

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

The MAX4895E integrates level-translating buffers and features R, G, B port protection for VGA signals.

The MAX4895E has H, V (horizontal, vertical) translating buffers that take low-level CMOS inputs from the graphics outputs to meet full +5.0V, TTL-compatible outputs. Each output can drive ±10mA and meet the VESA® specification. In addition, the device takes the +5.0V, direct digital control (DDC) signals and translates them to the lower level required by the graphics device. This level is set by the user by connecting V_L to the graphics output supply. The R, G, B terminals protect the graphics output pins against electrostatic discharge (ESD) events. All seven outputs have high-level ESD protection.

The MAX4895E is specified over the extended -40°C to +85°C temperature range, and is available in a 16-pin, 3mm x 3mm TQFN package.

Applications

Notebook Computers

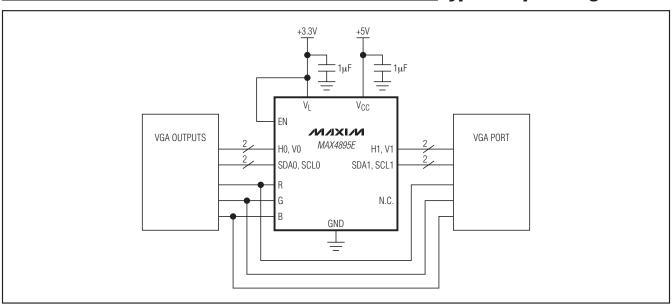
Desktops

Servers

Graphics Cards

VESA is a registered service mark of Video Electronics Standards Association Corporation.

Features


- ♦ ESD Protection on H1, V1, SDA1, SCL1, R, G, and B ±15kV—Human Body Model ±8kV—IEC 61000-4-2, Contact Discharge
- ♦ Low Quiescent Current, I_Q ≤ 5μA (max)
- **♦** Low 3pF (max) Capacitance (R, G, B Ports)
- **♦ DDC Level-Shifting Protection and Isolation**
- ♦ Horizontal Sync, Vertical Sync Level Shifting/ **Buffering**
- ♦ Input Compatible with V_L
- ♦ Output Full +5.0V TTL Compatible (per VESA)
- ♦ ±10mA Drive on Each H, V Terminal
- ◆ Space-Saving, Lead-Free, 16-Pin (3mm x 3mm) **TQFN Package**

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4895EETE+	-40°C to +85°C	16 TQFN-EP*

+Denotes a lead(Pb)-free/RoHS-compliant package.

Typical Operating Circuit

^{*}EP = Exposed pad.

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)	
V _C C	0.3V to +6.0V
V _L	0.3V to $+(V_{CC} + 0.3V)$
R, G, B, H1, V1, SCL1, SDA1	0.3V to $+(V_{CC} + 0.3V)$
EN, H0, V0, SCL0, SDA0	0.3V to $+(V_L + 0.3V)$
Continuous Current through SDA_, So	CL±30mÁ
Continuous Short-Circuit Current H1,	V1±20mA

Continuous Power Dissipation ($T_A = +70^{\circ}C$) for mul-	tilayer board:
16-Pin TQFN (derate 20.8mW/°C above +70°C).	1667mW
Junction-to-Case Thermal Resistance (θ _{JC}) (Note	1)7°C/W
Junction-to-Ambient Thermal Resistance (θ_{JA})	
(Note 1)	48°C/W
Operating Temperature Range40	0°C to +85°C
Junction Temperature	
Storage Temperature Range65°	°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

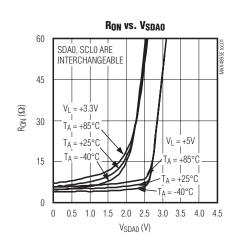
 $(V_{CC} = +4.5V \text{ to } +5.5V, V_L = +2.0V \text{ to } V_{CC}, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = +5.0V, V_L = +3.3V, \text{ and } T_A = +25^{\circ}C.)$ (Note 2)

