: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Low-RON, Dual-SPST/Single-SPDT Clickless Switches with Negative Rail Capability

General Description

The MAX4901-MAX4905 switches feature negative signal capability that allows signals below ground to pass through without distortion. The MAX4901/MAX4902 are a dual SPST (single-pole/single-throw) and the MAX4903/ MAX4904/MAX4905 are a single SPDT (single-pole/double-throw) configuration. These analog switches operate from a single +1.8 V to +5.5 V supply and have low 0.6Ω on-resistance, making them ideal for switching audio signals.
The MAX4905 includes a comparator that can be used for headphone detection or mute/send key function. The MAX4902/MAX4904/MAX4905 have internal shunt resistors to automatically discharge any capacitance at the NO_ and NC connection points. This reduces click-andpop sounds that occur when switching audio signals between pre-charged points. A break-before-make feature and auto-discharge also help to reduce popping.
These SPST and SPDT switches are available in space-saving 8-pin TDFN and 9-bump UCSP ${ }^{\text {¹ }}$ packages and operate over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range.

Applications

Cell Phones
PDAs and Handheld Devices

Notebook Computers MP3 Players

UCSP is a trademark of Maxim Integrated Products, Inc.

```
- Distortion-Free Signal Throughput Down
    to Vcc-5.5V
- Comparator for Headphone or
    Mute Detection (MAX4905)
- Clickless Switches with Internal Shunt Resistors
    (MAX4902/MAX4904/MAX4905)
* 0.6\Omega (typ) Low On-Resistance (RoN)
* 0.25\Omega On-Resistance Flatness
* +1.8V to +5.5V Supply Voltage
- 0.04% THD
```

Pin Configurations

Ordering Information/Selector Guide

PART	PIN-PACKAGE	TOP MARK	CONFIGURATION	COMPARATOR	SHUNT	PKG CODE
MAX4901EBL-T	$1.5 \mathrm{~mm} \times 1.5 \mathrm{~mm} 9$ UCSP-9	AEU	$2 \times$ SPST	No	No	B9-1
MAX4901ETA-T	8 TDFN-8	AOW	$2 \times$ SPST	No	No	T833-2
MAX4902EBL-T	$1.5 \mathrm{~mm} \times 1.5 \mathrm{~mm} 9$ UCSP-9	AEV	$2 \times$ SPST	No	Yes	B9-1
MAX4902ETA-T	8 TDFN-8	AOX	$2 \times$ SPST	No	Yes	T833-2
MAX4903EBL-T	$1.5 \mathrm{~mm} \times 1.5 \mathrm{~mm} 9$ UCSP-9	AEY	$1 \times$ SPDT	No	No	B9-1
MAX4903ETA-T	8 TDFN-8	AOY	$1 \times$ SPDT	No	No	T833-2
MAX4904EBL-T	$1.5 \mathrm{~mm} \times 1.5 \mathrm{~mm} 9$ UCSP-9	AEW	$1 \times$ SPDT	No	Yes	B9-1
MAX4904ETA-T	8 TDFN-8	AOZ	$1 \times$ SPDT	No	Yes	T833-2
MAX4905EBL-T	$1.5 \mathrm{~mm} \times 1.5 \mathrm{~mm} 9$ UCSP-9	AEX	$1 \times$ SPDT	Yes	Yes	B9-1
MAX4905ETA-T	8 TDFN-8	APA	$1 \times$ SPDT	Yes	Yes	T833-2

Note: All devices operate over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range.

