage Area Networks Laptops

PCI Express is a registered trademark of PCI-Sig Corp.

Features

- Single 1.65V to 3.6V Power-Supply Voltage
- Low Same-Pair Skew of 7ps
- Low 120µA (Max) Quiescent Current
- Supports PCIe Gen I Data Rates
- Flow-Through Pin Configuration for Ease of Layout
- Industry-Compatible Pinout
- Lead-Free Packaging

Ordering Information/ _____Selector Guide

PART	PIN- PACKAGE	CONFIGURATION	PKG CODE
MAX4888ETI+	28 TQFN-EP*	Two Half Lanes	T283555-1
MAX4889ETO+	42 TQFN-EP*	Four Half Lanes	T423590M-1

Note: All devices are specified over the -40°C to +85°C operating temperature range.

+Denotes lead-free package.

*EP = Exposed paddle.

Typical Application Circuit appears at end of data sheet.

Pin Configurations

M/IXI/M

___ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND, unless otherwise noted.)
V+0.3V to +4V
SEL, COM_, NO_, NC_ (Note 1)0.3V to (V+ + 0.3V)
COM NO_ , COM NC_ (Note 1)0 to 2V
Continuous Current (COM_ to NO_/NC_)±70mA
Peak Current (COM to NO/NC)
(pulsed at 1ms, 10% duty cycle)±70mA
Continuous Current (SEL)±30mA
Peak Current (SEL)
(pulsed at 1ms, 10% duty cycle)±150mA

Note 1: Signals on SEL, NO_, NC_ or COM_ exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(V+ = 3.0V to 3.6V, $T_A = -40^{\circ}$ C to +85°C, unless otherwise noted. Typical values are at V+ = 3.3V, $T_A = +25^{\circ}$ C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
ANALOG SWITCH						
Analog-Signal Range	V _{COM_} , V _{NO_} , V _{NC_}		-0.1		(V+ - 1.2)	V
Voltage Between COM and NO/NC	V _{COM_} - V _{NO_} , V _{COM_} - V _{NC_}		0		1.8	V
On-Resistance	R _{ON}	$V_{+} = 3.0V, I_{COM} = 15mA, V_{NO} \text{ or } V_{NC} = 0V, 1.8V$		7		Ω
On-Resistance Match Between Pairs of Same Channel	ΔR_{ON}	V+ = 3.0V, I_{COM} = 15mA, V _{NO} or V _{NC} = 0V (Notes 3, 4)		0.1	1	Ω
On-Resistance Match Between Channels	ΔR_{ON}	$V_{+} = 3.0V, I_{COM} = 15mA, V_{NO} \text{ or } V_{NC} = 0V \text{ (Notes 3, 4)}$		0.6	2	Ω
On-Resistance Flatness	R _{FLAT(ON)}	V+ = 3.0V, I_{COM} = 15mA V _{NO} or V _{NC} = 0V, 1.8V (Notes 4, 5)		0.06	2	Ω
NO_ or NC_ Off-Leakage Current	I _{NO_(OFF)} I _{NC_(OFF)}	$V_{+} = 3.6V; V_{COM} = 0V, 1.8V; V_{NO} \text{ or } V_{NC} = 1.8V, 0V$	-1		+1	μA
COM_ On-Leakage Current	ICOM_(ON)	V+ = 3.6V; V _{COM} = 0V, 1.8V; V _{NO} or V _{NC} = V _{COM} or unconnected	-1		+1	μA

ELECTRICAL CHARACTERISTICS (continued)

(V+ = 3.0V to 3.6V, $T_A = -40^{\circ}$ C to +85°C, unless otherwise noted. Typical values are at V+ = 3.3V, $T_A = +25^{\circ}$ C.) (Note 2)