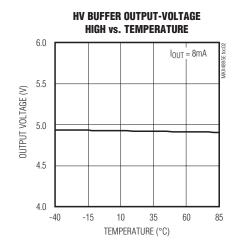
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SUPPLY OPERATION	•					
Supply Voltage	V _{CC}		4.5		5.5	V
Logic Supply Voltage	VL	V _L ≤ V _{CC}	2	3.3	5.5	V
V _{CC} Supply Current	Icc	V_{H0} , $V_{V0} = 0V$, $V_{EN} = V_{L}$		0.5	5.0	μΑ
V _L Supply Current	IL	V_{H0} , $V_{V0} = 0V$, $V_{EN} = V_L$ (no load)		0.5	5.0	μΑ
RGB CHANNELS						
R, G, B Capacitance	C _{OUT}	$f = 1MHz$, $V_{R,G,B} = 1V_{P-P}$ (Note 3)		2.2		рF
R, G, B Leakage		V _{CC} = +5.5V	-1		+1	μΑ
H_, V_, EN CHANNELS						
Input Threshold Low	VIL	$V_L = +3.0V$			0.8	V
Input Threshold High	VIH	$V_L = +3.6V$	2.0			V
Input Hysteresis	V _H YST			100		mV
Input Leakage Current	ILEAK	$V_L = +3.3V, V_{CC} = +5.5V$	-1		+1	μΑ
Output-Voltage Low	V _{OL}	$I_{OUT} = 10$ mA sink, $V_{CC} = +4.5$ V			0.8	V
Output-Voltage High	V _{OH}	$I_{OUT} = 10$ mA source, $V_{CC} = +4.5$ V	2.4			V
Propagation Delay	t _{PD}	$R_L = 2.2k\Omega$, $C_L = 10pF$, $V_{OL} = +0.8V$, $V_{OH} = +2.4V$		15		ns
Enable Time	ton, toff			15		ns
SDA_, SCL_ (DDC) CHANNELS	}					
On-Resistance, SDA, SCL	Ron	V _{CC} = +5.5V, I _{SDA} , _{SCL} = ±10mA, V _{SDA} , _{SCL} = +0.5V		20	55	Ω
Leakage Current, SDA, SCL	ILEAK	$V_L = 0V$	-1		+1	μΑ

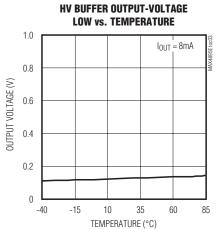
ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC}$ = +4.5V to +5.5V, V_L = +2.0V to V_{CC} , T_A = T_{MIN} to T_{MAX} , unless otherwise noted. Typical values are at V_{CC} = +5.0V, V_L = +3.3V, and T_A = +25°C.) (Note 2)

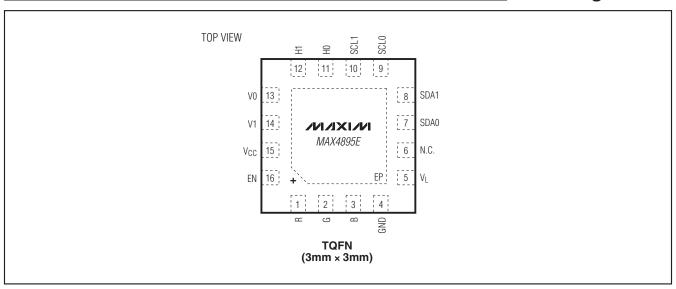
PARAMETER SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
ESD PROTECTION						
SDA1, SCL1, H1, V1, R, G, B		Human Body Model (Note 4)		±15		kV
SDA1, SCL1, H1, V1, R, G, B		IEC 61000-4-2 Contact		±8		kV