Low-RON, Dual-SPST/Single-SPDT Clickless Switches with Negative Rail Capability

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
POWER SUPPLY							
Power-Supply Range	VCC			1.8		5.5	V
Supply Current	I+	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & \text { MAX4901- } \\ & \text { MAX4904 } \end{aligned}$		0.001	1	$\mu \mathrm{A}$
			MAX4905		5	10	
ANALOG SWITCH							
Analog Signal Range	$\mathrm{V}_{\mathrm{NO}} \mathrm{V}_{\mathrm{NC}}$, VCOM_	(Note 2)		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 5.5 \end{gathered}$		VCC	V
	Ron(NC), Ron(NO)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}} \\ & =\mathrm{V}_{\mathrm{CC}}-5.5 \mathrm{~V},-1 \mathrm{~V}, 0,1 \mathrm{~V}, \\ & 2 \mathrm{~V}, \mathrm{~V} C \mathrm{C} \mathrm{ICOM}=100 \mathrm{~mA} \\ & (\text { Notes } 3,4) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.6	1.0	Ω
On-Resistance			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \text { to }$ TMAX			1.2	
On-Resistance Match Between Channels	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}_{-}} \text {or } \\ & \mathrm{I}_{\mathrm{NC}}=100 \mathrm{~mA} \text { or } \mathrm{V}_{\mathrm{NO}_{-}} \\ & (\text {Notes } 3,4,5) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.01	0.25	Ω
			$\begin{aligned} & T_{A}=T_{\text {MIN }} \text { to } \\ & T_{\text {MAX }} \end{aligned}$			0.30	
On-Resistance Flatness	Rflat	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}} \\ & =\mathrm{V}_{\mathrm{CC}}-5.5 \mathrm{~V},-1 \mathrm{~V}, 0,1 \mathrm{~V}, \\ & 2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} ; \mathrm{ICOM}=100 \mathrm{~mA} \\ & (\text { Notes } 4,6) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.25	0.5	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \text { to }$ TMAX			0.5	

Low-RON, Dual-SPST/Single-SPDT Clickless Switches with Negative Rail Capability

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Shunt Resistance	RSH	$\begin{aligned} & \text { INO_or INC }=10 \mathrm{~mA}, \\ & \text { VCC }=2.7 \mathrm{~V} \\ & (\text { MAX4902/MAX4904/ } \\ & \text { MAX4905) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ $\text { to } \mathrm{T}_{\mathrm{MAX}}$		30	50	Ω
NO_, NC Off-Leakage Current	INO_(OFF), INC (OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \text {, switch open; } \mathrm{V}_{\mathrm{NC}} \\ & \text { or } \mathrm{V}_{\mathrm{NO}}=-2.5 \mathrm{~V},+2.5 \mathrm{~V} \text {; } \mathrm{V}_{\mathrm{COM}} \\ & =+2.5 \mathrm{~V},-2.5 \mathrm{~V}(\text { MAX4901/ } \\ & \text { MAX4903) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-6		+6	nA
			$T_{A}=T_{M I N}$ $\text { to } \mathrm{T}_{\mathrm{MAX}}$	-50		+50	
COM_ Off-Leakage Current	ICOM_(OFF)	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$, switch open; V_{NC} or $\mathrm{V}_{\mathrm{NO}_{-}}=-2.5 \mathrm{~V},+2.5 \mathrm{~V}$; $V_{\text {COM }}=-2.5 \mathrm{~V},+2.5 \mathrm{~V}$ (MAX4901) (Note 3)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-6		+6	nA
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to TMAX	-50		+50	
COM_ On-Leakage Current	ICOM_(ON)	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$, switch closed; V_{NC} or $\mathrm{V}_{\mathrm{NO}_{-}}=-2.5 \mathrm{~V},+2.5 \mathrm{~V}$, or unconnected; $\mathrm{V}_{\mathrm{COM}}=-2.5 \mathrm{~V}$, +2.5 V or unconnected (Note 3)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-6		+6	nA
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to TMAX	-50		+50	
DYNAMIC CHARACTERISTICS							
Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=1.5 \mathrm{~V}, \mathrm{~V}_{I N_{-}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}_{-}}=\mathrm{V}_{\mathrm{CC}} \text { to } 0 ; \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \text { (Figure 1) } \end{aligned}$			25	100	ns
Turn-Off Time	toff				15	100	ns
Break-Before-Make Time Delay (MAX4903/MAX4904/MAX4905)	tBBM	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}_{-}}=1.5 \mathrm{~V}, \\ & \mathrm{~V}_{I N_{-}}=\mathrm{V}_{\mathrm{CC}} \text { to } 0 ; \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \text { to } \mathrm{V}_{\mathrm{CC}} ; \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \text { (Figure 2) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	2	10		ns
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \\ & \text { to } \mathrm{T}_{\mathrm{MAX}} \end{aligned}$	1			
Charge Injection	Q	$\mathrm{V}_{\text {COM }}=0 \mathrm{~V}, \mathrm{RS}^{\prime}=0 \Omega, \mathrm{CL}_{L}=1.0 n \mathrm{~F}$ (Figure 3)		125			pC
Off-Isolation (Note 8)	VISO	$\begin{aligned} & f=100 \mathrm{kHz}, \mathrm{~V}_{C O M}=1 \mathrm{~V}_{\mathrm{RMS}}, \\ & R_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF} \text { (Figure 4) } \end{aligned}$		-70			dB
Crosstalk	$V_{C T}$	$\begin{aligned} & f=100 \mathrm{kHz}, \mathrm{VCOM}_{C}=1 \mathrm{~V}_{\mathrm{RMS}}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \text { (Figure 4) } \end{aligned}$		-75			dB
Power-Supply Rejection Ratio	PSRR	$\begin{aligned} & f=10 \mathrm{kHz}, V_{C O M}=1 V_{\text {RMS }}, \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF} \end{aligned}$		60			dB
On-Channel -3dB Bandwidth	BW	$\begin{aligned} & \text { Signal }=0 \mathrm{dBm}, R_{L}=50 \Omega, \\ & C_{L}=5 \mathrm{pF}(\text { Figure } 4) \end{aligned}$		27			MHz
Total Harmonic Distortion	THD	$\begin{aligned} & f=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{~V}_{\mathrm{COM}}=0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \\ & \mathrm{DC} \text { bias }=0, R_{L}=32 \Omega \end{aligned}$		0.04			\%