PARAMETER	SYMBOL	CON	DITIONS	MIN	ТҮР	MAX	UNITS
DYNAMIC							
Turn-On Time	ton	V_{NO} or V_{NC} = 1.0	V, R _L = 50 Ω , Figure 1		90	250	ns
Turn-Off Time	tOFF	V_{NO} or V_{NC} = 1.0	V, R _L = 50 Ω , Figure 1		10	50	ns
Propagation Delay	t _{PD}	$R_S = R_L = 50\Omega$, unb	alanced, Figure 2		50		ps
Output Skew Between Pairs	tsk1	$R_S = R_L = 50\Omega$, unba any two pairs, Figure	alanced; skew between 2		50		ps
Output Skew Between Same Pair	tsk2	$R_S = R_L = 50\Omega$, unbatter two lines on same particular the second state of the seco	alanced; skew between air, Figure 2		10		ps
	0	$R_S = R_L = 50\Omega$,	1MHz < f < 100MHz		-0.5		10
On-Loss	G _{LOS}	unbalanced, Figure 3	500MHz < f < 1.25GHz		-1.4		dB
Querestelle		Crosstalk between any two pairs,	f = 50MHz		-53		-10
Crosstalk	V _{CT1}	$R_S = R_L = 50\Omega$, unbalanced, Figure 3	f = 1.25GHz		-32		dB
Signaling Data Rate	BR	$R_S = R_L = 50\Omega$			3.0		Gbps
		Signal = 0dBm,	f = 10MHz		-56		
Off-Isolation	VISO	$R_S = R_L = 50\Omega$, Figure 3	f = 1.25GHz		-26		dB
NO_/NC_ Off-Capacitance	C _{NO_/NC_(OFF)}	Figure 4			1		рF
COM_ On-Capacitance	C _{COM} (ON)	Figure 4			2		рF
LOGIC INPUT							
Input-Logic Low	VIL					0.5	V
Input-Logic High	VIH			1.4			V
Input-Logic Hysteresis	V _{HYST}				100		mV
Input Leakage Current	l _{IN}	$V_{SEL} = 0V \text{ or } V+$		-1		+1	μA
POWER SUPPLY							
Power-Supply Range	V+			1.65		3.60	V
V+ Supply Current	+	$V_{SEL} = 0V \text{ or } V+$	MAX4888			60	
	1+	$v_{SEL} = 0 v 0 v +$	MAX4889			120	μA

Note 2: All units are 100% production tested at $T_A = +85^{\circ}C$. Limits over the operating temperature range are guaranteed by design and characterization and are not production tested.

Note 3: $\Delta R_{ON} = R_{ON} (MAX) - R_{ON} (MIN)$.

Note 4: Guaranteed by design. Not production tested.

Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.

M/IXI/N

Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, unless otherwise noted.)$

EYE DIAGRAM (V+ = 2.5V, f = 1.25GHz, 600mVp-p PRBS SIGNAL, Rs = RL = 50 Ω)[†]

EYE DIAGRAM (V+ = 3.3V, f = 1.25GHz, 600mVp.p PRBS SIGNAL, R_S = R_L = 50Ω)[†]