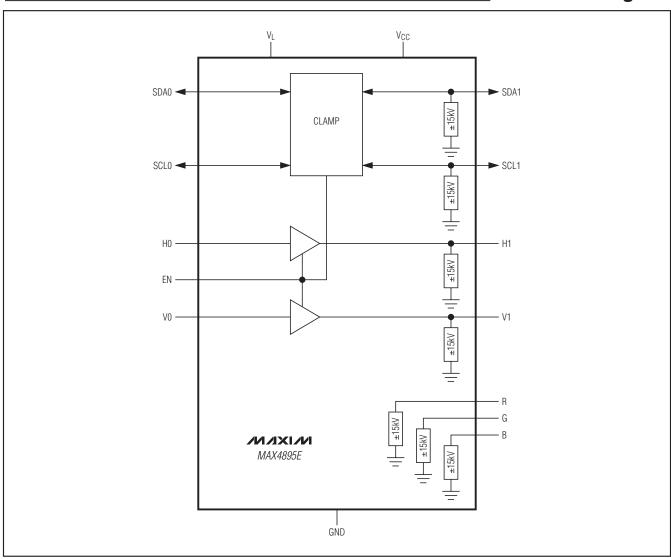

Note 2: All devices are 100% production tested at $T_A = +25$ °C. All temperature limits are guaranteed by design.


Note 3: Guaranteed by design, not production tested.


Note 4: Tested terminals to GND; 1µF bypass capacitors on V_{CC} and V_L.

Typical Operating Characteristics


($V_{CC} = +5.0V$, $V_{L} = +3.3V$, and $T_{A} = +25$ °C, unless otherwise noted.)


Pin Configuration

Pin Description

PIN	NAME	FUNCTION
1	R	High-ESD Protection Diodes for RGB Signals
2	G	High-ESD Protection Diodes for RGB Signals
3	В	High-ESD Protection Diodes for RGB Signals
4	GND	Ground
5	VL	Supply Voltage, +2.0V to V _{CC} . Bypass V _L to GND with a 1µF ceramic capacitor.
6	N.C.	No Connection. Leave unconnected.
7	SDA0	SDA I/O. SDA0 referenced to V _L .
8	SDA1	SDA I/O. SDA1 referenced to V _{CC} .
9	SCL0	SCL I/O. SCL0 referenced to V _L .
10	SCL1	SCL I/O. SCL1 referenced to V _{CC} .
11	H0	Horizontal Sync Input
12	H1	Horizontal Sync Output
13	V0	Vertical Sync Input
14	V1	Vertical Sync Output
15	V _{CC}	Power-Supply Voltage, +4.5V to +5.5V. Bypass V _{CC} to GND with a 1µF ceramic capacitor.
16	EN	Enable for H1 and V1 Outputs
_	EP	Exposed Pad. Connect EP to GND or leave unconnected. For enhanced thermal dissipation, connect EP to a copper area as large as possible. Do not use EP as a sole ground connection.

Functional Diagram

Applications Information

The MAX4895E provides the level shifting necessary to drive two standard VGA ports from a graphics controller as low as +2.2V. Internal buffers drive the HSYNC and VSYNC signals to VGA standard TTL levels. The DDC switch provides level shifting by clamping signals to a diode drop less than V_L (see the *Typical Operating Circuit*). Connect V_L to +3.3V for normal operation.

Power-Supply Decoupling

Bypass VCC and VL to ground with a 1 μF ceramic capacitor as close as possible to the device.

PCB Layout

High-speed switches such as the MAX4895E require proper PCB layout for optimum performance. Ensure that impedance-controlled PCB traces for high-speed signals are matched in length and are as short as possible. Connect the exposed pad to a solid ground plane.

Detailed Description

The MAX4895E integrates level-translating buffers and features R, G, B port protection for VGA signals.

Horizontal and vertical synchronization (H0/V0) inputs feature level-shifting buffers to support low-voltage CMOS or standard TTL-compatible graphics controllers. The device meets ±10mA VESA drive requirements. The MAX4895E also features I²C level shifting using two nMOS devices. All outputs maintain ±15kV Human Body Model (HBM) and ±8kV Contact Discharge per IEC 61000-4-2 on seven terminals (SDA1, SCL1, H1, V1, R, G, B). The R, G, B pads protect the digital-to-analog converter (DAC) and are simply placed in parallel with the R, G, B outputs for the DAC and VGA socket.

Horizontal/Vertical Sync Level Shifter

HSYNC/VSYNC are buffered to provide level shifting and drive capability to meet the VESA specification. Input logic levels (V_{IL} , V_{IH}) are connected to V_L (see the *Electrical Characteristics* table). The level-shifted outputs (H1 and V1) are pulled low when EN is driven low (see Table 1). Logic-level output (V_{OL} , V_{OH}) are +5.0V TTL compatible.