Low-RON, Dual-SPST/Single-SPDT Clickless Switches with Negative Rail Capability

ELECTRICAL CHARACTERISTICS (continued)
$\left(\mathrm{V} C \mathrm{C}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
NO_, NC Off-Capacitance	CNO_(OFF) CNC(OFF)	$f=1 \mathrm{MHz}, V_{C O M}=0.5 V_{P-P}, D C \text { bias }=0$ (Figure 5)		40		pF
COM On-Capacitance	CCOM_(ON)	$f=1 \mathrm{MHz}, V_{C O M}=0.5 V_{P-P}, D C \text { bias }=0$ (Figure 5)		200		pF
DIGITAL I/O (IN_)						
Input Logic-High Voltage	V_{IH}	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	1.4			V
		$\mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}$ to 5.5 V	2.0			
Input Logic-Low Voltage	VIL	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V			0.5	V
		$\mathrm{V}_{\text {CC }}=4.2 \mathrm{~V}$ to 5.5 V			0.8	
Input Leakage Current	IIN	$\mathrm{V}_{1 \mathrm{~N}_{-}}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {CC }}$	-1		+1	$\mu \mathrm{A}$
COMPARATOR (MAX4905)						
Comparator Threshold				Vcc / 3		V
Comparator Output-High Voltage		ISOURCE $=1 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 0.4 \mathrm{~V} \end{aligned}$			V
Comparator Output-Low Voltage		$\mathrm{I}_{\text {SINK }}=1 \mathrm{~mA}$			0.4	V
Comparator Input Leakage		$\mathrm{V}_{\text {CMP }}=0$ to 2.7 V	-100		+100	nA
Comparator Switching Time		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CMP}}-=0 \mathrm{~V}$ to V_{CC}, from 50% of $V_{\text {CMP }}$ - to 50% of $V_{C M P O}$		1	2	$\mu \mathrm{s}$

Note 1: UCSP and TDFN parts are 100% tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ only, and guaranteed by design over the specified temperature range.
Note 2: Signals on COM_, NO_, or NC exceeding VCC are clamped by internal diodes. Limit forward-diode current to maximum current rating.
Note 3: Guaranteed by design.
Note 4: ${ }^{\text {I COM }}$ for UCSP is 10 mA .
Note 5: $\triangle \operatorname{RON}=\operatorname{RON}(M A X)-\operatorname{RON}(M I N)$.
Note 6: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
Note 7: The MAX4902/MAX4904/MAX4905 have an internal shunt resistor when, in off-state, will determine off-current.
Note 8: Off-Isolation = $20 \log _{10}(\mathrm{VCOM} / \mathrm{VNO}), \mathrm{VCOM}=$ output, $\mathrm{VNO}=$ input to off switch.