*PRBS = PSEUDORANDOM BIT SEQUENCE †GEN I; 2.5Gps; UI = 400ps

///XI//

Pin Description

P	IN		FUNCTION
MAX4888	MAX4889	NAME	FUNCTION
1, 10, 12, 14, 20, 25, 27	1, 4, 10, 14, 17, 19, 21, 39, 41	GND	Ground
2	9	SEL	Digital Control Input
3, 9	—	N.C.	No Connection. Not internally connected.
4	2	COM1+	Analog Switch 1. Common Positive Terminal.
5	3	COM1-	Analog Switch 1. Common Negative Terminal.
6	6	COM2+	Analog Switch 2. Common Positive Terminal.
7	7	COM2-	Analog Switch 2. Common Negative Terminal.
8, 11, 13, 19, 26, 28	5, 8, 13, 18, 20, 30, 40, 42	V+	Positive-Supply Voltage Input. Connect V+ to a 1.65V to 3.6V supply voltage. Bypass V+ to GND with a 0.1μ F capacitor placed as close to the device as possible. (See the <i>Board Layout</i> section).
15	31	NO2-	Analog Switch 2. Normally Open Negative Terminal.
16	32	NO2+	Analog Switch 2. Normally Open Positive Terminal.
17	33	NO1-	Analog Switch 1. Normally Open Negative Terminal.
18	34	NO1+	Analog Switch 1. Normally Open Positive Terminal.
21	35	NC2-	Analog Switch 2. Normally Closed Negative Terminal.
22	36	NC2+	Analog Switch 2. Normally Closed Positive Terminal.
23	37	NC1-	Analog Switch 1. Normally Closed Negative Terminal.
24	38	NC1+	Analog Switch 1. Normally Closed Positive Terminal.
	11	COM3+	Analog Switch 3. Common Positive Terminal.
—	12	COM3-	Analog Switch 3. Common Negative Terminal.
_	15	COM4+	Analog Switch 4. Common Positive Terminal.
—	16	COM4-	Analog Switch 4. Common Negative Terminal.
_	22	NO4-	Analog Switch 4. Normally Open Negative Terminal.
_	23	NO4+	Analog Switch 4. Normally Open Positive Terminal.
	24	NO3-	Analog Switch 3. Normally Open Negative Terminal.
	25	NO3+	Analog Switch 3. Normally Open Positive Terminal.
	26	NC4-	Analog Switch 4. Normally Closed Negative Terminal.
	27	NC4+	Analog Switch 4. Normally Closed Positive Terminal.
_	28	NC3-	Analog Switch 3. Normally Closed Negative Terminal.
_	29	NC3+	Analog Switch 3. Normally Closed Positive Terminal.
EP	EP	EP	Exposed Paddle. Connect EP to GND.

Test Circuits/Timing Diagrams

Figure 1. Switching Time

Figure 2. Propagation Delay and Output Skew

_Test Circuits/Timing Diagrams (continued)

Figure 3. On-Loss, Off-Isolation, and Crosstalk

Figure 4. Channel Off-/On-Capacitance

Detailed Description

The MAX4888/MAX4889 high-speed passive switches route PCIe data between two possible destinations. The MAX4888/MAX4889 are ideal for routing PCIe signals to change the system configuration. For example, in a graphics application, the MAX4888/MAX4889 create two

sets of eight lanes from a single 16-lane bus. The MAX4888/MAX4889 feature a single digital control input (SEL) to switch signal paths.

The MAX4888/MAX4889 are fully specified to operate from a single 3.0V to 3.6V power supply and also operate down to 1.65V.

Digital Control Input (SEL)

The MAX4888/MAX4889 provide a single digital control input (SEL) to select the signal path between the COM__ and NO__/NC__ channels. The truth tables for the MAX4888/MAX4889 are depicted in the *Functional Diagrams/Truth Table* section. Drive SEL rail-to-rail to minimize power consumption.

Analog Signal Levels

The MAX4888/MAX4889 accept standard PCIe signals to a maximum of V+ - 1.2V. Signals on the COM_+ channels are routed to either the NO_+ or NC_+ channels, and signals on the COM_- channels are routed to either the NO_- or NC_- channels. The MAX4888/MAX4889 are bidirectional switches, allowing COM__, NO__, and NC__ to be used as either inputs or outputs.

MAX4888/MAX4889

Functional Diagrams/Truth Table

Applications Information

PCIe Switching

The MAX4888/MAX4889 primary applications are aimed at reallocating PCIe lanes (see Figure 5). For example, in graphics applications, several manufacturers have found that it is possible to improve performance by a factor of nearly two by splitting a single 16-lane PCIe bus into two 8-lane buses. Two of the more prominent examples are SLI™ (Scaled Link Interface) and CrossFire™. The MAX4889 permits a computer motherboard to operate properly with a single 16-lane graphics card, and can later be updated to dual cards. The same motherboard can be used with dual cards where the user sets a jumper or a bit through software to switch between single- or dual-card operation.

Board Layout

High-speed switches require proper layout and design procedures for optimum performance. Keep designcontrolled impedance PCB traces as short as possible or follow impedance layouts per the PCIe specification. Ensure that power-supply bypass capacitors are placed as close to the device as possible. Multiple bypass capacitors are recommended. Connect all grounds and the exposed pad to large ground planes.