Table 1. HV Truth Table

EN	FUNCTION	
1	HSYNC/VSYNC level shifting enabled	
0	H1, V1 = 0	

Table 2. DDC Truth Table

EN	FUNCTION	
1	SDA0 to SDA1 SCL0 to SCL1	
0	SDA1, SCL1, high impedance	

Display Data Channel Switches

The MAX4895E incorporates two nMOS switches for I²C level shifting. The SDA, SCL terminals are voltage clamped to a diode drop less than the V_L voltage. Voltage clamping provides protection and compatibility with SDA, SCL signals and low-voltage ASICs. Supply +2.5V to +3.3V on V_L to provide voltage clamping for VESA I²C-compatible signals. The SDA, SCL switches are identical, and each switch can be used to route SDA or SCL signals.

RGB

There are three terminals for R, G, and B. The only function of these terminals is to provide high-level ESD protection to the RGB lines, while at the same time, keeping the capacitance on the RGB lines to a minimum. The R, G, B terminals are identical, and any of the three terminals can be used to protect red, green, or blue video signals.

ESD Protection

As with all Maxim devices, ESD-protection structures are incorporated on all terminals to protect against electrostatic discharges encountered during handling and assembly. Additionally, the MAX4895E is protected to $\pm 15 \text{kV}$ on the RGB terminals and outputs H1, V1, SDA1, and SCL1 by the Human Body Model (HBM). For optimum ESD performance, bypass VCC to ground with a 1µF ceramic capacitor.

ESD protection can be tested in various ways. The R, G, B terminals and outputs H1, V1, SDA1, and SCL1 of the MAX4895E are characterized for protection to the following limits:

- ±15kV using the Human Body Model
- ±8kV IEC 61000-4-2 Contact Discharge

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report documenting test setup, methodology, and results.

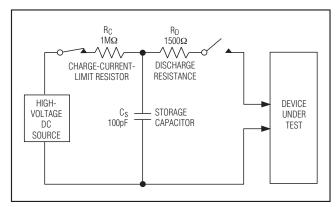


Figure 1a. Human Body ESD Test Model

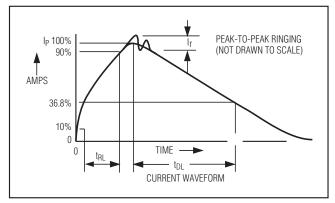


Figure 1b. Human Body Current Waveform

Human Body Model (HBM)

Figure 1a shows the Human Body Model, and Figure 1b shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest that is then discharged into the test device through a $1.5 \mathrm{k}\Omega$ resistor.

IEC 61000-4-2

The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment. However, it does not specifically refer to integrated circuits. The MAX4895E assists in designing equipment to meet IEC 61000-4-2 without the need for additional ESD-protection components.

The major difference between tests done using the Human Body Model and IEC 61000-4-2 is higher peak current in IEC 61000-4-2 because series resistance is

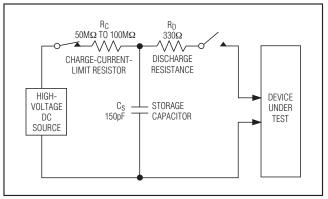


Figure 1c. IEC 61000-4-2 ESD Test Model

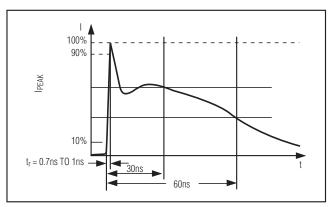


Figure 1d. IEC 61000-4-2 ESD Generator Current Waveform

lower in the IEC 61000-4-2 model. Hence, the ESD withstand voltage measured to IEC 61000-4-2 is generally lower than that measured using the Human Body Model. Figure 1c shows the IEC 61000-4-2 model, and Figure 1d shows the current waveform for IEC 61000-4-2 ESD Contact Discharge test.

_Chip Information

PROCESS: BICMOS

_Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND
TYPE	CODE	NO.	PATTERN NO.
16 TQFN-EP	T1633+4	<u>21-0136</u>	

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	4/09	Initial release	_
1	6/10	Deleted the "Top Mark" column from the Ordering Information	1

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.