Low-RON, Dual-SPST/Single-SPDT Clickless Switches with Negative Rail Capability

Typical Operating Characteristics
$\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right.$, unless otherwise noted.)

SUPPLY CURRENT vs. SUPPLY VOLTAGE (MAX4905)

ON-RESISTANCE vs. COM VOLTAGE

TURN-ON/TURN-OFF TIME vs. SUPPLY VOLTAGE

Low-RON, Dual-SPST/Single-SPDT Clickless Switches with Negative Rail Capability

_ Typical Operating Characteristics (continued)
$\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right.$, unless otherwise noted. $)$

Low-RON, Dual-SPST/Single-SPDT Clickless Switches with Negative Rail Capability

Pin Description (MAX4901/MAX4902 Dual-SPST Switches)

PIN		NAME	FUNCTION
TDFN	UCSP		
1	B1	VCC	Positive Supply-Voltage Input. Bypass V_{CC} to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close to V_{Cc} as possible.
2	A1	COM1	Analog Switch 1, Common Terminal
-	B2	N.C.	No Connection. Leave N.C. unconnected.
3	A2	NO1	Analog Switch 1, Normally Open Terminal. NO1 (MAX4902) has a shunt resistor to GND when the switch is in open position.
4	A3	IN1	Digital Control Input for Analog Switch 1. A logic high on IN1 connects COM1 to NO1 and a logic low opens the switch.
5	B3	GND	Ground
6	C3	IN2	Digital Control Input for Analog Switch 2. A logic high on IN2 connects COM2 to NO2 and a logic low opens the switch.
7	C2	NO2	Analog Switch 2, Normally Open Terminal. NO2 has a shunt resistor to GND when the switch is in open position (MAX4902).
8	C1	COM2	Analog Switch 2, Common Terminal
EP	-	EP	Exposed Pad. Connect exposed pad to GND.

Pin Description (MAX4903/MAX4904/MAX4905 SPDT Switches)

PIN		NAME	FUNCTION
TDFN	UCSP		
1	A1	$V_{C C}$	Positive Supply-Voltage Input. Bypass V_{C} to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close to V_{CC} as possible.
2	A2	NO	Analog Switch, Normally Open Terminal. NO has a shunt resistor to GND when the switch is in open position (MAX4904/MAX4905).
3	A3	IN	Digital Control Input. Logic low on IN connects COM to NC and logic high connects COM to NO.
4	B2	N.C.	No Connection. Leave N.C. unconnected (MAX4903/MAX4904).
		CMPO	Comparator Output (MAX4905)
5	B3	GND	Ground
6	C3	N.C.	No Connection. Leave N.C. unconnected (MAX4903/MAX4904).
		CMP-	Comparator Input (MAX4905)
7	C2	NC	Analog Switch, Normally Closed Terminal. NC has a shunt resistor to GND when the switch is in open position (MAX4904/MAX4905).
8	B1	COM	Analog Switch, Common Terminal
-	C1	N.C.	No Connection. Leave N.C. unconnected (MAX4903/MAX4904/MAX4905)
EP	-	EP	Exposed Pad. Connect exposed pad to GND.

Low-RON, Dual-SPST/Single-SPDT Clickless Switches with Negative Rail Capability

Detailed Description

The MAX4901-MAX4905 are low on-resistance, low-voltage, dual-SPST and single-SPDT analog switches that operate from $a+1.8 \mathrm{~V}$ to +5.5 V supply and are fully specified for nominal 3.0 V applications. The devices feature a negative signal capability that allows signals below ground to pass through without distortion and have break-before-make switching (MAX4903/ MAX4904/MAX4905).
The MAX4905 features a comparator that can be used for headphone or mute detection. The comparator threshold is internally generated to be approximately $1 / 3$ of VCC. The MAX4902/MAX4904/MAX4905 feature an internal shunt resistor to discharge any capacitance at $\mathrm{NO}_{\text {_ }}$ and NC connection points. This reduces the click-and-pop sounds that occur when switching audio signals.