Figure 5. The MAX4888/MAX4889 Used as a Single-Lane Switch

Chip Information

PROCESS: CMOS

CrossFire is a trademark of ATI Technologies, Inc. SLI is a trademark of NVIDIA Corporation.

12

M/IXI/M

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

	С		N DIMEN	SIONS					EXPOSE	D PAD]
R	EF. N	MIN.	NDM.	MAX.	NOTE				D2			E2		1
A	4 0	0.70	0.75	0.80			PKG. CODE	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	1
A	1	0	-	0.05		1	T283555-1	1.95	2.05	2.15	3.95	4.05	4.15	1
A	43	0	.20 REF											-
ю	b (0.20	0.25	0.30										
ם) 3	3.40	3.50	3.60										
E		5.40	5.50	5.60										
e	2	0	.50 BSC											
L K	< (0.25	-	-										
		0.30	0.40	0.50	ALL PINS									
			28											
N	ND I													
	IE		4 10 RANCING	CUNED		SMF Y14.5	M-1994 .							
TES: DIMENSIC ALL DIMI N IS THI CONFORM OPTIONAI IDENTIFI DIMENSIC 0.25mm A ND AND RESPECT	ENING & ENSIGNS ENSIGNS ETOTAL MINAL # I TO JE: L, BUT IER MAY IN 6 AP AND 0.300 NE REFI IVELY. ARITY AF	S ARE L NUMI #1 IDE SD 95 MUST BE E PPLIES PPLIES PPLIES	10 RANCING IN MILL BER OF NTIFIER -1 SPP- BE LOC/ ITHER A TO MET THE NU THE NU	IMETERS TERMINA AND TE 012. DE ATED VI MOLD I TALLIZE MINAL T JMBER D E EXPOS	S. ANGL ALS. ERMINAL ETAILS (THIN T OR MAR D TERM IP. IF TERM SED HEA	S ARE IN NUMBERIN IF TERMIN E ZONE I ED FEATU VAL AND T NALS ON T SINK SL	DEGREES. IG CONVENTIONAL #1 IDENT	IFIER A HE TERM BETWEN E SIDE	RE INAL #1 EN			LAS		

M/IXI/M

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

			N DIMEN	ZNDIZ				EXPOSE	D PAD	VARIAT	IONS		
	REF.	MIN.	NDM.	MAX.	NOTE			D2			E2		
	A	0.70	0.75	0.80		PKG. CODE	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	
	A1	0	-	0.05		T423590-1	1.95	2.05	2.15	7.45	7.55	7.65	
	A3	0	.20 REF			T423590M-1	1.95	2.05	2.15	7.45	7.55	7.65	
	ю	0.20	0.25	0.30									
	D	3.40	3.50	3.60									
	Е	8.90	9.00	9.10									
	e	0	0.50 BSC										
	k	0.25	-	-									
	L	0.35	0.40	0.45	ALL PINS								
	N		42										
	ND		4										
	NE		17										
	DIMENSIO THE TOT					RE IN DEGREES.							
THE CONFI UPTIC UDENT C.25m C.25m C.25m C.25m C.25m C.20PL TERM B. VARP	DRM TO DNAL, BU TIFIER MA NSIDN b M AND 0. ND NE RE ECTIVEL ANARITY INALS, CI PAGE SHA ING IS F	JESD 95 T MUST : AY BE EI APPLIES 30mm FRI EFER TO Y. APPLIES OPLANARI ILL NOT OR PACK	NTIFIER -1 SPP-(BE LOCA ITHER A TO MET OM TERM THE NU THE NU THE NU THE NU THE NU THE SHAL EXCEED (AGE DRI	AND TE D12, DE TED WI MOLD C ALLIZEI INAL TI MBER DI EXPOS LL NOT 0.10mm. ENTATIC	RMINAL NI TAILS OF THIN THE IR MARKEI D TERMINA F TERMINA ED HEAT EXCEED C IN PURPOS		IFIER AF HE TERMI BETWEE E SIDE	RE NAL #1 N	TITLE:				

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

_Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

16

is a registered trademark of Maxim Integrated Products, Inc.