Applications Information

Digital Control Inputs

The MAX4901-MAX4905 logic inputs accept up to +5.5 V , regardless of supply voltage. For example, with a +3.3 V supply, IN_{c} can be driven low to GND and high to +5.5 V , allowing for mixing of logic levels in a system. Driving IN_rail-to-rail minimizes power consumption. For a +1.8 V supply voltage, the logic thresholds are 0.5 V (low) and 1.4 V (high). For a +5 V supply voltage, the logic thresholds are 0.8 V (low) and 2.0V (high).

Analog Signal Levels

 The on-resistance of the MAX4901-MAX4905 changes very little for analog input signals across the entire sup-ply-voltage range (see the Typical Operating Characteristics). The switches are bidirectional.The MAX4901-MAX4905 pass signals as low as VCc 5.5 V , including signals below ground with minimal distortion. Note that there are shunt resistors on NO_ and NC when they are unconnected to COM_ for the MAX4902/MAX4904/MAX4905.

Comparator (MAX4905)

The MAX4905 includes a comparator that can be used for mute and headphone detection functions. The positive terminal of the comparator is internally set to $\mathrm{V}_{\mathrm{cc}} / 3$. When the negative terminal (CMP-) is below the threshold, the comparator output (CMPO) is a logic high.
The comparator threshold of $\mathrm{V}_{\mathrm{Cc}} / 3$ allows for detection of headphones because headphone audio signals are typically biased to Vcc / 2.

Shunt Resistor
(MAX4902/MAX4904/MAX4905)
The 50Ω shunt resistors on the MAX4902/MAX4904/ MAX4905 automatically discharge any capacitance at the NC or NO_{-}terminals when they are unconnected to COM_. This reduces audio click-and-pop sounds that occur when switching between audio sources.

Low-RON, Dual-SPST/Single-SPDT Clickless Switches with Negative Rail Capability

Audible clicks and pops are caused when a step DC voltage is switched into the speaker. By automatically discharging the side that is not connected, any residual DC voltage is removed, thereby reducing the clicks and pops.

Power-Supply Sequencing and Overvoltage Protection

Caution: Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the device.
Proper power-supply sequencing is recommended for all CMOS devices. Always apply Vcc before applying analog signals, especially if the analog signal is not current-limited.
__UCSP Applications Information
For the latest application details on UCSP construction, dimensions, tape carrier information, PC board techniques, bump-pad layout, and recommended reflow temperature profile, as well as the latest information on reliability testing results, refer to the Application Note: UCSP-A Water-Level Chip-Scale Package on Maxim's web site at www.maxim-ic.com/ucsp.

TOP VIEW
NOTE: N.C. IS NO CONNECTION (SEE PIN DESCRIPTION TABLE)

TDFN
*EXPOSED PAD CONNECTED TO GND

TDFN

*EXPOSED PAD CONNECTED TO GND

MAX4901-MAX4905		
IN	NC	NO
0	ON	OFF
1	OFF	ON

MAX4904/					
MAX4905		$	$	NCS *	NOS *
:---:	:---:				
OFF	ON				
ON	OFF				

*NCS AND NOS REFER TO
NORMALLY CLOSED
SHUNT REGISTER

Low-RON, Dual-SPST/Single-SPDT Clickless Switches with Negative Rail Capability

Figure 1. Switching Time

Figure 2. Break-Before-Make Interval

Figure 3. Charge Injection

Low-RON, Dual-SPST/Single-SPDT Clickless Switches with Negative Rail Capability

Test Circuits/Timing Diagrams (continued)

Figure 4. -3dB Bandwidth, Off-Isolation, and Crosstalk

PROCESS: BiCMOS

Figure 5. Channel Off-/On-Capacitance

Low-RON, Dual-SPST/Single-SPDT Clickless Switches with Negative Rail Capability

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Low-RON, Dual-SPST/Single-SPDT Clickless Switches with Negative Rail Capability

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

